alistair23-linux/drivers/i2c/busses/i2c-qup.c
Naveen Kaje cc9086e772 i2c: qup: support SMBus block read
I2C QUP driver relies on SMBus emulation support from the framework.
To handle SMBus block reads, the driver should check I2C_M_RECV_LEN
flag and should read the first byte received as the message length.

The driver configures the QUP hardware to read one byte. Once the
message length is known from this byte, the QUP hardware is configured
to read the rest.

Signed-off-by: Naveen Kaje <nkaje@codeaurora.org>
Signed-off-by: Austin Christ <austinwc@codeaurora.org>
Reviewed-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2016-11-29 22:43:38 +01:00

1732 lines
38 KiB
C

/*
* Copyright (c) 2009-2013, The Linux Foundation. All rights reserved.
* Copyright (c) 2014, Sony Mobile Communications AB.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/acpi.h>
#include <linux/atomic.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
/* QUP Registers */
#define QUP_CONFIG 0x000
#define QUP_STATE 0x004
#define QUP_IO_MODE 0x008
#define QUP_SW_RESET 0x00c
#define QUP_OPERATIONAL 0x018
#define QUP_ERROR_FLAGS 0x01c
#define QUP_ERROR_FLAGS_EN 0x020
#define QUP_OPERATIONAL_MASK 0x028
#define QUP_HW_VERSION 0x030
#define QUP_MX_OUTPUT_CNT 0x100
#define QUP_OUT_FIFO_BASE 0x110
#define QUP_MX_WRITE_CNT 0x150
#define QUP_MX_INPUT_CNT 0x200
#define QUP_MX_READ_CNT 0x208
#define QUP_IN_FIFO_BASE 0x218
#define QUP_I2C_CLK_CTL 0x400
#define QUP_I2C_STATUS 0x404
#define QUP_I2C_MASTER_GEN 0x408
/* QUP States and reset values */
#define QUP_RESET_STATE 0
#define QUP_RUN_STATE 1
#define QUP_PAUSE_STATE 3
#define QUP_STATE_MASK 3
#define QUP_STATE_VALID BIT(2)
#define QUP_I2C_MAST_GEN BIT(4)
#define QUP_I2C_FLUSH BIT(6)
#define QUP_OPERATIONAL_RESET 0x000ff0
#define QUP_I2C_STATUS_RESET 0xfffffc
/* QUP OPERATIONAL FLAGS */
#define QUP_I2C_NACK_FLAG BIT(3)
#define QUP_OUT_NOT_EMPTY BIT(4)
#define QUP_IN_NOT_EMPTY BIT(5)
#define QUP_OUT_FULL BIT(6)
#define QUP_OUT_SVC_FLAG BIT(8)
#define QUP_IN_SVC_FLAG BIT(9)
#define QUP_MX_OUTPUT_DONE BIT(10)
#define QUP_MX_INPUT_DONE BIT(11)
/* I2C mini core related values */
#define QUP_CLOCK_AUTO_GATE BIT(13)
#define I2C_MINI_CORE (2 << 8)
#define I2C_N_VAL 15
#define I2C_N_VAL_V2 7
/* Most significant word offset in FIFO port */
#define QUP_MSW_SHIFT (I2C_N_VAL + 1)
/* Packing/Unpacking words in FIFOs, and IO modes */
#define QUP_OUTPUT_BLK_MODE (1 << 10)
#define QUP_OUTPUT_BAM_MODE (3 << 10)
#define QUP_INPUT_BLK_MODE (1 << 12)
#define QUP_INPUT_BAM_MODE (3 << 12)
#define QUP_BAM_MODE (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
#define QUP_UNPACK_EN BIT(14)
#define QUP_PACK_EN BIT(15)
#define QUP_REPACK_EN (QUP_UNPACK_EN | QUP_PACK_EN)
#define QUP_V2_TAGS_EN 1
#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
#define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07)
#define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03)
#define QUP_INPUT_FIFO_SIZE(x) (((x) >> 7) & 0x07)
/* QUP tags */
#define QUP_TAG_START (1 << 8)
#define QUP_TAG_DATA (2 << 8)
#define QUP_TAG_STOP (3 << 8)
#define QUP_TAG_REC (4 << 8)
#define QUP_BAM_INPUT_EOT 0x93
#define QUP_BAM_FLUSH_STOP 0x96
/* QUP v2 tags */
#define QUP_TAG_V2_START 0x81
#define QUP_TAG_V2_DATAWR 0x82
#define QUP_TAG_V2_DATAWR_STOP 0x83
#define QUP_TAG_V2_DATARD 0x85
#define QUP_TAG_V2_DATARD_STOP 0x87
/* Status, Error flags */
#define I2C_STATUS_WR_BUFFER_FULL BIT(0)
#define I2C_STATUS_BUS_ACTIVE BIT(8)
#define I2C_STATUS_ERROR_MASK 0x38000fc
#define QUP_STATUS_ERROR_FLAGS 0x7c
#define QUP_READ_LIMIT 256
#define SET_BIT 0x1
#define RESET_BIT 0x0
#define ONE_BYTE 0x1
#define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31)
#define MX_TX_RX_LEN SZ_64K
#define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT)
/* Max timeout in ms for 32k bytes */
#define TOUT_MAX 300
/* Default values. Use these if FW query fails */
#define DEFAULT_CLK_FREQ 100000
#define DEFAULT_SRC_CLK 20000000
struct qup_i2c_block {
int count;
int pos;
int tx_tag_len;
int rx_tag_len;
int data_len;
u8 tags[6];
};
struct qup_i2c_tag {
u8 *start;
dma_addr_t addr;
};
struct qup_i2c_bam {
struct qup_i2c_tag tag;
struct dma_chan *dma;
struct scatterlist *sg;
};
struct qup_i2c_dev {
struct device *dev;
void __iomem *base;
int irq;
struct clk *clk;
struct clk *pclk;
struct i2c_adapter adap;
int clk_ctl;
int out_fifo_sz;
int in_fifo_sz;
int out_blk_sz;
int in_blk_sz;
unsigned long one_byte_t;
struct qup_i2c_block blk;
struct i2c_msg *msg;
/* Current posion in user message buffer */
int pos;
/* I2C protocol errors */
u32 bus_err;
/* QUP core errors */
u32 qup_err;
/* To check if this is the last msg */
bool is_last;
/* To configure when bus is in run state */
int config_run;
/* dma parameters */
bool is_dma;
struct dma_pool *dpool;
struct qup_i2c_tag start_tag;
struct qup_i2c_bam brx;
struct qup_i2c_bam btx;
struct completion xfer;
};
static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
{
struct qup_i2c_dev *qup = dev;
u32 bus_err;
u32 qup_err;
u32 opflags;
bus_err = readl(qup->base + QUP_I2C_STATUS);
qup_err = readl(qup->base + QUP_ERROR_FLAGS);
opflags = readl(qup->base + QUP_OPERATIONAL);
if (!qup->msg) {
/* Clear Error interrupt */
writel(QUP_RESET_STATE, qup->base + QUP_STATE);
return IRQ_HANDLED;
}
bus_err &= I2C_STATUS_ERROR_MASK;
qup_err &= QUP_STATUS_ERROR_FLAGS;
/* Clear the error bits in QUP_ERROR_FLAGS */
if (qup_err)
writel(qup_err, qup->base + QUP_ERROR_FLAGS);
/* Clear the error bits in QUP_I2C_STATUS */
if (bus_err)
writel(bus_err, qup->base + QUP_I2C_STATUS);
/* Reset the QUP State in case of error */
if (qup_err || bus_err) {
writel(QUP_RESET_STATE, qup->base + QUP_STATE);
goto done;
}
if (opflags & QUP_IN_SVC_FLAG)
writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
if (opflags & QUP_OUT_SVC_FLAG)
writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
done:
qup->qup_err = qup_err;
qup->bus_err = bus_err;
complete(&qup->xfer);
return IRQ_HANDLED;
}
static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
u32 req_state, u32 req_mask)
{
int retries = 1;
u32 state;
/*
* State transition takes 3 AHB clocks cycles + 3 I2C master clock
* cycles. So retry once after a 1uS delay.
*/
do {
state = readl(qup->base + QUP_STATE);
if (state & QUP_STATE_VALID &&
(state & req_mask) == req_state)
return 0;
udelay(1);
} while (retries--);
return -ETIMEDOUT;
}
static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
{
return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
}
static void qup_i2c_flush(struct qup_i2c_dev *qup)
{
u32 val = readl(qup->base + QUP_STATE);
val |= QUP_I2C_FLUSH;
writel(val, qup->base + QUP_STATE);
}
static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
{
return qup_i2c_poll_state_mask(qup, 0, 0);
}
static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
{
return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
}
static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
{
if (qup_i2c_poll_state_valid(qup) != 0)
return -EIO;
writel(state, qup->base + QUP_STATE);
if (qup_i2c_poll_state(qup, state) != 0)
return -EIO;
return 0;
}
/**
* qup_i2c_wait_ready - wait for a give number of bytes in tx/rx path
* @qup: The qup_i2c_dev device
* @op: The bit/event to wait on
* @val: value of the bit to wait on, 0 or 1
* @len: The length the bytes to be transferred
*/
static int qup_i2c_wait_ready(struct qup_i2c_dev *qup, int op, bool val,
int len)
{
unsigned long timeout;
u32 opflags;
u32 status;
u32 shift = __ffs(op);
int ret = 0;
len *= qup->one_byte_t;
/* timeout after a wait of twice the max time */
timeout = jiffies + len * 4;
for (;;) {
opflags = readl(qup->base + QUP_OPERATIONAL);
status = readl(qup->base + QUP_I2C_STATUS);
if (((opflags & op) >> shift) == val) {
if ((op == QUP_OUT_NOT_EMPTY) && qup->is_last) {
if (!(status & I2C_STATUS_BUS_ACTIVE)) {
ret = 0;
goto done;
}
} else {
ret = 0;
goto done;
}
}
if (time_after(jiffies, timeout)) {
ret = -ETIMEDOUT;
goto done;
}
usleep_range(len, len * 2);
}
done:
if (qup->bus_err || qup->qup_err)
ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
return ret;
}
static void qup_i2c_set_write_mode_v2(struct qup_i2c_dev *qup,
struct i2c_msg *msg)
{
/* Number of entries to shift out, including the tags */
int total = msg->len + qup->blk.tx_tag_len;
total |= qup->config_run;
if (total < qup->out_fifo_sz) {
/* FIFO mode */
writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
writel(total, qup->base + QUP_MX_WRITE_CNT);
} else {
/* BLOCK mode (transfer data on chunks) */
writel(QUP_OUTPUT_BLK_MODE | QUP_REPACK_EN,
qup->base + QUP_IO_MODE);
writel(total, qup->base + QUP_MX_OUTPUT_CNT);
}
}
static void qup_i2c_set_write_mode(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
/* Number of entries to shift out, including the start */
int total = msg->len + 1;
if (total < qup->out_fifo_sz) {
/* FIFO mode */
writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
writel(total, qup->base + QUP_MX_WRITE_CNT);
} else {
/* BLOCK mode (transfer data on chunks) */
writel(QUP_OUTPUT_BLK_MODE | QUP_REPACK_EN,
qup->base + QUP_IO_MODE);
writel(total, qup->base + QUP_MX_OUTPUT_CNT);
}
}
static int check_for_fifo_space(struct qup_i2c_dev *qup)
{
int ret;
ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
if (ret)
goto out;
ret = qup_i2c_wait_ready(qup, QUP_OUT_FULL,
RESET_BIT, 4 * ONE_BYTE);
if (ret) {
/* Fifo is full. Drain out the fifo */
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto out;
ret = qup_i2c_wait_ready(qup, QUP_OUT_NOT_EMPTY,
RESET_BIT, 256 * ONE_BYTE);
if (ret) {
dev_err(qup->dev, "timeout for fifo out full");
goto out;
}
ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
if (ret)
goto out;
}
out:
return ret;
}
static int qup_i2c_issue_write(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
u32 addr = msg->addr << 1;
u32 qup_tag;
int idx;
u32 val;
int ret = 0;
if (qup->pos == 0) {
val = QUP_TAG_START | addr;
idx = 1;
} else {
val = 0;
idx = 0;
}
while (qup->pos < msg->len) {
/* Check that there's space in the FIFO for our pair */
ret = check_for_fifo_space(qup);
if (ret)
return ret;
if (qup->pos == msg->len - 1)
qup_tag = QUP_TAG_STOP;
else
qup_tag = QUP_TAG_DATA;
if (idx & 1)
val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
else
val = qup_tag | msg->buf[qup->pos];
/* Write out the pair and the last odd value */
if (idx & 1 || qup->pos == msg->len - 1)
writel(val, qup->base + QUP_OUT_FIFO_BASE);
qup->pos++;
idx++;
}
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
return ret;
}
static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
struct i2c_msg *msg)
{
memset(&qup->blk, 0, sizeof(qup->blk));
qup->blk.data_len = msg->len;
qup->blk.count = (msg->len + QUP_READ_LIMIT - 1) / QUP_READ_LIMIT;
/* 4 bytes for first block and 2 writes for rest */
qup->blk.tx_tag_len = 4 + (qup->blk.count - 1) * 2;
/* There are 2 tag bytes that are read in to fifo for every block */
if (msg->flags & I2C_M_RD)
qup->blk.rx_tag_len = qup->blk.count * 2;
}
static int qup_i2c_send_data(struct qup_i2c_dev *qup, int tlen, u8 *tbuf,
int dlen, u8 *dbuf)
{
u32 val = 0, idx = 0, pos = 0, i = 0, t;
int len = tlen + dlen;
u8 *buf = tbuf;
int ret = 0;
while (len > 0) {
ret = check_for_fifo_space(qup);
if (ret)
return ret;
t = (len >= 4) ? 4 : len;
while (idx < t) {
if (!i && (pos >= tlen)) {
buf = dbuf;
pos = 0;
i = 1;
}
val |= buf[pos++] << (idx++ * 8);
}
writel(val, qup->base + QUP_OUT_FIFO_BASE);
idx = 0;
val = 0;
len -= 4;
}
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
return ret;
}
static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
{
int data_len;
if (qup->blk.data_len > QUP_READ_LIMIT)
data_len = QUP_READ_LIMIT;
else
data_len = qup->blk.data_len;
return data_len;
}
static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
{
return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
}
static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
struct i2c_msg *msg)
{
int len = 0;
if (msg->len > 1) {
tags[len++] = QUP_TAG_V2_DATARD_STOP;
tags[len++] = qup_i2c_get_data_len(qup) - 1;
} else {
tags[len++] = QUP_TAG_V2_START;
tags[len++] = addr & 0xff;
if (msg->flags & I2C_M_TEN)
tags[len++] = addr >> 8;
tags[len++] = QUP_TAG_V2_DATARD;
/* Read 1 byte indicating the length of the SMBus message */
tags[len++] = 1;
}
return len;
}
static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
struct i2c_msg *msg, int is_dma)
{
u16 addr = i2c_8bit_addr_from_msg(msg);
int len = 0;
int data_len;
int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
/* Handle tags for SMBus block read */
if (qup_i2c_check_msg_len(msg))
return qup_i2c_set_tags_smb(addr, tags, qup, msg);
if (qup->blk.pos == 0) {
tags[len++] = QUP_TAG_V2_START;
tags[len++] = addr & 0xff;
if (msg->flags & I2C_M_TEN)
tags[len++] = addr >> 8;
}
/* Send _STOP commands for the last block */
if (last) {
if (msg->flags & I2C_M_RD)
tags[len++] = QUP_TAG_V2_DATARD_STOP;
else
tags[len++] = QUP_TAG_V2_DATAWR_STOP;
} else {
if (msg->flags & I2C_M_RD)
tags[len++] = QUP_TAG_V2_DATARD;
else
tags[len++] = QUP_TAG_V2_DATAWR;
}
data_len = qup_i2c_get_data_len(qup);
/* 0 implies 256 bytes */
if (data_len == QUP_READ_LIMIT)
tags[len++] = 0;
else
tags[len++] = data_len;
if ((msg->flags & I2C_M_RD) && last && is_dma) {
tags[len++] = QUP_BAM_INPUT_EOT;
tags[len++] = QUP_BAM_FLUSH_STOP;
}
return len;
}
static int qup_i2c_issue_xfer_v2(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
int data_len = 0, tag_len, index;
int ret;
tag_len = qup_i2c_set_tags(qup->blk.tags, qup, msg, 0);
index = msg->len - qup->blk.data_len;
/* only tags are written for read */
if (!(msg->flags & I2C_M_RD))
data_len = qup_i2c_get_data_len(qup);
ret = qup_i2c_send_data(qup, tag_len, qup->blk.tags,
data_len, &msg->buf[index]);
qup->blk.data_len -= data_len;
return ret;
}
static void qup_i2c_bam_cb(void *data)
{
struct qup_i2c_dev *qup = data;
complete(&qup->xfer);
}
static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
unsigned int buflen, struct qup_i2c_dev *qup,
int dir)
{
int ret;
sg_set_buf(sg, buf, buflen);
ret = dma_map_sg(qup->dev, sg, 1, dir);
if (!ret)
return -EINVAL;
return 0;
}
static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
{
if (qup->btx.dma)
dma_release_channel(qup->btx.dma);
if (qup->brx.dma)
dma_release_channel(qup->brx.dma);
qup->btx.dma = NULL;
qup->brx.dma = NULL;
}
static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
{
int err;
if (!qup->btx.dma) {
qup->btx.dma = dma_request_slave_channel_reason(qup->dev, "tx");
if (IS_ERR(qup->btx.dma)) {
err = PTR_ERR(qup->btx.dma);
qup->btx.dma = NULL;
dev_err(qup->dev, "\n tx channel not available");
return err;
}
}
if (!qup->brx.dma) {
qup->brx.dma = dma_request_slave_channel_reason(qup->dev, "rx");
if (IS_ERR(qup->brx.dma)) {
dev_err(qup->dev, "\n rx channel not available");
err = PTR_ERR(qup->brx.dma);
qup->brx.dma = NULL;
qup_i2c_rel_dma(qup);
return err;
}
}
return 0;
}
static int qup_i2c_bam_do_xfer(struct qup_i2c_dev *qup, struct i2c_msg *msg,
int num)
{
struct dma_async_tx_descriptor *txd, *rxd = NULL;
int ret = 0, idx = 0, limit = QUP_READ_LIMIT;
dma_cookie_t cookie_rx, cookie_tx;
u32 rx_nents = 0, tx_nents = 0, len, blocks, rem;
u32 i, tlen, tx_len, tx_buf = 0, rx_buf = 0, off = 0;
u8 *tags;
while (idx < num) {
tx_len = 0, len = 0, i = 0;
qup->is_last = (idx == (num - 1));
qup_i2c_set_blk_data(qup, msg);
blocks = qup->blk.count;
rem = msg->len - (blocks - 1) * limit;
if (msg->flags & I2C_M_RD) {
rx_nents += (blocks * 2) + 1;
tx_nents += 1;
while (qup->blk.pos < blocks) {
tlen = (i == (blocks - 1)) ? rem : limit;
tags = &qup->start_tag.start[off + len];
len += qup_i2c_set_tags(tags, qup, msg, 1);
qup->blk.data_len -= tlen;
/* scratch buf to read the start and len tags */
ret = qup_sg_set_buf(&qup->brx.sg[rx_buf++],
&qup->brx.tag.start[0],
2, qup, DMA_FROM_DEVICE);
if (ret)
return ret;
ret = qup_sg_set_buf(&qup->brx.sg[rx_buf++],
&msg->buf[limit * i],
tlen, qup,
DMA_FROM_DEVICE);
if (ret)
return ret;
i++;
qup->blk.pos = i;
}
ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
&qup->start_tag.start[off],
len, qup, DMA_TO_DEVICE);
if (ret)
return ret;
off += len;
/* scratch buf to read the BAM EOT and FLUSH tags */
ret = qup_sg_set_buf(&qup->brx.sg[rx_buf++],
&qup->brx.tag.start[0],
2, qup, DMA_FROM_DEVICE);
if (ret)
return ret;
} else {
tx_nents += (blocks * 2);
while (qup->blk.pos < blocks) {
tlen = (i == (blocks - 1)) ? rem : limit;
tags = &qup->start_tag.start[off + tx_len];
len = qup_i2c_set_tags(tags, qup, msg, 1);
qup->blk.data_len -= tlen;
ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
tags, len,
qup, DMA_TO_DEVICE);
if (ret)
return ret;
tx_len += len;
ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
&msg->buf[limit * i],
tlen, qup, DMA_TO_DEVICE);
if (ret)
return ret;
i++;
qup->blk.pos = i;
}
off += tx_len;
if (idx == (num - 1)) {
len = 1;
if (rx_nents) {
qup->btx.tag.start[0] =
QUP_BAM_INPUT_EOT;
len++;
}
qup->btx.tag.start[len - 1] =
QUP_BAM_FLUSH_STOP;
ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
&qup->btx.tag.start[0],
len, qup, DMA_TO_DEVICE);
if (ret)
return ret;
tx_nents += 1;
}
}
idx++;
msg++;
}
txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
if (!txd) {
dev_err(qup->dev, "failed to get tx desc\n");
ret = -EINVAL;
goto desc_err;
}
if (!rx_nents) {
txd->callback = qup_i2c_bam_cb;
txd->callback_param = qup;
}
cookie_tx = dmaengine_submit(txd);
if (dma_submit_error(cookie_tx)) {
ret = -EINVAL;
goto desc_err;
}
dma_async_issue_pending(qup->btx.dma);
if (rx_nents) {
rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
rx_nents, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!rxd) {
dev_err(qup->dev, "failed to get rx desc\n");
ret = -EINVAL;
/* abort TX descriptors */
dmaengine_terminate_all(qup->btx.dma);
goto desc_err;
}
rxd->callback = qup_i2c_bam_cb;
rxd->callback_param = qup;
cookie_rx = dmaengine_submit(rxd);
if (dma_submit_error(cookie_rx)) {
ret = -EINVAL;
goto desc_err;
}
dma_async_issue_pending(qup->brx.dma);
}
if (!wait_for_completion_timeout(&qup->xfer, TOUT_MAX * HZ)) {
dev_err(qup->dev, "normal trans timed out\n");
ret = -ETIMEDOUT;
}
if (ret || qup->bus_err || qup->qup_err) {
if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
dev_err(qup->dev, "change to run state timed out");
goto desc_err;
}
if (rx_nents)
writel(QUP_BAM_INPUT_EOT,
qup->base + QUP_OUT_FIFO_BASE);
writel(QUP_BAM_FLUSH_STOP, qup->base + QUP_OUT_FIFO_BASE);
qup_i2c_flush(qup);
/* wait for remaining interrupts to occur */
if (!wait_for_completion_timeout(&qup->xfer, HZ))
dev_err(qup->dev, "flush timed out\n");
qup_i2c_rel_dma(qup);
ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
}
desc_err:
dma_unmap_sg(qup->dev, qup->btx.sg, tx_nents, DMA_TO_DEVICE);
if (rx_nents)
dma_unmap_sg(qup->dev, qup->brx.sg, rx_nents,
DMA_FROM_DEVICE);
return ret;
}
static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
int num)
{
struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
int ret = 0;
enable_irq(qup->irq);
ret = qup_i2c_req_dma(qup);
if (ret)
goto out;
writel(0, qup->base + QUP_MX_INPUT_CNT);
writel(0, qup->base + QUP_MX_OUTPUT_CNT);
/* set BAM mode */
writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
/* mask fifo irqs */
writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
/* set RUN STATE */
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto out;
writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
qup->msg = msg;
ret = qup_i2c_bam_do_xfer(qup, qup->msg, num);
out:
disable_irq(qup->irq);
qup->msg = NULL;
return ret;
}
static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
struct i2c_msg *msg)
{
unsigned long left;
int ret = 0;
left = wait_for_completion_timeout(&qup->xfer, HZ);
if (!left) {
writel(1, qup->base + QUP_SW_RESET);
ret = -ETIMEDOUT;
}
if (qup->bus_err || qup->qup_err)
ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
return ret;
}
static int qup_i2c_write_one_v2(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
int ret = 0;
qup->msg = msg;
qup->pos = 0;
enable_irq(qup->irq);
qup_i2c_set_blk_data(qup, msg);
qup_i2c_set_write_mode_v2(qup, msg);
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto err;
writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
do {
ret = qup_i2c_issue_xfer_v2(qup, msg);
if (ret)
goto err;
ret = qup_i2c_wait_for_complete(qup, msg);
if (ret)
goto err;
qup->blk.pos++;
} while (qup->blk.pos < qup->blk.count);
ret = qup_i2c_wait_ready(qup, QUP_OUT_NOT_EMPTY, RESET_BIT, ONE_BYTE);
err:
disable_irq(qup->irq);
qup->msg = NULL;
return ret;
}
static int qup_i2c_write_one(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
int ret;
qup->msg = msg;
qup->pos = 0;
enable_irq(qup->irq);
qup_i2c_set_write_mode(qup, msg);
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto err;
writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
do {
ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
if (ret)
goto err;
ret = qup_i2c_issue_write(qup, msg);
if (ret)
goto err;
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto err;
ret = qup_i2c_wait_for_complete(qup, msg);
if (ret)
goto err;
} while (qup->pos < msg->len);
/* Wait for the outstanding data in the fifo to drain */
ret = qup_i2c_wait_ready(qup, QUP_OUT_NOT_EMPTY, RESET_BIT, ONE_BYTE);
err:
disable_irq(qup->irq);
qup->msg = NULL;
return ret;
}
static void qup_i2c_set_read_mode(struct qup_i2c_dev *qup, int len)
{
if (len < qup->in_fifo_sz) {
/* FIFO mode */
writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
writel(len, qup->base + QUP_MX_READ_CNT);
} else {
/* BLOCK mode (transfer data on chunks) */
writel(QUP_INPUT_BLK_MODE | QUP_REPACK_EN,
qup->base + QUP_IO_MODE);
writel(len, qup->base + QUP_MX_INPUT_CNT);
}
}
static void qup_i2c_set_read_mode_v2(struct qup_i2c_dev *qup, int len)
{
int tx_len = qup->blk.tx_tag_len;
len += qup->blk.rx_tag_len;
len |= qup->config_run;
tx_len |= qup->config_run;
if (len < qup->in_fifo_sz) {
/* FIFO mode */
writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
writel(tx_len, qup->base + QUP_MX_WRITE_CNT);
writel(len, qup->base + QUP_MX_READ_CNT);
} else {
/* BLOCK mode (transfer data on chunks) */
writel(QUP_INPUT_BLK_MODE | QUP_REPACK_EN,
qup->base + QUP_IO_MODE);
writel(tx_len, qup->base + QUP_MX_OUTPUT_CNT);
writel(len, qup->base + QUP_MX_INPUT_CNT);
}
}
static void qup_i2c_issue_read(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
u32 addr, len, val;
addr = i2c_8bit_addr_from_msg(msg);
/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
writel(val, qup->base + QUP_OUT_FIFO_BASE);
}
static int qup_i2c_read_fifo(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
u32 val = 0;
int idx;
int ret = 0;
for (idx = 0; qup->pos < msg->len; idx++) {
if ((idx & 1) == 0) {
/* Check that FIFO have data */
ret = qup_i2c_wait_ready(qup, QUP_IN_NOT_EMPTY,
SET_BIT, 4 * ONE_BYTE);
if (ret)
return ret;
/* Reading 2 words at time */
val = readl(qup->base + QUP_IN_FIFO_BASE);
msg->buf[qup->pos++] = val & 0xFF;
} else {
msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
}
}
return ret;
}
static int qup_i2c_read_fifo_v2(struct qup_i2c_dev *qup,
struct i2c_msg *msg)
{
u32 val;
int idx, pos = 0, ret = 0, total, msg_offset = 0;
/*
* If the message length is already read in
* the first byte of the buffer, account for
* that by setting the offset
*/
if (qup_i2c_check_msg_len(msg) && (msg->len > 1))
msg_offset = 1;
total = qup_i2c_get_data_len(qup);
total -= msg_offset;
/* 2 extra bytes for read tags */
while (pos < (total + 2)) {
/* Check that FIFO have data */
ret = qup_i2c_wait_ready(qup, QUP_IN_NOT_EMPTY,
SET_BIT, 4 * ONE_BYTE);
if (ret) {
dev_err(qup->dev, "timeout for fifo not empty");
return ret;
}
val = readl(qup->base + QUP_IN_FIFO_BASE);
for (idx = 0; idx < 4; idx++, val >>= 8, pos++) {
/* first 2 bytes are tag bytes */
if (pos < 2)
continue;
if (pos >= (total + 2))
goto out;
msg->buf[qup->pos + msg_offset] = val & 0xff;
qup->pos++;
}
}
out:
qup->blk.data_len -= total;
return ret;
}
static int qup_i2c_read_one_v2(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
int ret = 0;
qup->msg = msg;
qup->pos = 0;
enable_irq(qup->irq);
qup_i2c_set_blk_data(qup, msg);
qup_i2c_set_read_mode_v2(qup, msg->len);
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto err;
writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
do {
ret = qup_i2c_issue_xfer_v2(qup, msg);
if (ret)
goto err;
ret = qup_i2c_wait_for_complete(qup, msg);
if (ret)
goto err;
ret = qup_i2c_read_fifo_v2(qup, msg);
if (ret)
goto err;
qup->blk.pos++;
/* Handle SMBus block read length */
if (qup_i2c_check_msg_len(msg) && (msg->len == 1)) {
if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX) {
ret = -EPROTO;
goto err;
}
msg->len += msg->buf[0];
qup->pos = 0;
qup_i2c_set_blk_data(qup, msg);
/* set tag length for block read */
qup->blk.tx_tag_len = 2;
qup_i2c_set_read_mode_v2(qup, msg->buf[0]);
}
} while (qup->blk.pos < qup->blk.count);
err:
disable_irq(qup->irq);
qup->msg = NULL;
return ret;
}
static int qup_i2c_read_one(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
int ret;
qup->msg = msg;
qup->pos = 0;
enable_irq(qup->irq);
qup_i2c_set_read_mode(qup, msg->len);
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto err;
writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
if (ret)
goto err;
qup_i2c_issue_read(qup, msg);
ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
if (ret)
goto err;
do {
ret = qup_i2c_wait_for_complete(qup, msg);
if (ret)
goto err;
ret = qup_i2c_read_fifo(qup, msg);
if (ret)
goto err;
} while (qup->pos < msg->len);
err:
disable_irq(qup->irq);
qup->msg = NULL;
return ret;
}
static int qup_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg msgs[],
int num)
{
struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
int ret, idx;
ret = pm_runtime_get_sync(qup->dev);
if (ret < 0)
goto out;
qup->bus_err = 0;
qup->qup_err = 0;
writel(1, qup->base + QUP_SW_RESET);
ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
if (ret)
goto out;
/* Configure QUP as I2C mini core */
writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
for (idx = 0; idx < num; idx++) {
if (msgs[idx].len == 0) {
ret = -EINVAL;
goto out;
}
if (qup_i2c_poll_state_i2c_master(qup)) {
ret = -EIO;
goto out;
}
if (qup_i2c_check_msg_len(&msgs[idx])) {
ret = -EINVAL;
goto out;
}
if (msgs[idx].flags & I2C_M_RD)
ret = qup_i2c_read_one(qup, &msgs[idx]);
else
ret = qup_i2c_write_one(qup, &msgs[idx]);
if (ret)
break;
ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
if (ret)
break;
}
if (ret == 0)
ret = num;
out:
pm_runtime_mark_last_busy(qup->dev);
pm_runtime_put_autosuspend(qup->dev);
return ret;
}
static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
struct i2c_msg msgs[],
int num)
{
struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
int ret, len, idx = 0, use_dma = 0;
qup->bus_err = 0;
qup->qup_err = 0;
ret = pm_runtime_get_sync(qup->dev);
if (ret < 0)
goto out;
writel(1, qup->base + QUP_SW_RESET);
ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
if (ret)
goto out;
/* Configure QUP as I2C mini core */
writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
if ((qup->is_dma)) {
/* All i2c_msgs should be transferred using either dma or cpu */
for (idx = 0; idx < num; idx++) {
if (msgs[idx].len == 0) {
ret = -EINVAL;
goto out;
}
len = (msgs[idx].len > qup->out_fifo_sz) ||
(msgs[idx].len > qup->in_fifo_sz);
if ((!is_vmalloc_addr(msgs[idx].buf)) && len) {
use_dma = 1;
} else {
use_dma = 0;
break;
}
}
}
idx = 0;
do {
if (msgs[idx].len == 0) {
ret = -EINVAL;
goto out;
}
if (qup_i2c_poll_state_i2c_master(qup)) {
ret = -EIO;
goto out;
}
qup->is_last = (idx == (num - 1));
if (idx)
qup->config_run = QUP_I2C_MX_CONFIG_DURING_RUN;
else
qup->config_run = 0;
reinit_completion(&qup->xfer);
if (use_dma) {
ret = qup_i2c_bam_xfer(adap, &msgs[idx], num);
} else {
if (msgs[idx].flags & I2C_M_RD)
ret = qup_i2c_read_one_v2(qup, &msgs[idx]);
else
ret = qup_i2c_write_one_v2(qup, &msgs[idx]);
}
} while ((idx++ < (num - 1)) && !use_dma && !ret);
if (!ret)
ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
if (ret == 0)
ret = num;
out:
pm_runtime_mark_last_busy(qup->dev);
pm_runtime_put_autosuspend(qup->dev);
return ret;
}
static u32 qup_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}
static const struct i2c_algorithm qup_i2c_algo = {
.master_xfer = qup_i2c_xfer,
.functionality = qup_i2c_func,
};
static const struct i2c_algorithm qup_i2c_algo_v2 = {
.master_xfer = qup_i2c_xfer_v2,
.functionality = qup_i2c_func,
};
/*
* The QUP block will issue a NACK and STOP on the bus when reaching
* the end of the read, the length of the read is specified as one byte
* which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
*/
static struct i2c_adapter_quirks qup_i2c_quirks = {
.max_read_len = QUP_READ_LIMIT,
};
static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
{
clk_prepare_enable(qup->clk);
clk_prepare_enable(qup->pclk);
}
static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
{
u32 config;
qup_i2c_change_state(qup, QUP_RESET_STATE);
clk_disable_unprepare(qup->clk);
config = readl(qup->base + QUP_CONFIG);
config |= QUP_CLOCK_AUTO_GATE;
writel(config, qup->base + QUP_CONFIG);
clk_disable_unprepare(qup->pclk);
}
static int qup_i2c_probe(struct platform_device *pdev)
{
static const int blk_sizes[] = {4, 16, 32};
struct qup_i2c_dev *qup;
unsigned long one_bit_t;
struct resource *res;
u32 io_mode, hw_ver, size;
int ret, fs_div, hs_div;
u32 src_clk_freq = DEFAULT_SRC_CLK;
u32 clk_freq = DEFAULT_CLK_FREQ;
int blocks;
qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
if (!qup)
return -ENOMEM;
qup->dev = &pdev->dev;
init_completion(&qup->xfer);
platform_set_drvdata(pdev, qup);
ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
if (ret) {
dev_notice(qup->dev, "using default clock-frequency %d",
DEFAULT_CLK_FREQ);
}
if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
qup->adap.algo = &qup_i2c_algo;
qup->adap.quirks = &qup_i2c_quirks;
} else {
qup->adap.algo = &qup_i2c_algo_v2;
ret = qup_i2c_req_dma(qup);
if (ret == -EPROBE_DEFER)
goto fail_dma;
else if (ret != 0)
goto nodma;
blocks = (MX_BLOCKS << 1) + 1;
qup->btx.sg = devm_kzalloc(&pdev->dev,
sizeof(*qup->btx.sg) * blocks,
GFP_KERNEL);
if (!qup->btx.sg) {
ret = -ENOMEM;
goto fail_dma;
}
sg_init_table(qup->btx.sg, blocks);
qup->brx.sg = devm_kzalloc(&pdev->dev,
sizeof(*qup->brx.sg) * blocks,
GFP_KERNEL);
if (!qup->brx.sg) {
ret = -ENOMEM;
goto fail_dma;
}
sg_init_table(qup->brx.sg, blocks);
/* 2 tag bytes for each block + 5 for start, stop tags */
size = blocks * 2 + 5;
qup->start_tag.start = devm_kzalloc(&pdev->dev,
size, GFP_KERNEL);
if (!qup->start_tag.start) {
ret = -ENOMEM;
goto fail_dma;
}
qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
if (!qup->brx.tag.start) {
ret = -ENOMEM;
goto fail_dma;
}
qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
if (!qup->btx.tag.start) {
ret = -ENOMEM;
goto fail_dma;
}
qup->is_dma = true;
}
nodma:
/* We support frequencies up to FAST Mode (400KHz) */
if (!clk_freq || clk_freq > 400000) {
dev_err(qup->dev, "clock frequency not supported %d\n",
clk_freq);
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
qup->base = devm_ioremap_resource(qup->dev, res);
if (IS_ERR(qup->base))
return PTR_ERR(qup->base);
qup->irq = platform_get_irq(pdev, 0);
if (qup->irq < 0) {
dev_err(qup->dev, "No IRQ defined\n");
return qup->irq;
}
if (has_acpi_companion(qup->dev)) {
ret = device_property_read_u32(qup->dev,
"src-clock-hz", &src_clk_freq);
if (ret) {
dev_notice(qup->dev, "using default src-clock-hz %d",
DEFAULT_SRC_CLK);
}
ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
} else {
qup->clk = devm_clk_get(qup->dev, "core");
if (IS_ERR(qup->clk)) {
dev_err(qup->dev, "Could not get core clock\n");
return PTR_ERR(qup->clk);
}
qup->pclk = devm_clk_get(qup->dev, "iface");
if (IS_ERR(qup->pclk)) {
dev_err(qup->dev, "Could not get iface clock\n");
return PTR_ERR(qup->pclk);
}
qup_i2c_enable_clocks(qup);
src_clk_freq = clk_get_rate(qup->clk);
}
/*
* Bootloaders might leave a pending interrupt on certain QUP's,
* so we reset the core before registering for interrupts.
*/
writel(1, qup->base + QUP_SW_RESET);
ret = qup_i2c_poll_state_valid(qup);
if (ret)
goto fail;
ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
IRQF_TRIGGER_HIGH, "i2c_qup", qup);
if (ret) {
dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
goto fail;
}
disable_irq(qup->irq);
hw_ver = readl(qup->base + QUP_HW_VERSION);
dev_dbg(qup->dev, "Revision %x\n", hw_ver);
io_mode = readl(qup->base + QUP_IO_MODE);
/*
* The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
* associated with each byte written/received
*/
size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
if (size >= ARRAY_SIZE(blk_sizes)) {
ret = -EIO;
goto fail;
}
qup->out_blk_sz = blk_sizes[size] / 2;
size = QUP_INPUT_BLOCK_SIZE(io_mode);
if (size >= ARRAY_SIZE(blk_sizes)) {
ret = -EIO;
goto fail;
}
qup->in_blk_sz = blk_sizes[size] / 2;
size = QUP_OUTPUT_FIFO_SIZE(io_mode);
qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
size = QUP_INPUT_FIFO_SIZE(io_mode);
qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
hs_div = 3;
qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
/*
* Time it takes for a byte to be clocked out on the bus.
* Each byte takes 9 clock cycles (8 bits + 1 ack).
*/
one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
qup->one_byte_t = one_bit_t * 9;
dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
qup->in_blk_sz, qup->in_fifo_sz,
qup->out_blk_sz, qup->out_fifo_sz);
i2c_set_adapdata(&qup->adap, qup);
qup->adap.dev.parent = qup->dev;
qup->adap.dev.of_node = pdev->dev.of_node;
qup->is_last = true;
strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
pm_runtime_use_autosuspend(qup->dev);
pm_runtime_set_active(qup->dev);
pm_runtime_enable(qup->dev);
ret = i2c_add_adapter(&qup->adap);
if (ret)
goto fail_runtime;
return 0;
fail_runtime:
pm_runtime_disable(qup->dev);
pm_runtime_set_suspended(qup->dev);
fail:
qup_i2c_disable_clocks(qup);
fail_dma:
if (qup->btx.dma)
dma_release_channel(qup->btx.dma);
if (qup->brx.dma)
dma_release_channel(qup->brx.dma);
return ret;
}
static int qup_i2c_remove(struct platform_device *pdev)
{
struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
if (qup->is_dma) {
dma_release_channel(qup->btx.dma);
dma_release_channel(qup->brx.dma);
}
disable_irq(qup->irq);
qup_i2c_disable_clocks(qup);
i2c_del_adapter(&qup->adap);
pm_runtime_disable(qup->dev);
pm_runtime_set_suspended(qup->dev);
return 0;
}
#ifdef CONFIG_PM
static int qup_i2c_pm_suspend_runtime(struct device *device)
{
struct qup_i2c_dev *qup = dev_get_drvdata(device);
dev_dbg(device, "pm_runtime: suspending...\n");
qup_i2c_disable_clocks(qup);
return 0;
}
static int qup_i2c_pm_resume_runtime(struct device *device)
{
struct qup_i2c_dev *qup = dev_get_drvdata(device);
dev_dbg(device, "pm_runtime: resuming...\n");
qup_i2c_enable_clocks(qup);
return 0;
}
#endif
#ifdef CONFIG_PM_SLEEP
static int qup_i2c_suspend(struct device *device)
{
if (!pm_runtime_suspended(device))
return qup_i2c_pm_suspend_runtime(device);
return 0;
}
static int qup_i2c_resume(struct device *device)
{
qup_i2c_pm_resume_runtime(device);
pm_runtime_mark_last_busy(device);
pm_request_autosuspend(device);
return 0;
}
#endif
static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(
qup_i2c_suspend,
qup_i2c_resume)
SET_RUNTIME_PM_OPS(
qup_i2c_pm_suspend_runtime,
qup_i2c_pm_resume_runtime,
NULL)
};
static const struct of_device_id qup_i2c_dt_match[] = {
{ .compatible = "qcom,i2c-qup-v1.1.1" },
{ .compatible = "qcom,i2c-qup-v2.1.1" },
{ .compatible = "qcom,i2c-qup-v2.2.1" },
{}
};
MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
#if IS_ENABLED(CONFIG_ACPI)
static const struct acpi_device_id qup_i2c_acpi_match[] = {
{ "QCOM8010"},
{ },
};
MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
#endif
static struct platform_driver qup_i2c_driver = {
.probe = qup_i2c_probe,
.remove = qup_i2c_remove,
.driver = {
.name = "i2c_qup",
.pm = &qup_i2c_qup_pm_ops,
.of_match_table = qup_i2c_dt_match,
.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
},
};
module_platform_driver(qup_i2c_driver);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:i2c_qup");