alistair23-linux/include/linux/writeback.h
Jan Kara c4a391b53a writeback: do not sync data dirtied after sync start
When there are processes heavily creating small files while sync(2) is
running, it can easily happen that quite some new files are created
between WB_SYNC_NONE and WB_SYNC_ALL pass of sync(2).  That can happen
especially if there are several busy filesystems (remember that sync
traverses filesystems sequentially and waits in WB_SYNC_ALL phase on one
fs before starting it on another fs).  Because WB_SYNC_ALL pass is slow
(e.g.  causes a transaction commit and cache flush for each inode in
ext3), resulting sync(2) times are rather large.

The following script reproduces the problem:

  function run_writers
  {
    for (( i = 0; i < 10; i++ )); do
      mkdir $1/dir$i
      for (( j = 0; j < 40000; j++ )); do
        dd if=/dev/zero of=$1/dir$i/$j bs=4k count=4 &>/dev/null
      done &
    done
  }

  for dir in "$@"; do
    run_writers $dir
  done

  sleep 40
  time sync

Fix the problem by disregarding inodes dirtied after sync(2) was called
in the WB_SYNC_ALL pass.  To allow for this, sync_inodes_sb() now takes
a time stamp when sync has started which is used for setting up work for
flusher threads.

To give some numbers, when above script is run on two ext4 filesystems
on simple SATA drive, the average sync time from 10 runs is 267.549
seconds with standard deviation 104.799426.  With the patched kernel,
the average sync time from 10 runs is 2.995 seconds with standard
deviation 0.096.

Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:07 +09:00

189 lines
6 KiB
C

/*
* include/linux/writeback.h
*/
#ifndef WRITEBACK_H
#define WRITEBACK_H
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <linux/fs.h>
DECLARE_PER_CPU(int, dirty_throttle_leaks);
/*
* The 1/4 region under the global dirty thresh is for smooth dirty throttling:
*
* (thresh - thresh/DIRTY_FULL_SCOPE, thresh)
*
* Further beyond, all dirtier tasks will enter a loop waiting (possibly long
* time) for the dirty pages to drop, unless written enough pages.
*
* The global dirty threshold is normally equal to the global dirty limit,
* except when the system suddenly allocates a lot of anonymous memory and
* knocks down the global dirty threshold quickly, in which case the global
* dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
*/
#define DIRTY_SCOPE 8
#define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2)
struct backing_dev_info;
/*
* fs/fs-writeback.c
*/
enum writeback_sync_modes {
WB_SYNC_NONE, /* Don't wait on anything */
WB_SYNC_ALL, /* Wait on every mapping */
};
/*
* why some writeback work was initiated
*/
enum wb_reason {
WB_REASON_BACKGROUND,
WB_REASON_TRY_TO_FREE_PAGES,
WB_REASON_SYNC,
WB_REASON_PERIODIC,
WB_REASON_LAPTOP_TIMER,
WB_REASON_FREE_MORE_MEM,
WB_REASON_FS_FREE_SPACE,
/*
* There is no bdi forker thread any more and works are done
* by emergency worker, however, this is TPs userland visible
* and we'll be exposing exactly the same information,
* so it has a mismatch name.
*/
WB_REASON_FORKER_THREAD,
WB_REASON_MAX,
};
/*
* A control structure which tells the writeback code what to do. These are
* always on the stack, and hence need no locking. They are always initialised
* in a manner such that unspecified fields are set to zero.
*/
struct writeback_control {
long nr_to_write; /* Write this many pages, and decrement
this for each page written */
long pages_skipped; /* Pages which were not written */
/*
* For a_ops->writepages(): if start or end are non-zero then this is
* a hint that the filesystem need only write out the pages inside that
* byterange. The byte at `end' is included in the writeout request.
*/
loff_t range_start;
loff_t range_end;
enum writeback_sync_modes sync_mode;
unsigned for_kupdate:1; /* A kupdate writeback */
unsigned for_background:1; /* A background writeback */
unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */
unsigned for_reclaim:1; /* Invoked from the page allocator */
unsigned range_cyclic:1; /* range_start is cyclic */
unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
};
/*
* fs/fs-writeback.c
*/
struct bdi_writeback;
int inode_wait(void *);
void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
enum wb_reason reason);
int try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason);
int try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
enum wb_reason reason);
void sync_inodes_sb(struct super_block *sb, unsigned long older_than_this);
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason);
void inode_wait_for_writeback(struct inode *inode);
/* writeback.h requires fs.h; it, too, is not included from here. */
static inline void wait_on_inode(struct inode *inode)
{
might_sleep();
wait_on_bit(&inode->i_state, __I_NEW, inode_wait, TASK_UNINTERRUPTIBLE);
}
/*
* mm/page-writeback.c
*/
#ifdef CONFIG_BLOCK
void laptop_io_completion(struct backing_dev_info *info);
void laptop_sync_completion(void);
void laptop_mode_sync(struct work_struct *work);
void laptop_mode_timer_fn(unsigned long data);
#else
static inline void laptop_sync_completion(void) { }
#endif
void throttle_vm_writeout(gfp_t gfp_mask);
bool zone_dirty_ok(struct zone *zone);
extern unsigned long global_dirty_limit;
/* These are exported to sysctl. */
extern int dirty_background_ratio;
extern unsigned long dirty_background_bytes;
extern int vm_dirty_ratio;
extern unsigned long vm_dirty_bytes;
extern unsigned int dirty_writeback_interval;
extern unsigned int dirty_expire_interval;
extern int vm_highmem_is_dirtyable;
extern int block_dump;
extern int laptop_mode;
extern int dirty_background_ratio_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos);
extern int dirty_background_bytes_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos);
extern int dirty_ratio_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos);
extern int dirty_bytes_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos);
struct ctl_table;
int dirty_writeback_centisecs_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
unsigned long bdi_dirty_limit(struct backing_dev_info *bdi,
unsigned long dirty);
void __bdi_update_bandwidth(struct backing_dev_info *bdi,
unsigned long thresh,
unsigned long bg_thresh,
unsigned long dirty,
unsigned long bdi_thresh,
unsigned long bdi_dirty,
unsigned long start_time);
void page_writeback_init(void);
void balance_dirty_pages_ratelimited(struct address_space *mapping);
typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
void *data);
int generic_writepages(struct address_space *mapping,
struct writeback_control *wbc);
void tag_pages_for_writeback(struct address_space *mapping,
pgoff_t start, pgoff_t end);
int write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc, writepage_t writepage,
void *data);
int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
void set_page_dirty_balance(struct page *page, int page_mkwrite);
void writeback_set_ratelimit(void);
void tag_pages_for_writeback(struct address_space *mapping,
pgoff_t start, pgoff_t end);
void account_page_redirty(struct page *page);
#endif /* WRITEBACK_H */