alistair23-linux/arch/x86/include/asm/alternative.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

244 lines
8.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_ALTERNATIVE_H
#define _ASM_X86_ALTERNATIVE_H
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/stringify.h>
#include <asm/asm.h>
/*
* Alternative inline assembly for SMP.
*
* The LOCK_PREFIX macro defined here replaces the LOCK and
* LOCK_PREFIX macros used everywhere in the source tree.
*
* SMP alternatives use the same data structures as the other
* alternatives and the X86_FEATURE_UP flag to indicate the case of a
* UP system running a SMP kernel. The existing apply_alternatives()
* works fine for patching a SMP kernel for UP.
*
* The SMP alternative tables can be kept after boot and contain both
* UP and SMP versions of the instructions to allow switching back to
* SMP at runtime, when hotplugging in a new CPU, which is especially
* useful in virtualized environments.
*
* The very common lock prefix is handled as special case in a
* separate table which is a pure address list without replacement ptr
* and size information. That keeps the table sizes small.
*/
#ifdef CONFIG_SMP
#define LOCK_PREFIX_HERE \
".pushsection .smp_locks,\"a\"\n" \
".balign 4\n" \
".long 671f - .\n" /* offset */ \
".popsection\n" \
"671:"
#define LOCK_PREFIX LOCK_PREFIX_HERE "\n\tlock; "
#else /* ! CONFIG_SMP */
#define LOCK_PREFIX_HERE ""
#define LOCK_PREFIX ""
#endif
struct alt_instr {
s32 instr_offset; /* original instruction */
s32 repl_offset; /* offset to replacement instruction */
u16 cpuid; /* cpuid bit set for replacement */
u8 instrlen; /* length of original instruction */
u8 replacementlen; /* length of new instruction */
u8 padlen; /* length of build-time padding */
} __packed;
/*
* Debug flag that can be tested to see whether alternative
* instructions were patched in already:
*/
extern int alternatives_patched;
extern void alternative_instructions(void);
extern void apply_alternatives(struct alt_instr *start, struct alt_instr *end);
struct module;
#ifdef CONFIG_SMP
extern void alternatives_smp_module_add(struct module *mod, char *name,
void *locks, void *locks_end,
void *text, void *text_end);
extern void alternatives_smp_module_del(struct module *mod);
extern void alternatives_enable_smp(void);
extern int alternatives_text_reserved(void *start, void *end);
extern bool skip_smp_alternatives;
#else
static inline void alternatives_smp_module_add(struct module *mod, char *name,
void *locks, void *locks_end,
void *text, void *text_end) {}
static inline void alternatives_smp_module_del(struct module *mod) {}
static inline void alternatives_enable_smp(void) {}
static inline int alternatives_text_reserved(void *start, void *end)
{
return 0;
}
#endif /* CONFIG_SMP */
#define b_replacement(num) "664"#num
#define e_replacement(num) "665"#num
#define alt_end_marker "663"
#define alt_slen "662b-661b"
#define alt_pad_len alt_end_marker"b-662b"
#define alt_total_slen alt_end_marker"b-661b"
#define alt_rlen(num) e_replacement(num)"f-"b_replacement(num)"f"
#define __OLDINSTR(oldinstr, num) \
"661:\n\t" oldinstr "\n662:\n" \
".skip -(((" alt_rlen(num) ")-(" alt_slen ")) > 0) * " \
"((" alt_rlen(num) ")-(" alt_slen ")),0x90\n"
#define OLDINSTR(oldinstr, num) \
__OLDINSTR(oldinstr, num) \
alt_end_marker ":\n"
/*
* gas compatible max based on the idea from:
* http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
*
* The additional "-" is needed because gas uses a "true" value of -1.
*/
#define alt_max_short(a, b) "((" a ") ^ (((" a ") ^ (" b ")) & -(-((" a ") < (" b ")))))"
/*
* Pad the second replacement alternative with additional NOPs if it is
* additionally longer than the first replacement alternative.
*/
#define OLDINSTR_2(oldinstr, num1, num2) \
"661:\n\t" oldinstr "\n662:\n" \
".skip -((" alt_max_short(alt_rlen(num1), alt_rlen(num2)) " - (" alt_slen ")) > 0) * " \
"(" alt_max_short(alt_rlen(num1), alt_rlen(num2)) " - (" alt_slen ")), 0x90\n" \
alt_end_marker ":\n"
#define ALTINSTR_ENTRY(feature, num) \
" .long 661b - .\n" /* label */ \
" .long " b_replacement(num)"f - .\n" /* new instruction */ \
" .word " __stringify(feature) "\n" /* feature bit */ \
" .byte " alt_total_slen "\n" /* source len */ \
" .byte " alt_rlen(num) "\n" /* replacement len */ \
" .byte " alt_pad_len "\n" /* pad len */
#define ALTINSTR_REPLACEMENT(newinstr, feature, num) /* replacement */ \
b_replacement(num)":\n\t" newinstr "\n" e_replacement(num) ":\n\t"
/* alternative assembly primitive: */
#define ALTERNATIVE(oldinstr, newinstr, feature) \
OLDINSTR(oldinstr, 1) \
".pushsection .altinstructions,\"a\"\n" \
ALTINSTR_ENTRY(feature, 1) \
".popsection\n" \
".pushsection .altinstr_replacement, \"ax\"\n" \
ALTINSTR_REPLACEMENT(newinstr, feature, 1) \
".popsection"
#define ALTERNATIVE_2(oldinstr, newinstr1, feature1, newinstr2, feature2)\
OLDINSTR_2(oldinstr, 1, 2) \
".pushsection .altinstructions,\"a\"\n" \
ALTINSTR_ENTRY(feature1, 1) \
ALTINSTR_ENTRY(feature2, 2) \
".popsection\n" \
".pushsection .altinstr_replacement, \"ax\"\n" \
ALTINSTR_REPLACEMENT(newinstr1, feature1, 1) \
ALTINSTR_REPLACEMENT(newinstr2, feature2, 2) \
".popsection"
/*
* Alternative instructions for different CPU types or capabilities.
*
* This allows to use optimized instructions even on generic binary
* kernels.
*
* length of oldinstr must be longer or equal the length of newinstr
* It can be padded with nops as needed.
*
* For non barrier like inlines please define new variants
* without volatile and memory clobber.
*/
#define alternative(oldinstr, newinstr, feature) \
asm volatile (ALTERNATIVE(oldinstr, newinstr, feature) : : : "memory")
#define alternative_2(oldinstr, newinstr1, feature1, newinstr2, feature2) \
asm volatile(ALTERNATIVE_2(oldinstr, newinstr1, feature1, newinstr2, feature2) ::: "memory")
/*
* Alternative inline assembly with input.
*
* Pecularities:
* No memory clobber here.
* Argument numbers start with 1.
* Best is to use constraints that are fixed size (like (%1) ... "r")
* If you use variable sized constraints like "m" or "g" in the
* replacement make sure to pad to the worst case length.
* Leaving an unused argument 0 to keep API compatibility.
*/
#define alternative_input(oldinstr, newinstr, feature, input...) \
asm volatile (ALTERNATIVE(oldinstr, newinstr, feature) \
: : "i" (0), ## input)
/*
* This is similar to alternative_input. But it has two features and
* respective instructions.
*
* If CPU has feature2, newinstr2 is used.
* Otherwise, if CPU has feature1, newinstr1 is used.
* Otherwise, oldinstr is used.
*/
#define alternative_input_2(oldinstr, newinstr1, feature1, newinstr2, \
feature2, input...) \
asm volatile(ALTERNATIVE_2(oldinstr, newinstr1, feature1, \
newinstr2, feature2) \
: : "i" (0), ## input)
/* Like alternative_input, but with a single output argument */
#define alternative_io(oldinstr, newinstr, feature, output, input...) \
asm volatile (ALTERNATIVE(oldinstr, newinstr, feature) \
: output : "i" (0), ## input)
/* Like alternative_io, but for replacing a direct call with another one. */
#define alternative_call(oldfunc, newfunc, feature, output, input...) \
asm volatile (ALTERNATIVE("call %P[old]", "call %P[new]", feature) \
: output : [old] "i" (oldfunc), [new] "i" (newfunc), ## input)
/*
* Like alternative_call, but there are two features and respective functions.
* If CPU has feature2, function2 is used.
* Otherwise, if CPU has feature1, function1 is used.
* Otherwise, old function is used.
*/
#define alternative_call_2(oldfunc, newfunc1, feature1, newfunc2, feature2, \
output, input...) \
{ \
asm volatile (ALTERNATIVE_2("call %P[old]", "call %P[new1]", feature1,\
"call %P[new2]", feature2) \
: output, ASM_CALL_CONSTRAINT \
: [old] "i" (oldfunc), [new1] "i" (newfunc1), \
[new2] "i" (newfunc2), ## input); \
}
/*
* use this macro(s) if you need more than one output parameter
* in alternative_io
*/
#define ASM_OUTPUT2(a...) a
/*
* use this macro if you need clobbers but no inputs in
* alternative_{input,io,call}()
*/
#define ASM_NO_INPUT_CLOBBER(clbr...) "i" (0) : clbr
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_ALTERNATIVE_H */