1
0
Fork 0
alistair23-linux/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramgt215.c

1008 lines
27 KiB
C

/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
* Roy Spliet <rspliet@eclipso.eu>
*/
#define gt215_ram(p) container_of((p), struct gt215_ram, base)
#include "ram.h"
#include "ramfuc.h"
#include <core/memory.h>
#include <core/option.h>
#include <subdev/bios.h>
#include <subdev/bios/M0205.h>
#include <subdev/bios/rammap.h>
#include <subdev/bios/timing.h>
#include <subdev/clk/gt215.h>
#include <subdev/gpio.h>
struct gt215_ramfuc {
struct ramfuc base;
struct ramfuc_reg r_0x001610;
struct ramfuc_reg r_0x001700;
struct ramfuc_reg r_0x002504;
struct ramfuc_reg r_0x004000;
struct ramfuc_reg r_0x004004;
struct ramfuc_reg r_0x004018;
struct ramfuc_reg r_0x004128;
struct ramfuc_reg r_0x004168;
struct ramfuc_reg r_0x100080;
struct ramfuc_reg r_0x100200;
struct ramfuc_reg r_0x100210;
struct ramfuc_reg r_0x100220[9];
struct ramfuc_reg r_0x100264;
struct ramfuc_reg r_0x1002d0;
struct ramfuc_reg r_0x1002d4;
struct ramfuc_reg r_0x1002dc;
struct ramfuc_reg r_0x10053c;
struct ramfuc_reg r_0x1005a0;
struct ramfuc_reg r_0x1005a4;
struct ramfuc_reg r_0x100700;
struct ramfuc_reg r_0x100714;
struct ramfuc_reg r_0x100718;
struct ramfuc_reg r_0x10071c;
struct ramfuc_reg r_0x100720;
struct ramfuc_reg r_0x100760;
struct ramfuc_reg r_0x1007a0;
struct ramfuc_reg r_0x1007e0;
struct ramfuc_reg r_0x100da0;
struct ramfuc_reg r_0x10f804;
struct ramfuc_reg r_0x1110e0;
struct ramfuc_reg r_0x111100;
struct ramfuc_reg r_0x111104;
struct ramfuc_reg r_0x1111e0;
struct ramfuc_reg r_0x111400;
struct ramfuc_reg r_0x611200;
struct ramfuc_reg r_mr[4];
struct ramfuc_reg r_gpio[4];
};
struct gt215_ltrain {
enum {
NVA3_TRAIN_UNKNOWN,
NVA3_TRAIN_UNSUPPORTED,
NVA3_TRAIN_ONCE,
NVA3_TRAIN_EXEC,
NVA3_TRAIN_DONE
} state;
u32 r_100720;
u32 r_1111e0;
u32 r_111400;
struct nvkm_memory *memory;
};
struct gt215_ram {
struct nvkm_ram base;
struct gt215_ramfuc fuc;
struct gt215_ltrain ltrain;
};
static void
gt215_link_train_calc(u32 *vals, struct gt215_ltrain *train)
{
int i, lo, hi;
u8 median[8], bins[4] = {0, 0, 0, 0}, bin = 0, qty = 0;
for (i = 0; i < 8; i++) {
for (lo = 0; lo < 0x40; lo++) {
if (!(vals[lo] & 0x80000000))
continue;
if (vals[lo] & (0x101 << i))
break;
}
if (lo == 0x40)
return;
for (hi = lo + 1; hi < 0x40; hi++) {
if (!(vals[lo] & 0x80000000))
continue;
if (!(vals[hi] & (0x101 << i))) {
hi--;
break;
}
}
median[i] = ((hi - lo) >> 1) + lo;
bins[(median[i] & 0xf0) >> 4]++;
median[i] += 0x30;
}
/* Find the best value for 0x1111e0 */
for (i = 0; i < 4; i++) {
if (bins[i] > qty) {
bin = i + 3;
qty = bins[i];
}
}
train->r_100720 = 0;
for (i = 0; i < 8; i++) {
median[i] = max(median[i], (u8) (bin << 4));
median[i] = min(median[i], (u8) ((bin << 4) | 0xf));
train->r_100720 |= ((median[i] & 0x0f) << (i << 2));
}
train->r_1111e0 = 0x02000000 | (bin * 0x101);
train->r_111400 = 0x0;
}
/*
* Link training for (at least) DDR3
*/
static int
gt215_link_train(struct gt215_ram *ram)
{
struct gt215_ltrain *train = &ram->ltrain;
struct gt215_ramfuc *fuc = &ram->fuc;
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_bios *bios = device->bios;
struct nvkm_clk *clk = device->clk;
u32 *result, r1700;
int ret, i;
struct nvbios_M0205T M0205T = { 0 };
u8 ver, hdr, cnt, len, snr, ssz;
unsigned int clk_current;
unsigned long flags;
unsigned long *f = &flags;
if (nvkm_boolopt(device->cfgopt, "NvMemExec", true) != true)
return -ENOSYS;
/* XXX: Multiple partitions? */
result = kmalloc_array(64, sizeof(u32), GFP_KERNEL);
if (!result)
return -ENOMEM;
train->state = NVA3_TRAIN_EXEC;
/* Clock speeds for training and back */
nvbios_M0205Tp(bios, &ver, &hdr, &cnt, &len, &snr, &ssz, &M0205T);
if (M0205T.freq == 0) {
kfree(result);
return -ENOENT;
}
clk_current = nvkm_clk_read(clk, nv_clk_src_mem);
ret = gt215_clk_pre(clk, f);
if (ret)
goto out;
/* First: clock up/down */
ret = ram->base.func->calc(&ram->base, (u32) M0205T.freq * 1000);
if (ret)
goto out;
/* Do this *after* calc, eliminates write in script */
nvkm_wr32(device, 0x111400, 0x00000000);
/* XXX: Magic writes that improve train reliability? */
nvkm_mask(device, 0x100674, 0x0000ffff, 0x00000000);
nvkm_mask(device, 0x1005e4, 0x0000ffff, 0x00000000);
nvkm_mask(device, 0x100b0c, 0x000000ff, 0x00000000);
nvkm_wr32(device, 0x100c04, 0x00000400);
/* Now the training script */
r1700 = ram_rd32(fuc, 0x001700);
ram_mask(fuc, 0x100200, 0x00000800, 0x00000000);
ram_wr32(fuc, 0x611200, 0x3300);
ram_wait_vblank(fuc);
ram_wait(fuc, 0x611200, 0x00000003, 0x00000000, 500000);
ram_mask(fuc, 0x001610, 0x00000083, 0x00000003);
ram_mask(fuc, 0x100080, 0x00000020, 0x00000000);
ram_mask(fuc, 0x10f804, 0x80000000, 0x00000000);
ram_wr32(fuc, 0x001700, 0x00000000);
ram_train(fuc);
/* Reset */
ram_mask(fuc, 0x10f804, 0x80000000, 0x80000000);
ram_wr32(fuc, 0x10053c, 0x0);
ram_wr32(fuc, 0x100720, train->r_100720);
ram_wr32(fuc, 0x1111e0, train->r_1111e0);
ram_wr32(fuc, 0x111400, train->r_111400);
ram_nuke(fuc, 0x100080);
ram_mask(fuc, 0x100080, 0x00000020, 0x00000020);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x001700, r1700);
ram_mask(fuc, 0x001610, 0x00000083, 0x00000080);
ram_wr32(fuc, 0x611200, 0x3330);
ram_mask(fuc, 0x100200, 0x00000800, 0x00000800);
ram_exec(fuc, true);
ram->base.func->calc(&ram->base, clk_current);
ram_exec(fuc, true);
/* Post-processing, avoids flicker */
nvkm_mask(device, 0x616308, 0x10, 0x10);
nvkm_mask(device, 0x616b08, 0x10, 0x10);
gt215_clk_post(clk, f);
ram_train_result(ram->base.fb, result, 64);
for (i = 0; i < 64; i++)
nvkm_debug(subdev, "Train: %08x", result[i]);
gt215_link_train_calc(result, train);
nvkm_debug(subdev, "Train: %08x %08x %08x", train->r_100720,
train->r_1111e0, train->r_111400);
kfree(result);
train->state = NVA3_TRAIN_DONE;
return ret;
out:
if(ret == -EBUSY)
f = NULL;
train->state = NVA3_TRAIN_UNSUPPORTED;
gt215_clk_post(clk, f);
kfree(result);
return ret;
}
static int
gt215_link_train_init(struct gt215_ram *ram)
{
static const u32 pattern[16] = {
0xaaaaaaaa, 0xcccccccc, 0xdddddddd, 0xeeeeeeee,
0x00000000, 0x11111111, 0x44444444, 0xdddddddd,
0x33333333, 0x55555555, 0x77777777, 0x66666666,
0x99999999, 0x88888888, 0xeeeeeeee, 0xbbbbbbbb,
};
struct gt215_ltrain *train = &ram->ltrain;
struct nvkm_device *device = ram->base.fb->subdev.device;
struct nvkm_bios *bios = device->bios;
struct nvbios_M0205E M0205E;
u8 ver, hdr, cnt, len;
u32 r001700;
u64 addr;
int ret, i = 0;
train->state = NVA3_TRAIN_UNSUPPORTED;
/* We support type "5"
* XXX: training pattern table appears to be unused for this routine */
if (!nvbios_M0205Ep(bios, i, &ver, &hdr, &cnt, &len, &M0205E))
return -ENOENT;
if (M0205E.type != 5)
return 0;
train->state = NVA3_TRAIN_ONCE;
ret = nvkm_ram_get(device, NVKM_RAM_MM_NORMAL, 0x01, 16, 0x8000,
true, true, &ram->ltrain.memory);
if (ret)
return ret;
addr = nvkm_memory_addr(ram->ltrain.memory);
nvkm_wr32(device, 0x100538, 0x10000000 | (addr >> 16));
nvkm_wr32(device, 0x1005a8, 0x0000ffff);
nvkm_mask(device, 0x10f800, 0x00000001, 0x00000001);
for (i = 0; i < 0x30; i++) {
nvkm_wr32(device, 0x10f8c0, (i << 8) | i);
nvkm_wr32(device, 0x10f900, pattern[i % 16]);
}
for (i = 0; i < 0x30; i++) {
nvkm_wr32(device, 0x10f8e0, (i << 8) | i);
nvkm_wr32(device, 0x10f920, pattern[i % 16]);
}
/* And upload the pattern */
r001700 = nvkm_rd32(device, 0x1700);
nvkm_wr32(device, 0x1700, addr >> 16);
for (i = 0; i < 16; i++)
nvkm_wr32(device, 0x700000 + (i << 2), pattern[i]);
for (i = 0; i < 16; i++)
nvkm_wr32(device, 0x700100 + (i << 2), pattern[i]);
nvkm_wr32(device, 0x1700, r001700);
train->r_100720 = nvkm_rd32(device, 0x100720);
train->r_1111e0 = nvkm_rd32(device, 0x1111e0);
train->r_111400 = nvkm_rd32(device, 0x111400);
return 0;
}
static void
gt215_link_train_fini(struct gt215_ram *ram)
{
nvkm_memory_unref(&ram->ltrain.memory);
}
/*
* RAM reclocking
*/
#define T(t) cfg->timing_10_##t
static int
gt215_ram_timing_calc(struct gt215_ram *ram, u32 *timing)
{
struct nvbios_ramcfg *cfg = &ram->base.target.bios;
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
struct nvkm_device *device = subdev->device;
int tUNK_base, tUNK_40_0, prevCL;
u32 cur2, cur3, cur7, cur8;
cur2 = nvkm_rd32(device, 0x100228);
cur3 = nvkm_rd32(device, 0x10022c);
cur7 = nvkm_rd32(device, 0x10023c);
cur8 = nvkm_rd32(device, 0x100240);
switch ((!T(CWL)) * ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
T(CWL) = T(CL) - 1;
break;
case NVKM_RAM_TYPE_GDDR3:
T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
break;
}
prevCL = (cur3 & 0x000000ff) + 1;
tUNK_base = ((cur7 & 0x00ff0000) >> 16) - prevCL;
timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
max_t(u8,T(18), 1) << 16 |
(T(WTR) + 1 + T(CWL)) << 8 |
(5 + T(CL) - T(CWL));
timing[2] = (T(CWL) - 1) << 24 |
(T(RRD) << 16) |
(T(RCDWR) << 8) |
T(RCDRD);
timing[3] = (cur3 & 0x00ff0000) |
(0x30 + T(CL)) << 24 |
(0xb + T(CL)) << 8 |
(T(CL) - 1);
timing[4] = T(20) << 24 |
T(21) << 16 |
T(13) << 8 |
T(13);
timing[5] = T(RFC) << 24 |
max_t(u8,T(RCDRD), T(RCDWR)) << 16 |
max_t(u8, (T(CWL) + 6), (T(CL) + 2)) << 8 |
T(RP);
timing[6] = (0x5a + T(CL)) << 16 |
max_t(u8, 1, (6 - T(CL) + T(CWL))) << 8 |
(0x50 + T(CL) - T(CWL));
timing[7] = (cur7 & 0xff000000) |
((tUNK_base + T(CL)) << 16) |
0x202;
timing[8] = cur8 & 0xffffff00;
switch (ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
case NVKM_RAM_TYPE_GDDR3:
tUNK_40_0 = prevCL - (cur8 & 0xff);
if (tUNK_40_0 > 0)
timing[8] |= T(CL);
break;
default:
break;
}
nvkm_debug(subdev, "Entry: 220: %08x %08x %08x %08x\n",
timing[0], timing[1], timing[2], timing[3]);
nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
timing[4], timing[5], timing[6], timing[7]);
nvkm_debug(subdev, " 240: %08x\n", timing[8]);
return 0;
}
#undef T
static void
nvkm_sddr2_dll_reset(struct gt215_ramfuc *fuc)
{
ram_mask(fuc, mr[0], 0x100, 0x100);
ram_nsec(fuc, 1000);
ram_mask(fuc, mr[0], 0x100, 0x000);
ram_nsec(fuc, 1000);
}
static void
nvkm_sddr3_dll_disable(struct gt215_ramfuc *fuc, u32 *mr)
{
u32 mr1_old = ram_rd32(fuc, mr[1]);
if (!(mr1_old & 0x1)) {
ram_wr32(fuc, 0x1002d4, 0x00000001);
ram_wr32(fuc, mr[1], mr[1]);
ram_nsec(fuc, 1000);
}
}
static void
nvkm_gddr3_dll_disable(struct gt215_ramfuc *fuc, u32 *mr)
{
u32 mr1_old = ram_rd32(fuc, mr[1]);
if (!(mr1_old & 0x40)) {
ram_wr32(fuc, mr[1], mr[1]);
ram_nsec(fuc, 1000);
}
}
static void
gt215_ram_lock_pll(struct gt215_ramfuc *fuc, struct gt215_clk_info *mclk)
{
ram_wr32(fuc, 0x004004, mclk->pll);
ram_mask(fuc, 0x004000, 0x00000001, 0x00000001);
ram_mask(fuc, 0x004000, 0x00000010, 0x00000000);
ram_wait(fuc, 0x004000, 0x00020000, 0x00020000, 64000);
ram_mask(fuc, 0x004000, 0x00000010, 0x00000010);
}
static void
gt215_ram_gpio(struct gt215_ramfuc *fuc, u8 tag, u32 val)
{
struct nvkm_gpio *gpio = fuc->base.fb->subdev.device->gpio;
struct dcb_gpio_func func;
u32 reg, sh, gpio_val;
int ret;
if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
if (ret)
return;
reg = func.line >> 3;
sh = (func.line & 0x7) << 2;
gpio_val = ram_rd32(fuc, gpio[reg]);
if (gpio_val & (8 << sh))
val = !val;
if (!(func.log[1] & 1))
val = !val;
ram_mask(fuc, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
ram_nsec(fuc, 20000);
}
}
static int
gt215_ram_calc(struct nvkm_ram *base, u32 freq)
{
struct gt215_ram *ram = gt215_ram(base);
struct gt215_ramfuc *fuc = &ram->fuc;
struct gt215_ltrain *train = &ram->ltrain;
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_bios *bios = device->bios;
struct gt215_clk_info mclk;
struct nvkm_gpio *gpio = device->gpio;
struct nvkm_ram_data *next;
u8 ver, hdr, cnt, len, strap;
u32 data;
u32 r004018, r100760, r100da0, r111100, ctrl;
u32 unk714, unk718, unk71c;
int ret, i;
u32 timing[9];
bool pll2pll;
next = &ram->base.target;
next->freq = freq;
ram->base.next = next;
if (ram->ltrain.state == NVA3_TRAIN_ONCE)
gt215_link_train(ram);
/* lookup memory config data relevant to the target frequency */
data = nvbios_rammapEm(bios, freq / 1000, &ver, &hdr, &cnt, &len,
&next->bios);
if (!data || ver != 0x10 || hdr < 0x05) {
nvkm_error(subdev, "invalid/missing rammap entry\n");
return -EINVAL;
}
/* locate specific data set for the attached memory */
strap = nvbios_ramcfg_index(subdev);
if (strap >= cnt) {
nvkm_error(subdev, "invalid ramcfg strap\n");
return -EINVAL;
}
data = nvbios_rammapSp(bios, data, ver, hdr, cnt, len, strap,
&ver, &hdr, &next->bios);
if (!data || ver != 0x10 || hdr < 0x09) {
nvkm_error(subdev, "invalid/missing ramcfg entry\n");
return -EINVAL;
}
/* lookup memory timings, if bios says they're present */
if (next->bios.ramcfg_timing != 0xff) {
data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
&ver, &hdr, &cnt, &len,
&next->bios);
if (!data || ver != 0x10 || hdr < 0x17) {
nvkm_error(subdev, "invalid/missing timing entry\n");
return -EINVAL;
}
}
ret = gt215_pll_info(device->clk, 0x12, 0x4000, freq, &mclk);
if (ret < 0) {
nvkm_error(subdev, "failed mclk calculation\n");
return ret;
}
gt215_ram_timing_calc(ram, timing);
ret = ram_init(fuc, ram->base.fb);
if (ret)
return ret;
/* Determine ram-specific MR values */
ram->base.mr[0] = ram_rd32(fuc, mr[0]);
ram->base.mr[1] = ram_rd32(fuc, mr[1]);
ram->base.mr[2] = ram_rd32(fuc, mr[2]);
switch (ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
ret = nvkm_sddr2_calc(&ram->base);
break;
case NVKM_RAM_TYPE_DDR3:
ret = nvkm_sddr3_calc(&ram->base);
break;
case NVKM_RAM_TYPE_GDDR3:
ret = nvkm_gddr3_calc(&ram->base);
break;
default:
ret = -ENOSYS;
break;
}
if (ret)
return ret;
/* XXX: 750MHz seems rather arbitrary */
if (freq <= 750000) {
r004018 = 0x10000000;
r100760 = 0x22222222;
r100da0 = 0x00000010;
} else {
r004018 = 0x00000000;
r100760 = 0x00000000;
r100da0 = 0x00000000;
}
if (!next->bios.ramcfg_DLLoff)
r004018 |= 0x00004000;
/* pll2pll requires to switch to a safe clock first */
ctrl = ram_rd32(fuc, 0x004000);
pll2pll = (!(ctrl & 0x00000008)) && mclk.pll;
/* Pre, NVIDIA does this outside the script */
if (next->bios.ramcfg_10_02_10) {
ram_mask(fuc, 0x111104, 0x00000600, 0x00000000);
} else {
ram_mask(fuc, 0x111100, 0x40000000, 0x40000000);
ram_mask(fuc, 0x111104, 0x00000180, 0x00000000);
}
/* Always disable this bit during reclock */
ram_mask(fuc, 0x100200, 0x00000800, 0x00000000);
/* If switching from non-pll to pll, lock before disabling FB */
if (mclk.pll && !pll2pll) {
ram_mask(fuc, 0x004128, 0x003f3141, mclk.clk | 0x00000101);
gt215_ram_lock_pll(fuc, &mclk);
}
/* Start with disabling some CRTCs and PFIFO? */
ram_wait_vblank(fuc);
ram_wr32(fuc, 0x611200, 0x3300);
ram_mask(fuc, 0x002504, 0x1, 0x1);
ram_nsec(fuc, 10000);
ram_wait(fuc, 0x002504, 0x10, 0x10, 20000); /* XXX: or longer? */
ram_block(fuc);
ram_nsec(fuc, 2000);
if (!next->bios.ramcfg_10_02_10) {
if (ram->base.type == NVKM_RAM_TYPE_GDDR3)
ram_mask(fuc, 0x111100, 0x04020000, 0x00020000);
else
ram_mask(fuc, 0x111100, 0x04020000, 0x04020000);
}
/* If we're disabling the DLL, do it now */
switch (next->bios.ramcfg_DLLoff * ram->base.type) {
case NVKM_RAM_TYPE_DDR3:
nvkm_sddr3_dll_disable(fuc, ram->base.mr);
break;
case NVKM_RAM_TYPE_GDDR3:
nvkm_gddr3_dll_disable(fuc, ram->base.mr);
break;
}
if (next->bios.timing_10_ODT)
gt215_ram_gpio(fuc, 0x2e, 1);
/* Brace RAM for impact */
ram_wr32(fuc, 0x1002d4, 0x00000001);
ram_wr32(fuc, 0x1002d0, 0x00000001);
ram_wr32(fuc, 0x1002d0, 0x00000001);
ram_wr32(fuc, 0x100210, 0x00000000);
ram_wr32(fuc, 0x1002dc, 0x00000001);
ram_nsec(fuc, 2000);
if (device->chipset == 0xa3 && freq <= 500000)
ram_mask(fuc, 0x100700, 0x00000006, 0x00000006);
/* Alter FBVDD/Q, apparently must be done with PLL disabled, thus
* set it to bypass */
if (nvkm_gpio_get(gpio, 0, 0x18, DCB_GPIO_UNUSED) ==
next->bios.ramcfg_FBVDDQ) {
data = ram_rd32(fuc, 0x004000) & 0x9;
if (data == 0x1)
ram_mask(fuc, 0x004000, 0x8, 0x8);
if (data & 0x1)
ram_mask(fuc, 0x004000, 0x1, 0x0);
gt215_ram_gpio(fuc, 0x18, !next->bios.ramcfg_FBVDDQ);
if (data & 0x1)
ram_mask(fuc, 0x004000, 0x1, 0x1);
}
/* Fiddle with clocks */
/* There's 4 scenario's
* pll->pll: first switch to a 324MHz clock, set up new PLL, switch
* clk->pll: Set up new PLL, switch
* pll->clk: Set up clock, switch
* clk->clk: Overwrite ctrl and other bits, switch */
/* Switch to regular clock - 324MHz */
if (pll2pll) {
ram_mask(fuc, 0x004000, 0x00000004, 0x00000004);
ram_mask(fuc, 0x004168, 0x003f3141, 0x00083101);
ram_mask(fuc, 0x004000, 0x00000008, 0x00000008);
ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
ram_wr32(fuc, 0x004018, 0x00001000);
gt215_ram_lock_pll(fuc, &mclk);
}
if (mclk.pll) {
ram_mask(fuc, 0x004000, 0x00000105, 0x00000105);
ram_wr32(fuc, 0x004018, 0x00001000 | r004018);
ram_wr32(fuc, 0x100da0, r100da0);
} else {
ram_mask(fuc, 0x004168, 0x003f3141, mclk.clk | 0x00000101);
ram_mask(fuc, 0x004000, 0x00000108, 0x00000008);
ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
ram_wr32(fuc, 0x004018, 0x00009000 | r004018);
ram_wr32(fuc, 0x100da0, r100da0);
}
ram_nsec(fuc, 20000);
if (next->bios.rammap_10_04_08) {
ram_wr32(fuc, 0x1005a0, next->bios.ramcfg_10_06 << 16 |
next->bios.ramcfg_10_05 << 8 |
next->bios.ramcfg_10_05);
ram_wr32(fuc, 0x1005a4, next->bios.ramcfg_10_08 << 8 |
next->bios.ramcfg_10_07);
ram_wr32(fuc, 0x10f804, next->bios.ramcfg_10_09_f0 << 20 |
next->bios.ramcfg_10_03_0f << 16 |
next->bios.ramcfg_10_09_0f |
0x80000000);
ram_mask(fuc, 0x10053c, 0x00001000, 0x00000000);
} else {
if (train->state == NVA3_TRAIN_DONE) {
ram_wr32(fuc, 0x100080, 0x1020);
ram_mask(fuc, 0x111400, 0xffffffff, train->r_111400);
ram_mask(fuc, 0x1111e0, 0xffffffff, train->r_1111e0);
ram_mask(fuc, 0x100720, 0xffffffff, train->r_100720);
}
ram_mask(fuc, 0x10053c, 0x00001000, 0x00001000);
ram_mask(fuc, 0x10f804, 0x80000000, 0x00000000);
ram_mask(fuc, 0x100760, 0x22222222, r100760);
ram_mask(fuc, 0x1007a0, 0x22222222, r100760);
ram_mask(fuc, 0x1007e0, 0x22222222, r100760);
}
if (device->chipset == 0xa3 && freq > 500000) {
ram_mask(fuc, 0x100700, 0x00000006, 0x00000000);
}
/* Final switch */
if (mclk.pll) {
ram_mask(fuc, 0x1110e0, 0x00088000, 0x00011000);
ram_mask(fuc, 0x004000, 0x00000008, 0x00000000);
}
ram_wr32(fuc, 0x1002dc, 0x00000000);
ram_wr32(fuc, 0x1002d4, 0x00000001);
ram_wr32(fuc, 0x100210, 0x80000000);
ram_nsec(fuc, 2000);
/* Set RAM MR parameters and timings */
for (i = 2; i >= 0; i--) {
if (ram_rd32(fuc, mr[i]) != ram->base.mr[i]) {
ram_wr32(fuc, mr[i], ram->base.mr[i]);
ram_nsec(fuc, 1000);
}
}
ram_wr32(fuc, 0x100220[3], timing[3]);
ram_wr32(fuc, 0x100220[1], timing[1]);
ram_wr32(fuc, 0x100220[6], timing[6]);
ram_wr32(fuc, 0x100220[7], timing[7]);
ram_wr32(fuc, 0x100220[2], timing[2]);
ram_wr32(fuc, 0x100220[4], timing[4]);
ram_wr32(fuc, 0x100220[5], timing[5]);
ram_wr32(fuc, 0x100220[0], timing[0]);
ram_wr32(fuc, 0x100220[8], timing[8]);
/* Misc */
ram_mask(fuc, 0x100200, 0x00001000, !next->bios.ramcfg_10_02_08 << 12);
/* XXX: A lot of "chipset"/"ram type" specific stuff...? */
unk714 = ram_rd32(fuc, 0x100714) & ~0xf0000130;
unk718 = ram_rd32(fuc, 0x100718) & ~0x00000100;
unk71c = ram_rd32(fuc, 0x10071c) & ~0x00000100;
r111100 = ram_rd32(fuc, 0x111100) & ~0x3a800000;
/* NVA8 seems to skip various bits related to ramcfg_10_02_04 */
if (device->chipset == 0xa8) {
r111100 |= 0x08000000;
if (!next->bios.ramcfg_10_02_04)
unk714 |= 0x00000010;
} else {
if (next->bios.ramcfg_10_02_04) {
switch (ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
case NVKM_RAM_TYPE_DDR3:
r111100 &= ~0x00000020;
if (next->bios.ramcfg_10_02_10)
r111100 |= 0x08000004;
else
r111100 |= 0x00000024;
break;
default:
break;
}
} else {
switch (ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
case NVKM_RAM_TYPE_DDR3:
r111100 &= ~0x00000024;
r111100 |= 0x12800000;
if (next->bios.ramcfg_10_02_10)
r111100 |= 0x08000000;
unk714 |= 0x00000010;
break;
case NVKM_RAM_TYPE_GDDR3:
r111100 |= 0x30000000;
unk714 |= 0x00000020;
break;
default:
break;
}
}
}
unk714 |= (next->bios.ramcfg_10_04_01) << 8;
if (next->bios.ramcfg_10_02_20)
unk714 |= 0xf0000000;
if (next->bios.ramcfg_10_02_02)
unk718 |= 0x00000100;
if (next->bios.ramcfg_10_02_01)
unk71c |= 0x00000100;
if (next->bios.timing_10_24 != 0xff) {
unk718 &= ~0xf0000000;
unk718 |= next->bios.timing_10_24 << 28;
}
if (next->bios.ramcfg_10_02_10)
r111100 &= ~0x04020000;
ram_mask(fuc, 0x100714, 0xffffffff, unk714);
ram_mask(fuc, 0x10071c, 0xffffffff, unk71c);
ram_mask(fuc, 0x100718, 0xffffffff, unk718);
ram_mask(fuc, 0x111100, 0xffffffff, r111100);
if (!next->bios.timing_10_ODT)
gt215_ram_gpio(fuc, 0x2e, 0);
/* Reset DLL */
if (!next->bios.ramcfg_DLLoff)
nvkm_sddr2_dll_reset(fuc);
if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
ram_nsec(fuc, 31000);
} else {
ram_nsec(fuc, 14000);
}
if (ram->base.type == NVKM_RAM_TYPE_DDR3) {
ram_wr32(fuc, 0x100264, 0x1);
ram_nsec(fuc, 2000);
}
ram_nuke(fuc, 0x100700);
ram_mask(fuc, 0x100700, 0x01000000, 0x01000000);
ram_mask(fuc, 0x100700, 0x01000000, 0x00000000);
/* Re-enable FB */
ram_unblock(fuc);
ram_wr32(fuc, 0x611200, 0x3330);
/* Post fiddlings */
if (next->bios.rammap_10_04_02)
ram_mask(fuc, 0x100200, 0x00000800, 0x00000800);
if (next->bios.ramcfg_10_02_10) {
ram_mask(fuc, 0x111104, 0x00000180, 0x00000180);
ram_mask(fuc, 0x111100, 0x40000000, 0x00000000);
} else {
ram_mask(fuc, 0x111104, 0x00000600, 0x00000600);
}
if (mclk.pll) {
ram_mask(fuc, 0x004168, 0x00000001, 0x00000000);
ram_mask(fuc, 0x004168, 0x00000100, 0x00000000);
} else {
ram_mask(fuc, 0x004000, 0x00000001, 0x00000000);
ram_mask(fuc, 0x004128, 0x00000001, 0x00000000);
ram_mask(fuc, 0x004128, 0x00000100, 0x00000000);
}
return 0;
}
static int
gt215_ram_prog(struct nvkm_ram *base)
{
struct gt215_ram *ram = gt215_ram(base);
struct gt215_ramfuc *fuc = &ram->fuc;
struct nvkm_device *device = ram->base.fb->subdev.device;
bool exec = nvkm_boolopt(device->cfgopt, "NvMemExec", true);
if (exec) {
nvkm_mask(device, 0x001534, 0x2, 0x2);
ram_exec(fuc, true);
/* Post-processing, avoids flicker */
nvkm_mask(device, 0x002504, 0x1, 0x0);
nvkm_mask(device, 0x001534, 0x2, 0x0);
nvkm_mask(device, 0x616308, 0x10, 0x10);
nvkm_mask(device, 0x616b08, 0x10, 0x10);
} else {
ram_exec(fuc, false);
}
return 0;
}
static void
gt215_ram_tidy(struct nvkm_ram *base)
{
struct gt215_ram *ram = gt215_ram(base);
ram_exec(&ram->fuc, false);
}
static int
gt215_ram_init(struct nvkm_ram *base)
{
struct gt215_ram *ram = gt215_ram(base);
gt215_link_train_init(ram);
return 0;
}
static void *
gt215_ram_dtor(struct nvkm_ram *base)
{
struct gt215_ram *ram = gt215_ram(base);
gt215_link_train_fini(ram);
return ram;
}
static const struct nvkm_ram_func
gt215_ram_func = {
.dtor = gt215_ram_dtor,
.init = gt215_ram_init,
.calc = gt215_ram_calc,
.prog = gt215_ram_prog,
.tidy = gt215_ram_tidy,
};
int
gt215_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
{
struct gt215_ram *ram;
int ret, i;
if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
return -ENOMEM;
*pram = &ram->base;
ret = nv50_ram_ctor(&gt215_ram_func, fb, &ram->base);
if (ret)
return ret;
ram->fuc.r_0x001610 = ramfuc_reg(0x001610);
ram->fuc.r_0x001700 = ramfuc_reg(0x001700);
ram->fuc.r_0x002504 = ramfuc_reg(0x002504);
ram->fuc.r_0x004000 = ramfuc_reg(0x004000);
ram->fuc.r_0x004004 = ramfuc_reg(0x004004);
ram->fuc.r_0x004018 = ramfuc_reg(0x004018);
ram->fuc.r_0x004128 = ramfuc_reg(0x004128);
ram->fuc.r_0x004168 = ramfuc_reg(0x004168);
ram->fuc.r_0x100080 = ramfuc_reg(0x100080);
ram->fuc.r_0x100200 = ramfuc_reg(0x100200);
ram->fuc.r_0x100210 = ramfuc_reg(0x100210);
for (i = 0; i < 9; i++)
ram->fuc.r_0x100220[i] = ramfuc_reg(0x100220 + (i * 4));
ram->fuc.r_0x100264 = ramfuc_reg(0x100264);
ram->fuc.r_0x1002d0 = ramfuc_reg(0x1002d0);
ram->fuc.r_0x1002d4 = ramfuc_reg(0x1002d4);
ram->fuc.r_0x1002dc = ramfuc_reg(0x1002dc);
ram->fuc.r_0x10053c = ramfuc_reg(0x10053c);
ram->fuc.r_0x1005a0 = ramfuc_reg(0x1005a0);
ram->fuc.r_0x1005a4 = ramfuc_reg(0x1005a4);
ram->fuc.r_0x100700 = ramfuc_reg(0x100700);
ram->fuc.r_0x100714 = ramfuc_reg(0x100714);
ram->fuc.r_0x100718 = ramfuc_reg(0x100718);
ram->fuc.r_0x10071c = ramfuc_reg(0x10071c);
ram->fuc.r_0x100720 = ramfuc_reg(0x100720);
ram->fuc.r_0x100760 = ramfuc_stride(0x100760, 4, ram->base.part_mask);
ram->fuc.r_0x1007a0 = ramfuc_stride(0x1007a0, 4, ram->base.part_mask);
ram->fuc.r_0x1007e0 = ramfuc_stride(0x1007e0, 4, ram->base.part_mask);
ram->fuc.r_0x100da0 = ramfuc_stride(0x100da0, 4, ram->base.part_mask);
ram->fuc.r_0x10f804 = ramfuc_reg(0x10f804);
ram->fuc.r_0x1110e0 = ramfuc_stride(0x1110e0, 4, ram->base.part_mask);
ram->fuc.r_0x111100 = ramfuc_reg(0x111100);
ram->fuc.r_0x111104 = ramfuc_reg(0x111104);
ram->fuc.r_0x1111e0 = ramfuc_reg(0x1111e0);
ram->fuc.r_0x111400 = ramfuc_reg(0x111400);
ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
if (ram->base.ranks > 1) {
ram->fuc.r_mr[0] = ramfuc_reg2(0x1002c0, 0x1002c8);
ram->fuc.r_mr[1] = ramfuc_reg2(0x1002c4, 0x1002cc);
ram->fuc.r_mr[2] = ramfuc_reg2(0x1002e0, 0x1002e8);
ram->fuc.r_mr[3] = ramfuc_reg2(0x1002e4, 0x1002ec);
} else {
ram->fuc.r_mr[0] = ramfuc_reg(0x1002c0);
ram->fuc.r_mr[1] = ramfuc_reg(0x1002c4);
ram->fuc.r_mr[2] = ramfuc_reg(0x1002e0);
ram->fuc.r_mr[3] = ramfuc_reg(0x1002e4);
}
ram->fuc.r_gpio[0] = ramfuc_reg(0x00e104);
ram->fuc.r_gpio[1] = ramfuc_reg(0x00e108);
ram->fuc.r_gpio[2] = ramfuc_reg(0x00e120);
ram->fuc.r_gpio[3] = ramfuc_reg(0x00e124);
return 0;
}