alistair23-linux/drivers/char/nvram.c
Tim Schmielau cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00

923 lines
22 KiB
C

/*
* CMOS/NV-RAM driver for Linux
*
* Copyright (C) 1997 Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de>
* idea by and with help from Richard Jelinek <rj@suse.de>
* Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
*
* This driver allows you to access the contents of the non-volatile memory in
* the mc146818rtc.h real-time clock. This chip is built into all PCs and into
* many Atari machines. In the former it's called "CMOS-RAM", in the latter
* "NVRAM" (NV stands for non-volatile).
*
* The data are supplied as a (seekable) character device, /dev/nvram. The
* size of this file is dependent on the controller. The usual size is 114,
* the number of freely available bytes in the memory (i.e., not used by the
* RTC itself).
*
* Checksums over the NVRAM contents are managed by this driver. In case of a
* bad checksum, reads and writes return -EIO. The checksum can be initialized
* to a sane state either by ioctl(NVRAM_INIT) (clear whole NVRAM) or
* ioctl(NVRAM_SETCKS) (doesn't change contents, just makes checksum valid
* again; use with care!)
*
* This file also provides some functions for other parts of the kernel that
* want to access the NVRAM: nvram_{read,write,check_checksum,set_checksum}.
* Obviously this can be used only if this driver is always configured into
* the kernel and is not a module. Since the functions are used by some Atari
* drivers, this is the case on the Atari.
*
*
* 1.1 Cesar Barros: SMP locking fixes
* added changelog
* 1.2 Erik Gilling: Cobalt Networks support
* Tim Hockin: general cleanup, Cobalt support
*/
#define NVRAM_VERSION "1.2"
#include <linux/module.h>
#include <linux/smp_lock.h>
#include <linux/nvram.h>
#define PC 1
#define ATARI 2
#define COBALT 3
/* select machine configuration */
#if defined(CONFIG_ATARI)
# define MACH ATARI
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) /* and others?? */
#define MACH PC
# if defined(CONFIG_COBALT)
# include <linux/cobalt-nvram.h>
# define MACH COBALT
# else
# define MACH PC
# endif
#else
# error Cannot build nvram driver for this machine configuration.
#endif
#if MACH == PC
/* RTC in a PC */
#define CHECK_DRIVER_INIT() 1
/* On PCs, the checksum is built only over bytes 2..31 */
#define PC_CKS_RANGE_START 2
#define PC_CKS_RANGE_END 31
#define PC_CKS_LOC 32
#define NVRAM_BYTES (128-NVRAM_FIRST_BYTE)
#define mach_check_checksum pc_check_checksum
#define mach_set_checksum pc_set_checksum
#define mach_proc_infos pc_proc_infos
#endif
#if MACH == COBALT
#define CHECK_DRIVER_INIT() 1
#define NVRAM_BYTES (128-NVRAM_FIRST_BYTE)
#define mach_check_checksum cobalt_check_checksum
#define mach_set_checksum cobalt_set_checksum
#define mach_proc_infos cobalt_proc_infos
#endif
#if MACH == ATARI
/* Special parameters for RTC in Atari machines */
#include <asm/atarihw.h>
#include <asm/atariints.h>
#define RTC_PORT(x) (TT_RTC_BAS + 2*(x))
#define CHECK_DRIVER_INIT() (MACH_IS_ATARI && ATARIHW_PRESENT(TT_CLK))
#define NVRAM_BYTES 50
/* On Ataris, the checksum is over all bytes except the checksum bytes
* themselves; these are at the very end */
#define ATARI_CKS_RANGE_START 0
#define ATARI_CKS_RANGE_END 47
#define ATARI_CKS_LOC 48
#define mach_check_checksum atari_check_checksum
#define mach_set_checksum atari_set_checksum
#define mach_proc_infos atari_proc_infos
#endif
/* Note that *all* calls to CMOS_READ and CMOS_WRITE must be done with
* rtc_lock held. Due to the index-port/data-port design of the RTC, we
* don't want two different things trying to get to it at once. (e.g. the
* periodic 11 min sync from time.c vs. this driver.)
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/mc146818rtc.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
static DEFINE_SPINLOCK(nvram_state_lock);
static int nvram_open_cnt; /* #times opened */
static int nvram_open_mode; /* special open modes */
#define NVRAM_WRITE 1 /* opened for writing (exclusive) */
#define NVRAM_EXCL 2 /* opened with O_EXCL */
static int mach_check_checksum(void);
static void mach_set_checksum(void);
#ifdef CONFIG_PROC_FS
static int mach_proc_infos(unsigned char *contents, char *buffer, int *len,
off_t *begin, off_t offset, int size);
#endif
/*
* These functions are provided to be called internally or by other parts of
* the kernel. It's up to the caller to ensure correct checksum before reading
* or after writing (needs to be done only once).
*
* It is worth noting that these functions all access bytes of general
* purpose memory in the NVRAM - that is to say, they all add the
* NVRAM_FIRST_BYTE offset. Pass them offsets into NVRAM as if you did not
* know about the RTC cruft.
*/
unsigned char
__nvram_read_byte(int i)
{
return CMOS_READ(NVRAM_FIRST_BYTE + i);
}
unsigned char
nvram_read_byte(int i)
{
unsigned long flags;
unsigned char c;
spin_lock_irqsave(&rtc_lock, flags);
c = __nvram_read_byte(i);
spin_unlock_irqrestore(&rtc_lock, flags);
return c;
}
/* This races nicely with trying to read with checksum checking (nvram_read) */
void
__nvram_write_byte(unsigned char c, int i)
{
CMOS_WRITE(c, NVRAM_FIRST_BYTE + i);
}
void
nvram_write_byte(unsigned char c, int i)
{
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
__nvram_write_byte(c, i);
spin_unlock_irqrestore(&rtc_lock, flags);
}
int
__nvram_check_checksum(void)
{
return mach_check_checksum();
}
int
nvram_check_checksum(void)
{
unsigned long flags;
int rv;
spin_lock_irqsave(&rtc_lock, flags);
rv = __nvram_check_checksum();
spin_unlock_irqrestore(&rtc_lock, flags);
return rv;
}
static void
__nvram_set_checksum(void)
{
mach_set_checksum();
}
#if 0
void
nvram_set_checksum(void)
{
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
__nvram_set_checksum();
spin_unlock_irqrestore(&rtc_lock, flags);
}
#endif /* 0 */
/*
* The are the file operation function for user access to /dev/nvram
*/
static loff_t nvram_llseek(struct file *file,loff_t offset, int origin )
{
lock_kernel();
switch (origin) {
case 0:
/* nothing to do */
break;
case 1:
offset += file->f_pos;
break;
case 2:
offset += NVRAM_BYTES;
break;
}
unlock_kernel();
return (offset >= 0) ? (file->f_pos = offset) : -EINVAL;
}
static ssize_t
nvram_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
unsigned char contents[NVRAM_BYTES];
unsigned i = *ppos;
unsigned char *tmp;
spin_lock_irq(&rtc_lock);
if (!__nvram_check_checksum())
goto checksum_err;
for (tmp = contents; count-- > 0 && i < NVRAM_BYTES; ++i, ++tmp)
*tmp = __nvram_read_byte(i);
spin_unlock_irq(&rtc_lock);
if (copy_to_user(buf, contents, tmp - contents))
return -EFAULT;
*ppos = i;
return tmp - contents;
checksum_err:
spin_unlock_irq(&rtc_lock);
return -EIO;
}
static ssize_t
nvram_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
unsigned char contents[NVRAM_BYTES];
unsigned i = *ppos;
unsigned char *tmp;
int len;
len = (NVRAM_BYTES - i) < count ? (NVRAM_BYTES - i) : count;
if (copy_from_user(contents, buf, len))
return -EFAULT;
spin_lock_irq(&rtc_lock);
if (!__nvram_check_checksum())
goto checksum_err;
for (tmp = contents; count-- > 0 && i < NVRAM_BYTES; ++i, ++tmp)
__nvram_write_byte(*tmp, i);
__nvram_set_checksum();
spin_unlock_irq(&rtc_lock);
*ppos = i;
return tmp - contents;
checksum_err:
spin_unlock_irq(&rtc_lock);
return -EIO;
}
static int
nvram_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int i;
switch (cmd) {
case NVRAM_INIT:
/* initialize NVRAM contents and checksum */
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
spin_lock_irq(&rtc_lock);
for (i = 0; i < NVRAM_BYTES; ++i)
__nvram_write_byte(0, i);
__nvram_set_checksum();
spin_unlock_irq(&rtc_lock);
return 0;
case NVRAM_SETCKS:
/* just set checksum, contents unchanged (maybe useful after
* checksum garbaged somehow...) */
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
spin_lock_irq(&rtc_lock);
__nvram_set_checksum();
spin_unlock_irq(&rtc_lock);
return 0;
default:
return -ENOTTY;
}
}
static int
nvram_open(struct inode *inode, struct file *file)
{
spin_lock(&nvram_state_lock);
if ((nvram_open_cnt && (file->f_flags & O_EXCL)) ||
(nvram_open_mode & NVRAM_EXCL) ||
((file->f_mode & 2) && (nvram_open_mode & NVRAM_WRITE))) {
spin_unlock(&nvram_state_lock);
return -EBUSY;
}
if (file->f_flags & O_EXCL)
nvram_open_mode |= NVRAM_EXCL;
if (file->f_mode & 2)
nvram_open_mode |= NVRAM_WRITE;
nvram_open_cnt++;
spin_unlock(&nvram_state_lock);
return 0;
}
static int
nvram_release(struct inode *inode, struct file *file)
{
spin_lock(&nvram_state_lock);
nvram_open_cnt--;
/* if only one instance is open, clear the EXCL bit */
if (nvram_open_mode & NVRAM_EXCL)
nvram_open_mode &= ~NVRAM_EXCL;
if (file->f_mode & 2)
nvram_open_mode &= ~NVRAM_WRITE;
spin_unlock(&nvram_state_lock);
return 0;
}
#ifndef CONFIG_PROC_FS
static int
nvram_read_proc(char *buffer, char **start, off_t offset,
int size, int *eof, void *data)
{
return 0;
}
#else
static int
nvram_read_proc(char *buffer, char **start, off_t offset,
int size, int *eof, void *data)
{
unsigned char contents[NVRAM_BYTES];
int i, len = 0;
off_t begin = 0;
spin_lock_irq(&rtc_lock);
for (i = 0; i < NVRAM_BYTES; ++i)
contents[i] = __nvram_read_byte(i);
spin_unlock_irq(&rtc_lock);
*eof = mach_proc_infos(contents, buffer, &len, &begin, offset, size);
if (offset >= begin + len)
return 0;
*start = buffer + (offset - begin);
return (size < begin + len - offset) ? size : begin + len - offset;
}
/* This macro frees the machine specific function from bounds checking and
* this like that... */
#define PRINT_PROC(fmt,args...) \
do { \
*len += sprintf(buffer+*len, fmt, ##args); \
if (*begin + *len > offset + size) \
return 0; \
if (*begin + *len < offset) { \
*begin += *len; \
*len = 0; \
} \
} while(0)
#endif /* CONFIG_PROC_FS */
static const struct file_operations nvram_fops = {
.owner = THIS_MODULE,
.llseek = nvram_llseek,
.read = nvram_read,
.write = nvram_write,
.ioctl = nvram_ioctl,
.open = nvram_open,
.release = nvram_release,
};
static struct miscdevice nvram_dev = {
NVRAM_MINOR,
"nvram",
&nvram_fops
};
static int __init
nvram_init(void)
{
int ret;
/* First test whether the driver should init at all */
if (!CHECK_DRIVER_INIT())
return -ENXIO;
ret = misc_register(&nvram_dev);
if (ret) {
printk(KERN_ERR "nvram: can't misc_register on minor=%d\n",
NVRAM_MINOR);
goto out;
}
if (!create_proc_read_entry("driver/nvram", 0, NULL, nvram_read_proc,
NULL)) {
printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");
ret = -ENOMEM;
goto outmisc;
}
ret = 0;
printk(KERN_INFO "Non-volatile memory driver v" NVRAM_VERSION "\n");
out:
return ret;
outmisc:
misc_deregister(&nvram_dev);
goto out;
}
static void __exit
nvram_cleanup_module(void)
{
remove_proc_entry("driver/nvram", NULL);
misc_deregister(&nvram_dev);
}
module_init(nvram_init);
module_exit(nvram_cleanup_module);
/*
* Machine specific functions
*/
#if MACH == PC
static int
pc_check_checksum(void)
{
int i;
unsigned short sum = 0;
unsigned short expect;
for (i = PC_CKS_RANGE_START; i <= PC_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
expect = __nvram_read_byte(PC_CKS_LOC)<<8 |
__nvram_read_byte(PC_CKS_LOC+1);
return ((sum & 0xffff) == expect);
}
static void
pc_set_checksum(void)
{
int i;
unsigned short sum = 0;
for (i = PC_CKS_RANGE_START; i <= PC_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
__nvram_write_byte(sum >> 8, PC_CKS_LOC);
__nvram_write_byte(sum & 0xff, PC_CKS_LOC + 1);
}
#ifdef CONFIG_PROC_FS
static char *floppy_types[] = {
"none", "5.25'' 360k", "5.25'' 1.2M", "3.5'' 720k", "3.5'' 1.44M",
"3.5'' 2.88M", "3.5'' 2.88M"
};
static char *gfx_types[] = {
"EGA, VGA, ... (with BIOS)",
"CGA (40 cols)",
"CGA (80 cols)",
"monochrome",
};
static int
pc_proc_infos(unsigned char *nvram, char *buffer, int *len,
off_t *begin, off_t offset, int size)
{
int checksum;
int type;
spin_lock_irq(&rtc_lock);
checksum = __nvram_check_checksum();
spin_unlock_irq(&rtc_lock);
PRINT_PROC("Checksum status: %svalid\n", checksum ? "" : "not ");
PRINT_PROC("# floppies : %d\n",
(nvram[6] & 1) ? (nvram[6] >> 6) + 1 : 0);
PRINT_PROC("Floppy 0 type : ");
type = nvram[2] >> 4;
if (type < ARRAY_SIZE(floppy_types))
PRINT_PROC("%s\n", floppy_types[type]);
else
PRINT_PROC("%d (unknown)\n", type);
PRINT_PROC("Floppy 1 type : ");
type = nvram[2] & 0x0f;
if (type < ARRAY_SIZE(floppy_types))
PRINT_PROC("%s\n", floppy_types[type]);
else
PRINT_PROC("%d (unknown)\n", type);
PRINT_PROC("HD 0 type : ");
type = nvram[4] >> 4;
if (type)
PRINT_PROC("%02x\n", type == 0x0f ? nvram[11] : type);
else
PRINT_PROC("none\n");
PRINT_PROC("HD 1 type : ");
type = nvram[4] & 0x0f;
if (type)
PRINT_PROC("%02x\n", type == 0x0f ? nvram[12] : type);
else
PRINT_PROC("none\n");
PRINT_PROC("HD type 48 data: %d/%d/%d C/H/S, precomp %d, lz %d\n",
nvram[18] | (nvram[19] << 8),
nvram[20], nvram[25],
nvram[21] | (nvram[22] << 8), nvram[23] | (nvram[24] << 8));
PRINT_PROC("HD type 49 data: %d/%d/%d C/H/S, precomp %d, lz %d\n",
nvram[39] | (nvram[40] << 8),
nvram[41], nvram[46],
nvram[42] | (nvram[43] << 8), nvram[44] | (nvram[45] << 8));
PRINT_PROC("DOS base memory: %d kB\n", nvram[7] | (nvram[8] << 8));
PRINT_PROC("Extended memory: %d kB (configured), %d kB (tested)\n",
nvram[9] | (nvram[10] << 8), nvram[34] | (nvram[35] << 8));
PRINT_PROC("Gfx adapter : %s\n", gfx_types[(nvram[6] >> 4) & 3]);
PRINT_PROC("FPU : %sinstalled\n",
(nvram[6] & 2) ? "" : "not ");
return 1;
}
#endif
#endif /* MACH == PC */
#if MACH == COBALT
/* the cobalt CMOS has a wider range of its checksum */
static int cobalt_check_checksum(void)
{
int i;
unsigned short sum = 0;
unsigned short expect;
for (i = COBT_CMOS_CKS_START; i <= COBT_CMOS_CKS_END; ++i) {
if ((i == COBT_CMOS_CHECKSUM) || (i == (COBT_CMOS_CHECKSUM+1)))
continue;
sum += __nvram_read_byte(i);
}
expect = __nvram_read_byte(COBT_CMOS_CHECKSUM) << 8 |
__nvram_read_byte(COBT_CMOS_CHECKSUM+1);
return ((sum & 0xffff) == expect);
}
static void cobalt_set_checksum(void)
{
int i;
unsigned short sum = 0;
for (i = COBT_CMOS_CKS_START; i <= COBT_CMOS_CKS_END; ++i) {
if ((i == COBT_CMOS_CHECKSUM) || (i == (COBT_CMOS_CHECKSUM+1)))
continue;
sum += __nvram_read_byte(i);
}
__nvram_write_byte(sum >> 8, COBT_CMOS_CHECKSUM);
__nvram_write_byte(sum & 0xff, COBT_CMOS_CHECKSUM+1);
}
#ifdef CONFIG_PROC_FS
static int cobalt_proc_infos(unsigned char *nvram, char *buffer, int *len,
off_t *begin, off_t offset, int size)
{
int i;
unsigned int checksum;
unsigned int flags;
char sernum[14];
char *key = "cNoEbTaWlOtR!";
unsigned char bto_csum;
spin_lock_irq(&rtc_lock);
checksum = __nvram_check_checksum();
spin_unlock_irq(&rtc_lock);
PRINT_PROC("Checksum status: %svalid\n", checksum ? "" : "not ");
flags = nvram[COBT_CMOS_FLAG_BYTE_0] << 8
| nvram[COBT_CMOS_FLAG_BYTE_1];
PRINT_PROC("Console: %s\n",
flags & COBT_CMOS_CONSOLE_FLAG ? "on": "off");
PRINT_PROC("Firmware Debug Messages: %s\n",
flags & COBT_CMOS_DEBUG_FLAG ? "on": "off");
PRINT_PROC("Auto Prompt: %s\n",
flags & COBT_CMOS_AUTO_PROMPT_FLAG ? "on": "off");
PRINT_PROC("Shutdown Status: %s\n",
flags & COBT_CMOS_CLEAN_BOOT_FLAG ? "clean": "dirty");
PRINT_PROC("Hardware Probe: %s\n",
flags & COBT_CMOS_HW_NOPROBE_FLAG ? "partial": "full");
PRINT_PROC("System Fault: %sdetected\n",
flags & COBT_CMOS_SYSFAULT_FLAG ? "": "not ");
PRINT_PROC("Panic on OOPS: %s\n",
flags & COBT_CMOS_OOPSPANIC_FLAG ? "yes": "no");
PRINT_PROC("Delayed Cache Initialization: %s\n",
flags & COBT_CMOS_DELAY_CACHE_FLAG ? "yes": "no");
PRINT_PROC("Show Logo at Boot: %s\n",
flags & COBT_CMOS_NOLOGO_FLAG ? "no": "yes");
PRINT_PROC("Boot Method: ");
switch (nvram[COBT_CMOS_BOOT_METHOD]) {
case COBT_CMOS_BOOT_METHOD_DISK:
PRINT_PROC("disk\n");
break;
case COBT_CMOS_BOOT_METHOD_ROM:
PRINT_PROC("rom\n");
break;
case COBT_CMOS_BOOT_METHOD_NET:
PRINT_PROC("net\n");
break;
default:
PRINT_PROC("unknown\n");
break;
}
PRINT_PROC("Primary Boot Device: %d:%d\n",
nvram[COBT_CMOS_BOOT_DEV0_MAJ],
nvram[COBT_CMOS_BOOT_DEV0_MIN] );
PRINT_PROC("Secondary Boot Device: %d:%d\n",
nvram[COBT_CMOS_BOOT_DEV1_MAJ],
nvram[COBT_CMOS_BOOT_DEV1_MIN] );
PRINT_PROC("Tertiary Boot Device: %d:%d\n",
nvram[COBT_CMOS_BOOT_DEV2_MAJ],
nvram[COBT_CMOS_BOOT_DEV2_MIN] );
PRINT_PROC("Uptime: %d\n",
nvram[COBT_CMOS_UPTIME_0] << 24 |
nvram[COBT_CMOS_UPTIME_1] << 16 |
nvram[COBT_CMOS_UPTIME_2] << 8 |
nvram[COBT_CMOS_UPTIME_3]);
PRINT_PROC("Boot Count: %d\n",
nvram[COBT_CMOS_BOOTCOUNT_0] << 24 |
nvram[COBT_CMOS_BOOTCOUNT_1] << 16 |
nvram[COBT_CMOS_BOOTCOUNT_2] << 8 |
nvram[COBT_CMOS_BOOTCOUNT_3]);
/* 13 bytes of serial num */
for (i=0 ; i<13 ; i++) {
sernum[i] = nvram[COBT_CMOS_SYS_SERNUM_0 + i];
}
sernum[13] = '\0';
checksum = 0;
for (i=0 ; i<13 ; i++) {
checksum += sernum[i] ^ key[i];
}
checksum = ((checksum & 0x7f) ^ (0xd6)) & 0xff;
PRINT_PROC("Serial Number: %s", sernum);
if (checksum != nvram[COBT_CMOS_SYS_SERNUM_CSUM]) {
PRINT_PROC(" (invalid checksum)");
}
PRINT_PROC("\n");
PRINT_PROC("Rom Revison: %d.%d.%d\n", nvram[COBT_CMOS_ROM_REV_MAJ],
nvram[COBT_CMOS_ROM_REV_MIN], nvram[COBT_CMOS_ROM_REV_REV]);
PRINT_PROC("BTO Server: %d.%d.%d.%d", nvram[COBT_CMOS_BTO_IP_0],
nvram[COBT_CMOS_BTO_IP_1], nvram[COBT_CMOS_BTO_IP_2],
nvram[COBT_CMOS_BTO_IP_3]);
bto_csum = nvram[COBT_CMOS_BTO_IP_0] + nvram[COBT_CMOS_BTO_IP_1]
+ nvram[COBT_CMOS_BTO_IP_2] + nvram[COBT_CMOS_BTO_IP_3];
if (bto_csum != nvram[COBT_CMOS_BTO_IP_CSUM]) {
PRINT_PROC(" (invalid checksum)");
}
PRINT_PROC("\n");
if (flags & COBT_CMOS_VERSION_FLAG
&& nvram[COBT_CMOS_VERSION] >= COBT_CMOS_VER_BTOCODE) {
PRINT_PROC("BTO Code: 0x%x\n",
nvram[COBT_CMOS_BTO_CODE_0] << 24 |
nvram[COBT_CMOS_BTO_CODE_1] << 16 |
nvram[COBT_CMOS_BTO_CODE_2] << 8 |
nvram[COBT_CMOS_BTO_CODE_3]);
}
return 1;
}
#endif /* CONFIG_PROC_FS */
#endif /* MACH == COBALT */
#if MACH == ATARI
static int
atari_check_checksum(void)
{
int i;
unsigned char sum = 0;
for (i = ATARI_CKS_RANGE_START; i <= ATARI_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
return (__nvram_read_byte(ATARI_CKS_LOC) == (~sum & 0xff) &&
__nvram_read_byte(ATARI_CKS_LOC + 1) == (sum & 0xff));
}
static void
atari_set_checksum(void)
{
int i;
unsigned char sum = 0;
for (i = ATARI_CKS_RANGE_START; i <= ATARI_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
__nvram_write_byte(~sum, ATARI_CKS_LOC);
__nvram_write_byte(sum, ATARI_CKS_LOC + 1);
}
#ifdef CONFIG_PROC_FS
static struct {
unsigned char val;
char *name;
} boot_prefs[] = {
{ 0x80, "TOS" },
{ 0x40, "ASV" },
{ 0x20, "NetBSD (?)" },
{ 0x10, "Linux" },
{ 0x00, "unspecified" }
};
static char *languages[] = {
"English (US)",
"German",
"French",
"English (UK)",
"Spanish",
"Italian",
"6 (undefined)",
"Swiss (French)",
"Swiss (German)"
};
static char *dateformat[] = {
"MM%cDD%cYY",
"DD%cMM%cYY",
"YY%cMM%cDD",
"YY%cDD%cMM",
"4 (undefined)",
"5 (undefined)",
"6 (undefined)",
"7 (undefined)"
};
static char *colors[] = {
"2", "4", "16", "256", "65536", "??", "??", "??"
};
static int
atari_proc_infos(unsigned char *nvram, char *buffer, int *len,
off_t *begin, off_t offset, int size)
{
int checksum = nvram_check_checksum();
int i;
unsigned vmode;
PRINT_PROC("Checksum status : %svalid\n", checksum ? "" : "not ");
PRINT_PROC("Boot preference : ");
for (i = ARRAY_SIZE(boot_prefs) - 1; i >= 0; --i) {
if (nvram[1] == boot_prefs[i].val) {
PRINT_PROC("%s\n", boot_prefs[i].name);
break;
}
}
if (i < 0)
PRINT_PROC("0x%02x (undefined)\n", nvram[1]);
PRINT_PROC("SCSI arbitration : %s\n",
(nvram[16] & 0x80) ? "on" : "off");
PRINT_PROC("SCSI host ID : ");
if (nvram[16] & 0x80)
PRINT_PROC("%d\n", nvram[16] & 7);
else
PRINT_PROC("n/a\n");
/* the following entries are defined only for the Falcon */
if ((atari_mch_cookie >> 16) != ATARI_MCH_FALCON)
return 1;
PRINT_PROC("OS language : ");
if (nvram[6] < ARRAY_SIZE(languages))
PRINT_PROC("%s\n", languages[nvram[6]]);
else
PRINT_PROC("%u (undefined)\n", nvram[6]);
PRINT_PROC("Keyboard language: ");
if (nvram[7] < ARRAY_SIZE(languages))
PRINT_PROC("%s\n", languages[nvram[7]]);
else
PRINT_PROC("%u (undefined)\n", nvram[7]);
PRINT_PROC("Date format : ");
PRINT_PROC(dateformat[nvram[8] & 7],
nvram[9] ? nvram[9] : '/', nvram[9] ? nvram[9] : '/');
PRINT_PROC(", %dh clock\n", nvram[8] & 16 ? 24 : 12);
PRINT_PROC("Boot delay : ");
if (nvram[10] == 0)
PRINT_PROC("default");
else
PRINT_PROC("%ds%s\n", nvram[10],
nvram[10] < 8 ? ", no memory test" : "");
vmode = (nvram[14] << 8) || nvram[15];
PRINT_PROC("Video mode : %s colors, %d columns, %s %s monitor\n",
colors[vmode & 7],
vmode & 8 ? 80 : 40,
vmode & 16 ? "VGA" : "TV", vmode & 32 ? "PAL" : "NTSC");
PRINT_PROC(" %soverscan, compat. mode %s%s\n",
vmode & 64 ? "" : "no ",
vmode & 128 ? "on" : "off",
vmode & 256 ?
(vmode & 16 ? ", line doubling" : ", half screen") : "");
return 1;
}
#endif
#endif /* MACH == ATARI */
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(__nvram_read_byte);
EXPORT_SYMBOL(nvram_read_byte);
EXPORT_SYMBOL(__nvram_write_byte);
EXPORT_SYMBOL(nvram_write_byte);
EXPORT_SYMBOL(__nvram_check_checksum);
EXPORT_SYMBOL(nvram_check_checksum);
MODULE_ALIAS_MISCDEV(NVRAM_MINOR);