alistair23-linux/drivers/kvm/svm.c
Avi Kivity bccf2150fe KVM: Per-vcpu inodes
Allocate a distinct inode for every vcpu in a VM.  This has the following
benefits:

 - the filp cachelines are no longer bounced when f_count is incremented on
   every ioctl()
 - the API and internal code are distinctly clearer; for example, on the
   KVM_GET_REGS ioctl, there is no need to copy the vcpu number from
   userspace and then copy the registers back; the vcpu identity is derived
   from the fd used to make the call

Right now the performance benefits are completely theoretical since (a) we
don't support more than one vcpu per VM and (b) virtualization hardware
inefficiencies completely everwhelm any cacheline bouncing effects.  But
both of these will change, and we need to prepare the API today.

Signed-off-by: Avi Kivity <avi@qumranet.com>
2007-03-04 11:12:42 +02:00

1753 lines
43 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/profile.h>
#include <asm/desc.h>
#include "kvm_svm.h"
#include "x86_emulate.h"
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1
#define DB_VECTOR 1
#define UD_VECTOR 6
#define GP_VECTOR 13
#define DR7_GD_MASK (1 << 13)
#define DR6_BD_MASK (1 << 13)
#define CR4_DE_MASK (1UL << 3)
#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3
#define KVM_EFER_LMA (1 << 10)
#define KVM_EFER_LME (1 << 8)
unsigned long iopm_base;
unsigned long msrpm_base;
struct kvm_ldttss_desc {
u16 limit0;
u16 base0;
unsigned base1 : 8, type : 5, dpl : 2, p : 1;
unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
u32 base3;
u32 zero1;
} __attribute__((packed));
struct svm_cpu_data {
int cpu;
uint64_t asid_generation;
uint32_t max_asid;
uint32_t next_asid;
struct kvm_ldttss_desc *tss_desc;
struct page *save_area;
};
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
struct svm_init_data {
int cpu;
int r;
};
static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
#define MAX_INST_SIZE 15
static unsigned get_addr_size(struct kvm_vcpu *vcpu)
{
struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
u16 cs_attrib;
if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
return 2;
cs_attrib = sa->cs.attrib;
return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
(cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
}
static inline u8 pop_irq(struct kvm_vcpu *vcpu)
{
int word_index = __ffs(vcpu->irq_summary);
int bit_index = __ffs(vcpu->irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->irq_pending[word_index]);
if (!vcpu->irq_pending[word_index])
clear_bit(word_index, &vcpu->irq_summary);
return irq;
}
static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
{
set_bit(irq, vcpu->irq_pending);
set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
}
static inline void clgi(void)
{
asm volatile (SVM_CLGI);
}
static inline void stgi(void)
{
asm volatile (SVM_STGI);
}
static inline void invlpga(unsigned long addr, u32 asid)
{
asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
}
static inline unsigned long kvm_read_cr2(void)
{
unsigned long cr2;
asm volatile ("mov %%cr2, %0" : "=r" (cr2));
return cr2;
}
static inline void kvm_write_cr2(unsigned long val)
{
asm volatile ("mov %0, %%cr2" :: "r" (val));
}
static inline unsigned long read_dr6(void)
{
unsigned long dr6;
asm volatile ("mov %%dr6, %0" : "=r" (dr6));
return dr6;
}
static inline void write_dr6(unsigned long val)
{
asm volatile ("mov %0, %%dr6" :: "r" (val));
}
static inline unsigned long read_dr7(void)
{
unsigned long dr7;
asm volatile ("mov %%dr7, %0" : "=r" (dr7));
return dr7;
}
static inline void write_dr7(unsigned long val)
{
asm volatile ("mov %0, %%dr7" :: "r" (val));
}
static inline void force_new_asid(struct kvm_vcpu *vcpu)
{
vcpu->svm->asid_generation--;
}
static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (!(efer & KVM_EFER_LMA))
efer &= ~KVM_EFER_LME;
vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
vcpu->shadow_efer = efer;
}
static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
{
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_VALID_ERR |
SVM_EVTINJ_TYPE_EXEPT |
GP_VECTOR;
vcpu->svm->vmcb->control.event_inj_err = error_code;
}
static void inject_ud(struct kvm_vcpu *vcpu)
{
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_TYPE_EXEPT |
UD_VECTOR;
}
static void inject_db(struct kvm_vcpu *vcpu)
{
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_TYPE_EXEPT |
DB_VECTOR;
}
static int is_page_fault(uint32_t info)
{
info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
}
static int is_external_interrupt(u32 info)
{
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
if (!vcpu->svm->next_rip) {
printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
return;
}
if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
__FUNCTION__,
vcpu->svm->vmcb->save.rip,
vcpu->svm->next_rip);
}
vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
vcpu->interrupt_window_open = 1;
}
static int has_svm(void)
{
uint32_t eax, ebx, ecx, edx;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
printk(KERN_INFO "has_svm: not amd\n");
return 0;
}
cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
if (eax < SVM_CPUID_FUNC) {
printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
return 0;
}
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
printk(KERN_DEBUG "has_svm: svm not available\n");
return 0;
}
return 1;
}
static void svm_hardware_disable(void *garbage)
{
struct svm_cpu_data *svm_data
= per_cpu(svm_data, raw_smp_processor_id());
if (svm_data) {
uint64_t efer;
wrmsrl(MSR_VM_HSAVE_PA, 0);
rdmsrl(MSR_EFER, efer);
wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
__free_page(svm_data->save_area);
kfree(svm_data);
}
}
static void svm_hardware_enable(void *garbage)
{
struct svm_cpu_data *svm_data;
uint64_t efer;
#ifdef CONFIG_X86_64
struct desc_ptr gdt_descr;
#else
struct Xgt_desc_struct gdt_descr;
#endif
struct desc_struct *gdt;
int me = raw_smp_processor_id();
if (!has_svm()) {
printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
return;
}
svm_data = per_cpu(svm_data, me);
if (!svm_data) {
printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
me);
return;
}
svm_data->asid_generation = 1;
svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
svm_data->next_asid = svm_data->max_asid + 1;
asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
gdt = (struct desc_struct *)gdt_descr.address;
svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
rdmsrl(MSR_EFER, efer);
wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
wrmsrl(MSR_VM_HSAVE_PA,
page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
}
static int svm_cpu_init(int cpu)
{
struct svm_cpu_data *svm_data;
int r;
svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
if (!svm_data)
return -ENOMEM;
svm_data->cpu = cpu;
svm_data->save_area = alloc_page(GFP_KERNEL);
r = -ENOMEM;
if (!svm_data->save_area)
goto err_1;
per_cpu(svm_data, cpu) = svm_data;
return 0;
err_1:
kfree(svm_data);
return r;
}
static int set_msr_interception(u32 *msrpm, unsigned msr,
int read, int write)
{
int i;
for (i = 0; i < NUM_MSR_MAPS; i++) {
if (msr >= msrpm_ranges[i] &&
msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
u32 msr_offset = (i * MSRS_IN_RANGE + msr -
msrpm_ranges[i]) * 2;
u32 *base = msrpm + (msr_offset / 32);
u32 msr_shift = msr_offset % 32;
u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
*base = (*base & ~(0x3 << msr_shift)) |
(mask << msr_shift);
return 1;
}
}
printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
return 0;
}
static __init int svm_hardware_setup(void)
{
int cpu;
struct page *iopm_pages;
struct page *msrpm_pages;
void *msrpm_va;
int r;
kvm_emulator_want_group7_invlpg();
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
if (!iopm_pages)
return -ENOMEM;
memset(page_address(iopm_pages), 0xff,
PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
r = -ENOMEM;
if (!msrpm_pages)
goto err_1;
msrpm_va = page_address(msrpm_pages);
memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
#ifdef CONFIG_X86_64
set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
#endif
set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
for_each_online_cpu(cpu) {
r = svm_cpu_init(cpu);
if (r)
goto err_2;
}
return 0;
err_2:
__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
msrpm_base = 0;
err_1:
__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
iopm_base = 0;
return r;
}
static __exit void svm_hardware_unsetup(void)
{
__free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
iopm_base = msrpm_base = 0;
}
static void init_seg(struct vmcb_seg *seg)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
seg->limit = 0xffff;
seg->base = 0;
}
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | type;
seg->limit = 0xffff;
seg->base = 0;
}
static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
static void init_vmcb(struct vmcb *vmcb)
{
struct vmcb_control_area *control = &vmcb->control;
struct vmcb_save_area *save = &vmcb->save;
u64 tsc;
control->intercept_cr_read = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK;
control->intercept_cr_write = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK;
control->intercept_dr_read = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK;
control->intercept_dr_write = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK |
INTERCEPT_DR5_MASK |
INTERCEPT_DR7_MASK;
control->intercept_exceptions = 1 << PF_VECTOR;
control->intercept = (1ULL << INTERCEPT_INTR) |
(1ULL << INTERCEPT_NMI) |
(1ULL << INTERCEPT_SMI) |
/*
* selective cr0 intercept bug?
* 0: 0f 22 d8 mov %eax,%cr3
* 3: 0f 20 c0 mov %cr0,%eax
* 6: 0d 00 00 00 80 or $0x80000000,%eax
* b: 0f 22 c0 mov %eax,%cr0
* set cr3 ->interception
* get cr0 ->interception
* set cr0 -> no interception
*/
/* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
(1ULL << INTERCEPT_CPUID) |
(1ULL << INTERCEPT_HLT) |
(1ULL << INTERCEPT_INVLPGA) |
(1ULL << INTERCEPT_IOIO_PROT) |
(1ULL << INTERCEPT_MSR_PROT) |
(1ULL << INTERCEPT_TASK_SWITCH) |
(1ULL << INTERCEPT_SHUTDOWN) |
(1ULL << INTERCEPT_VMRUN) |
(1ULL << INTERCEPT_VMMCALL) |
(1ULL << INTERCEPT_VMLOAD) |
(1ULL << INTERCEPT_VMSAVE) |
(1ULL << INTERCEPT_STGI) |
(1ULL << INTERCEPT_CLGI) |
(1ULL << INTERCEPT_SKINIT);
control->iopm_base_pa = iopm_base;
control->msrpm_base_pa = msrpm_base;
rdtscll(tsc);
control->tsc_offset = -tsc;
control->int_ctl = V_INTR_MASKING_MASK;
init_seg(&save->es);
init_seg(&save->ss);
init_seg(&save->ds);
init_seg(&save->fs);
init_seg(&save->gs);
save->cs.selector = 0xf000;
/* Executable/Readable Code Segment */
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
save->cs.limit = 0xffff;
/*
* cs.base should really be 0xffff0000, but vmx can't handle that, so
* be consistent with it.
*
* Replace when we have real mode working for vmx.
*/
save->cs.base = 0xf0000;
save->gdtr.limit = 0xffff;
save->idtr.limit = 0xffff;
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
save->efer = MSR_EFER_SVME_MASK;
save->dr6 = 0xffff0ff0;
save->dr7 = 0x400;
save->rflags = 2;
save->rip = 0x0000fff0;
/*
* cr0 val on cpu init should be 0x60000010, we enable cpu
* cache by default. the orderly way is to enable cache in bios.
*/
save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
save->cr4 = CR4_PAE_MASK;
/* rdx = ?? */
}
static int svm_create_vcpu(struct kvm_vcpu *vcpu)
{
struct page *page;
int r;
r = -ENOMEM;
vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
if (!vcpu->svm)
goto out1;
page = alloc_page(GFP_KERNEL);
if (!page)
goto out2;
vcpu->svm->vmcb = page_address(page);
memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
vcpu->svm->cr0 = 0x00000010;
vcpu->svm->asid_generation = 0;
memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
init_vmcb(vcpu->svm->vmcb);
fx_init(vcpu);
return 0;
out2:
kfree(vcpu->svm);
out1:
return r;
}
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->svm)
return;
if (vcpu->svm->vmcb)
__free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
kfree(vcpu->svm);
}
static void svm_vcpu_load(struct kvm_vcpu *vcpu)
{
get_cpu();
}
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
put_cpu();
}
static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
{
}
static void svm_cache_regs(struct kvm_vcpu *vcpu)
{
vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
vcpu->rip = vcpu->svm->vmcb->save.rip;
}
static void svm_decache_regs(struct kvm_vcpu *vcpu)
{
vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
vcpu->svm->vmcb->save.rip = vcpu->rip;
}
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
return vcpu->svm->vmcb->save.rflags;
}
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
vcpu->svm->vmcb->save.rflags = rflags;
}
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
switch (seg) {
case VCPU_SREG_CS: return &save->cs;
case VCPU_SREG_DS: return &save->ds;
case VCPU_SREG_ES: return &save->es;
case VCPU_SREG_FS: return &save->fs;
case VCPU_SREG_GS: return &save->gs;
case VCPU_SREG_SS: return &save->ss;
case VCPU_SREG_TR: return &save->tr;
case VCPU_SREG_LDTR: return &save->ldtr;
}
BUG();
return NULL;
}
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
return s->base;
}
static void svm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
var->base = s->base;
var->limit = s->limit;
var->selector = s->selector;
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
var->unusable = !var->present;
}
static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
*db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
*l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
}
static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vcpu->svm->vmcb->save.idtr.limit;
dt->base = vcpu->svm->vmcb->save.idtr.base;
}
static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vcpu->svm->vmcb->save.idtr.limit = dt->limit;
vcpu->svm->vmcb->save.idtr.base = dt->base ;
}
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
dt->base = vcpu->svm->vmcb->save.gdtr.base;
}
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
vcpu->svm->vmcb->save.gdtr.base = dt->base ;
}
static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
}
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
#ifdef CONFIG_X86_64
if (vcpu->shadow_efer & KVM_EFER_LME) {
if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
vcpu->shadow_efer |= KVM_EFER_LMA;
vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
}
if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
vcpu->shadow_efer &= ~KVM_EFER_LMA;
vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
}
}
#endif
vcpu->svm->cr0 = cr0;
vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK | CR0_WP_MASK;
vcpu->cr0 = cr0;
}
static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
vcpu->cr4 = cr4;
vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
s->base = var->base;
s->limit = var->limit;
s->selector = var->selector;
if (var->unusable)
s->attrib = 0;
else {
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
}
if (seg == VCPU_SREG_CS)
vcpu->svm->vmcb->save.cpl
= (vcpu->svm->vmcb->save.cs.attrib
>> SVM_SELECTOR_DPL_SHIFT) & 3;
}
/* FIXME:
vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
*/
static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
{
return -EOPNOTSUPP;
}
static void load_host_msrs(struct kvm_vcpu *vcpu)
{
int i;
for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
}
static void save_host_msrs(struct kvm_vcpu *vcpu)
{
int i;
for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
}
static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
{
if (svm_data->next_asid > svm_data->max_asid) {
++svm_data->asid_generation;
svm_data->next_asid = 1;
vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
}
vcpu->cpu = svm_data->cpu;
vcpu->svm->asid_generation = svm_data->asid_generation;
vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
}
static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
}
static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
{
return vcpu->svm->db_regs[dr];
}
static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
int *exception)
{
*exception = 0;
if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
*exception = DB_VECTOR;
return;
}
switch (dr) {
case 0 ... 3:
vcpu->svm->db_regs[dr] = value;
return;
case 4 ... 5:
if (vcpu->cr4 & CR4_DE_MASK) {
*exception = UD_VECTOR;
return;
}
case 7: {
if (value & ~((1ULL << 32) - 1)) {
*exception = GP_VECTOR;
return;
}
vcpu->svm->vmcb->save.dr7 = value;
return;
}
default:
printk(KERN_DEBUG "%s: unexpected dr %u\n",
__FUNCTION__, dr);
*exception = UD_VECTOR;
return;
}
}
static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
u64 fault_address;
u32 error_code;
enum emulation_result er;
int r;
if (is_external_interrupt(exit_int_info))
push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
spin_lock(&vcpu->kvm->lock);
fault_address = vcpu->svm->vmcb->control.exit_info_2;
error_code = vcpu->svm->vmcb->control.exit_info_1;
r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
if (r < 0) {
spin_unlock(&vcpu->kvm->lock);
return r;
}
if (!r) {
spin_unlock(&vcpu->kvm->lock);
return 1;
}
er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
spin_unlock(&vcpu->kvm->lock);
switch (er) {
case EMULATE_DONE:
return 1;
case EMULATE_DO_MMIO:
++kvm_stat.mmio_exits;
kvm_run->exit_reason = KVM_EXIT_MMIO;
return 0;
case EMULATE_FAIL:
vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
break;
default:
BUG();
}
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
return 0;
}
static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
/*
* VMCB is undefined after a SHUTDOWN intercept
* so reinitialize it.
*/
memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
init_vmcb(vcpu->svm->vmcb);
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int io_get_override(struct kvm_vcpu *vcpu,
struct vmcb_seg **seg,
int *addr_override)
{
u8 inst[MAX_INST_SIZE];
unsigned ins_length;
gva_t rip;
int i;
rip = vcpu->svm->vmcb->save.rip;
ins_length = vcpu->svm->next_rip - rip;
rip += vcpu->svm->vmcb->save.cs.base;
if (ins_length > MAX_INST_SIZE)
printk(KERN_DEBUG
"%s: inst length err, cs base 0x%llx rip 0x%llx "
"next rip 0x%llx ins_length %u\n",
__FUNCTION__,
vcpu->svm->vmcb->save.cs.base,
vcpu->svm->vmcb->save.rip,
vcpu->svm->vmcb->control.exit_info_2,
ins_length);
if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
/* #PF */
return 0;
*addr_override = 0;
*seg = NULL;
for (i = 0; i < ins_length; i++)
switch (inst[i]) {
case 0xf0:
case 0xf2:
case 0xf3:
case 0x66:
continue;
case 0x67:
*addr_override = 1;
continue;
case 0x2e:
*seg = &vcpu->svm->vmcb->save.cs;
continue;
case 0x36:
*seg = &vcpu->svm->vmcb->save.ss;
continue;
case 0x3e:
*seg = &vcpu->svm->vmcb->save.ds;
continue;
case 0x26:
*seg = &vcpu->svm->vmcb->save.es;
continue;
case 0x64:
*seg = &vcpu->svm->vmcb->save.fs;
continue;
case 0x65:
*seg = &vcpu->svm->vmcb->save.gs;
continue;
default:
return 1;
}
printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
return 0;
}
static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address)
{
unsigned long addr_mask;
unsigned long *reg;
struct vmcb_seg *seg;
int addr_override;
struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
u16 cs_attrib = save_area->cs.attrib;
unsigned addr_size = get_addr_size(vcpu);
if (!io_get_override(vcpu, &seg, &addr_override))
return 0;
if (addr_override)
addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
if (ins) {
reg = &vcpu->regs[VCPU_REGS_RDI];
seg = &vcpu->svm->vmcb->save.es;
} else {
reg = &vcpu->regs[VCPU_REGS_RSI];
seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
}
addr_mask = ~0ULL >> (64 - (addr_size * 8));
if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
!(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
*address = (*reg & addr_mask);
return addr_mask;
}
if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
svm_inject_gp(vcpu, 0);
return 0;
}
*address = (*reg & addr_mask) + seg->base;
return addr_mask;
}
static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
int _in = io_info & SVM_IOIO_TYPE_MASK;
++kvm_stat.io_exits;
vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
kvm_run->exit_reason = KVM_EXIT_IO;
kvm_run->io.port = io_info >> 16;
kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT);
kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0;
kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0;
if (kvm_run->io.string) {
unsigned addr_mask;
addr_mask = io_adress(vcpu, _in, &kvm_run->io.address);
if (!addr_mask) {
printk(KERN_DEBUG "%s: get io address failed\n",
__FUNCTION__);
return 1;
}
if (kvm_run->io.rep) {
kvm_run->io.count
= vcpu->regs[VCPU_REGS_RCX] & addr_mask;
kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags
& X86_EFLAGS_DF) != 0;
}
} else
kvm_run->io.value = vcpu->svm->vmcb->save.rax;
return 0;
}
static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
return 1;
}
static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
skip_emulated_instruction(vcpu);
if (vcpu->irq_summary)
return 1;
kvm_run->exit_reason = KVM_EXIT_HLT;
++kvm_stat.halt_exits;
return 0;
}
static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
vcpu->svm->vmcb->save.rip += 3;
return kvm_hypercall(vcpu, kvm_run);
}
static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
inject_ud(vcpu);
return 1;
}
static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
return 0;
}
static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
kvm_run->exit_reason = KVM_EXIT_CPUID;
return 0;
}
static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
printk(KERN_ERR "%s: failed\n", __FUNCTION__);
return 1;
}
static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
{
switch (ecx) {
case MSR_IA32_TIME_STAMP_COUNTER: {
u64 tsc;
rdtscll(tsc);
*data = vcpu->svm->vmcb->control.tsc_offset + tsc;
break;
}
case MSR_K6_STAR:
*data = vcpu->svm->vmcb->save.star;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
*data = vcpu->svm->vmcb->save.lstar;
break;
case MSR_CSTAR:
*data = vcpu->svm->vmcb->save.cstar;
break;
case MSR_KERNEL_GS_BASE:
*data = vcpu->svm->vmcb->save.kernel_gs_base;
break;
case MSR_SYSCALL_MASK:
*data = vcpu->svm->vmcb->save.sfmask;
break;
#endif
case MSR_IA32_SYSENTER_CS:
*data = vcpu->svm->vmcb->save.sysenter_cs;
break;
case MSR_IA32_SYSENTER_EIP:
*data = vcpu->svm->vmcb->save.sysenter_eip;
break;
case MSR_IA32_SYSENTER_ESP:
*data = vcpu->svm->vmcb->save.sysenter_esp;
break;
default:
return kvm_get_msr_common(vcpu, ecx, data);
}
return 0;
}
static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data;
if (svm_get_msr(vcpu, ecx, &data))
svm_inject_gp(vcpu, 0);
else {
vcpu->svm->vmcb->save.rax = data & 0xffffffff;
vcpu->regs[VCPU_REGS_RDX] = data >> 32;
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
skip_emulated_instruction(vcpu);
}
return 1;
}
static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
{
switch (ecx) {
case MSR_IA32_TIME_STAMP_COUNTER: {
u64 tsc;
rdtscll(tsc);
vcpu->svm->vmcb->control.tsc_offset = data - tsc;
break;
}
case MSR_K6_STAR:
vcpu->svm->vmcb->save.star = data;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
vcpu->svm->vmcb->save.lstar = data;
break;
case MSR_CSTAR:
vcpu->svm->vmcb->save.cstar = data;
break;
case MSR_KERNEL_GS_BASE:
vcpu->svm->vmcb->save.kernel_gs_base = data;
break;
case MSR_SYSCALL_MASK:
vcpu->svm->vmcb->save.sfmask = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
vcpu->svm->vmcb->save.sysenter_cs = data;
break;
case MSR_IA32_SYSENTER_EIP:
vcpu->svm->vmcb->save.sysenter_eip = data;
break;
case MSR_IA32_SYSENTER_ESP:
vcpu->svm->vmcb->save.sysenter_esp = data;
break;
default:
return kvm_set_msr_common(vcpu, ecx, data);
}
return 0;
}
static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data = (vcpu->svm->vmcb->save.rax & -1u)
| ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
if (svm_set_msr(vcpu, ecx, data))
svm_inject_gp(vcpu, 0);
else
skip_emulated_instruction(vcpu);
return 1;
}
static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
if (vcpu->svm->vmcb->control.exit_info_1)
return wrmsr_interception(vcpu, kvm_run);
else
return rdmsr_interception(vcpu, kvm_run);
}
static int interrupt_window_interception(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
/*
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (kvm_run->request_interrupt_window &&
!vcpu->irq_summary) {
++kvm_stat.irq_window_exits;
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
return 0;
}
return 1;
}
static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run) = {
[SVM_EXIT_READ_CR0] = emulate_on_interception,
[SVM_EXIT_READ_CR3] = emulate_on_interception,
[SVM_EXIT_READ_CR4] = emulate_on_interception,
/* for now: */
[SVM_EXIT_WRITE_CR0] = emulate_on_interception,
[SVM_EXIT_WRITE_CR3] = emulate_on_interception,
[SVM_EXIT_WRITE_CR4] = emulate_on_interception,
[SVM_EXIT_READ_DR0] = emulate_on_interception,
[SVM_EXIT_READ_DR1] = emulate_on_interception,
[SVM_EXIT_READ_DR2] = emulate_on_interception,
[SVM_EXIT_READ_DR3] = emulate_on_interception,
[SVM_EXIT_WRITE_DR0] = emulate_on_interception,
[SVM_EXIT_WRITE_DR1] = emulate_on_interception,
[SVM_EXIT_WRITE_DR2] = emulate_on_interception,
[SVM_EXIT_WRITE_DR3] = emulate_on_interception,
[SVM_EXIT_WRITE_DR5] = emulate_on_interception,
[SVM_EXIT_WRITE_DR7] = emulate_on_interception,
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
[SVM_EXIT_INTR] = nop_on_interception,
[SVM_EXIT_NMI] = nop_on_interception,
[SVM_EXIT_SMI] = nop_on_interception,
[SVM_EXIT_INIT] = nop_on_interception,
[SVM_EXIT_VINTR] = interrupt_window_interception,
/* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
[SVM_EXIT_CPUID] = cpuid_interception,
[SVM_EXIT_HLT] = halt_interception,
[SVM_EXIT_INVLPG] = emulate_on_interception,
[SVM_EXIT_INVLPGA] = invalid_op_interception,
[SVM_EXIT_IOIO] = io_interception,
[SVM_EXIT_MSR] = msr_interception,
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
[SVM_EXIT_VMRUN] = invalid_op_interception,
[SVM_EXIT_VMMCALL] = vmmcall_interception,
[SVM_EXIT_VMLOAD] = invalid_op_interception,
[SVM_EXIT_VMSAVE] = invalid_op_interception,
[SVM_EXIT_STGI] = invalid_op_interception,
[SVM_EXIT_CLGI] = invalid_op_interception,
[SVM_EXIT_SKINIT] = invalid_op_interception,
};
static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 exit_code = vcpu->svm->vmcb->control.exit_code;
kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
"exit_code 0x%x\n",
__FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
exit_code);
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|| svm_exit_handlers[exit_code] == 0) {
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
__FUNCTION__,
exit_code,
vcpu->svm->vmcb->save.rip,
vcpu->cr0,
vcpu->svm->vmcb->save.rflags);
return 0;
}
return svm_exit_handlers[exit_code](vcpu, kvm_run);
}
static void reload_tss(struct kvm_vcpu *vcpu)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
svm_data->tss_desc->type = 9; //available 32/64-bit TSS
load_TR_desc();
}
static void pre_svm_run(struct kvm_vcpu *vcpu)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
if (vcpu->cpu != cpu ||
vcpu->svm->asid_generation != svm_data->asid_generation)
new_asid(vcpu, svm_data);
}
static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
{
struct vmcb_control_area *control;
control = &vcpu->svm->vmcb->control;
control->int_vector = pop_irq(vcpu);
control->int_ctl &= ~V_INTR_PRIO_MASK;
control->int_ctl |= V_IRQ_MASK |
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
}
static void kvm_reput_irq(struct kvm_vcpu *vcpu)
{
struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
if (control->int_ctl & V_IRQ_MASK) {
control->int_ctl &= ~V_IRQ_MASK;
push_irq(vcpu, control->int_vector);
}
vcpu->interrupt_window_open =
!(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
}
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
vcpu->interrupt_window_open =
(!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
if (vcpu->interrupt_window_open && vcpu->irq_summary)
/*
* If interrupts enabled, and not blocked by sti or mov ss. Good.
*/
kvm_do_inject_irq(vcpu);
/*
* Interrupts blocked. Wait for unblock.
*/
if (!vcpu->interrupt_window_open &&
(vcpu->irq_summary || kvm_run->request_interrupt_window)) {
control->intercept |= 1ULL << INTERCEPT_VINTR;
} else
control->intercept &= ~(1ULL << INTERCEPT_VINTR);
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
vcpu->irq_summary == 0);
kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
kvm_run->cr8 = vcpu->cr8;
kvm_run->apic_base = vcpu->apic_base;
}
/*
* Check if userspace requested an interrupt window, and that the
* interrupt window is open.
*
* No need to exit to userspace if we already have an interrupt queued.
*/
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
return (!vcpu->irq_summary &&
kvm_run->request_interrupt_window &&
vcpu->interrupt_window_open &&
(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
}
static void save_db_regs(unsigned long *db_regs)
{
asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
}
static void load_db_regs(unsigned long *db_regs)
{
asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
}
static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u16 fs_selector;
u16 gs_selector;
u16 ldt_selector;
int r;
again:
if (!vcpu->mmio_read_completed)
do_interrupt_requests(vcpu, kvm_run);
clgi();
pre_svm_run(vcpu);
save_host_msrs(vcpu);
fs_selector = read_fs();
gs_selector = read_gs();
ldt_selector = read_ldt();
vcpu->svm->host_cr2 = kvm_read_cr2();
vcpu->svm->host_dr6 = read_dr6();
vcpu->svm->host_dr7 = read_dr7();
vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
if (vcpu->svm->vmcb->save.dr7 & 0xff) {
write_dr7(0);
save_db_regs(vcpu->svm->host_db_regs);
load_db_regs(vcpu->svm->db_regs);
}
fx_save(vcpu->host_fx_image);
fx_restore(vcpu->guest_fx_image);
asm volatile (
#ifdef CONFIG_X86_64
"push %%rbx; push %%rcx; push %%rdx;"
"push %%rsi; push %%rdi; push %%rbp;"
"push %%r8; push %%r9; push %%r10; push %%r11;"
"push %%r12; push %%r13; push %%r14; push %%r15;"
#else
"push %%ebx; push %%ecx; push %%edx;"
"push %%esi; push %%edi; push %%ebp;"
#endif
#ifdef CONFIG_X86_64
"mov %c[rbx](%[vcpu]), %%rbx \n\t"
"mov %c[rcx](%[vcpu]), %%rcx \n\t"
"mov %c[rdx](%[vcpu]), %%rdx \n\t"
"mov %c[rsi](%[vcpu]), %%rsi \n\t"
"mov %c[rdi](%[vcpu]), %%rdi \n\t"
"mov %c[rbp](%[vcpu]), %%rbp \n\t"
"mov %c[r8](%[vcpu]), %%r8 \n\t"
"mov %c[r9](%[vcpu]), %%r9 \n\t"
"mov %c[r10](%[vcpu]), %%r10 \n\t"
"mov %c[r11](%[vcpu]), %%r11 \n\t"
"mov %c[r12](%[vcpu]), %%r12 \n\t"
"mov %c[r13](%[vcpu]), %%r13 \n\t"
"mov %c[r14](%[vcpu]), %%r14 \n\t"
"mov %c[r15](%[vcpu]), %%r15 \n\t"
#else
"mov %c[rbx](%[vcpu]), %%ebx \n\t"
"mov %c[rcx](%[vcpu]), %%ecx \n\t"
"mov %c[rdx](%[vcpu]), %%edx \n\t"
"mov %c[rsi](%[vcpu]), %%esi \n\t"
"mov %c[rdi](%[vcpu]), %%edi \n\t"
"mov %c[rbp](%[vcpu]), %%ebp \n\t"
#endif
#ifdef CONFIG_X86_64
/* Enter guest mode */
"push %%rax \n\t"
"mov %c[svm](%[vcpu]), %%rax \n\t"
"mov %c[vmcb](%%rax), %%rax \n\t"
SVM_VMLOAD "\n\t"
SVM_VMRUN "\n\t"
SVM_VMSAVE "\n\t"
"pop %%rax \n\t"
#else
/* Enter guest mode */
"push %%eax \n\t"
"mov %c[svm](%[vcpu]), %%eax \n\t"
"mov %c[vmcb](%%eax), %%eax \n\t"
SVM_VMLOAD "\n\t"
SVM_VMRUN "\n\t"
SVM_VMSAVE "\n\t"
"pop %%eax \n\t"
#endif
/* Save guest registers, load host registers */
#ifdef CONFIG_X86_64
"mov %%rbx, %c[rbx](%[vcpu]) \n\t"
"mov %%rcx, %c[rcx](%[vcpu]) \n\t"
"mov %%rdx, %c[rdx](%[vcpu]) \n\t"
"mov %%rsi, %c[rsi](%[vcpu]) \n\t"
"mov %%rdi, %c[rdi](%[vcpu]) \n\t"
"mov %%rbp, %c[rbp](%[vcpu]) \n\t"
"mov %%r8, %c[r8](%[vcpu]) \n\t"
"mov %%r9, %c[r9](%[vcpu]) \n\t"
"mov %%r10, %c[r10](%[vcpu]) \n\t"
"mov %%r11, %c[r11](%[vcpu]) \n\t"
"mov %%r12, %c[r12](%[vcpu]) \n\t"
"mov %%r13, %c[r13](%[vcpu]) \n\t"
"mov %%r14, %c[r14](%[vcpu]) \n\t"
"mov %%r15, %c[r15](%[vcpu]) \n\t"
"pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
"pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
"pop %%rbp; pop %%rdi; pop %%rsi;"
"pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
#else
"mov %%ebx, %c[rbx](%[vcpu]) \n\t"
"mov %%ecx, %c[rcx](%[vcpu]) \n\t"
"mov %%edx, %c[rdx](%[vcpu]) \n\t"
"mov %%esi, %c[rsi](%[vcpu]) \n\t"
"mov %%edi, %c[rdi](%[vcpu]) \n\t"
"mov %%ebp, %c[rbp](%[vcpu]) \n\t"
"pop %%ebp; pop %%edi; pop %%esi;"
"pop %%edx; pop %%ecx; pop %%ebx; \n\t"
#endif
:
: [vcpu]"a"(vcpu),
[svm]"i"(offsetof(struct kvm_vcpu, svm)),
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
[rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
#ifdef CONFIG_X86_64
,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
[r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
[r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
#endif
: "cc", "memory" );
fx_save(vcpu->guest_fx_image);
fx_restore(vcpu->host_fx_image);
if ((vcpu->svm->vmcb->save.dr7 & 0xff))
load_db_regs(vcpu->svm->host_db_regs);
vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
write_dr6(vcpu->svm->host_dr6);
write_dr7(vcpu->svm->host_dr7);
kvm_write_cr2(vcpu->svm->host_cr2);
load_fs(fs_selector);
load_gs(gs_selector);
load_ldt(ldt_selector);
load_host_msrs(vcpu);
reload_tss(vcpu);
/*
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING))
profile_hit(KVM_PROFILING,
(void *)(unsigned long)vcpu->svm->vmcb->save.rip);
stgi();
kvm_reput_irq(vcpu);
vcpu->svm->next_rip = 0;
if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code;
post_kvm_run_save(vcpu, kvm_run);
return 0;
}
r = handle_exit(vcpu, kvm_run);
if (r > 0) {
if (signal_pending(current)) {
++kvm_stat.signal_exits;
post_kvm_run_save(vcpu, kvm_run);
return -EINTR;
}
if (dm_request_for_irq_injection(vcpu, kvm_run)) {
++kvm_stat.request_irq_exits;
post_kvm_run_save(vcpu, kvm_run);
return -EINTR;
}
kvm_resched(vcpu);
goto again;
}
post_kvm_run_save(vcpu, kvm_run);
return r;
}
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
vcpu->svm->vmcb->save.cr3 = root;
force_new_asid(vcpu);
}
static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
unsigned long addr,
uint32_t err_code)
{
uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
++kvm_stat.pf_guest;
if (is_page_fault(exit_int_info)) {
vcpu->svm->vmcb->control.event_inj_err = 0;
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_VALID_ERR |
SVM_EVTINJ_TYPE_EXEPT |
DF_VECTOR;
return;
}
vcpu->cr2 = addr;
vcpu->svm->vmcb->save.cr2 = addr;
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_VALID_ERR |
SVM_EVTINJ_TYPE_EXEPT |
PF_VECTOR;
vcpu->svm->vmcb->control.event_inj_err = err_code;
}
static int is_disabled(void)
{
return 0;
}
static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xd9;
hypercall[3] = 0xc3;
}
static struct kvm_arch_ops svm_arch_ops = {
.cpu_has_kvm_support = has_svm,
.disabled_by_bios = is_disabled,
.hardware_setup = svm_hardware_setup,
.hardware_unsetup = svm_hardware_unsetup,
.hardware_enable = svm_hardware_enable,
.hardware_disable = svm_hardware_disable,
.vcpu_create = svm_create_vcpu,
.vcpu_free = svm_free_vcpu,
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.vcpu_decache = svm_vcpu_decache,
.set_guest_debug = svm_guest_debug,
.get_msr = svm_get_msr,
.set_msr = svm_set_msr,
.get_segment_base = svm_get_segment_base,
.get_segment = svm_get_segment,
.set_segment = svm_set_segment,
.get_cs_db_l_bits = svm_get_cs_db_l_bits,
.decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
.set_cr0 = svm_set_cr0,
.set_cr0_no_modeswitch = svm_set_cr0,
.set_cr3 = svm_set_cr3,
.set_cr4 = svm_set_cr4,
.set_efer = svm_set_efer,
.get_idt = svm_get_idt,
.set_idt = svm_set_idt,
.get_gdt = svm_get_gdt,
.set_gdt = svm_set_gdt,
.get_dr = svm_get_dr,
.set_dr = svm_set_dr,
.cache_regs = svm_cache_regs,
.decache_regs = svm_decache_regs,
.get_rflags = svm_get_rflags,
.set_rflags = svm_set_rflags,
.invlpg = svm_invlpg,
.tlb_flush = svm_flush_tlb,
.inject_page_fault = svm_inject_page_fault,
.inject_gp = svm_inject_gp,
.run = svm_vcpu_run,
.skip_emulated_instruction = skip_emulated_instruction,
.vcpu_setup = svm_vcpu_setup,
.patch_hypercall = svm_patch_hypercall,
};
static int __init svm_init(void)
{
return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
}
static void __exit svm_exit(void)
{
kvm_exit_arch();
}
module_init(svm_init)
module_exit(svm_exit)