alistair23-linux/block/blk-map.c
Satya Tangirala a892c8d52c block: Inline encryption support for blk-mq
We must have some way of letting a storage device driver know what
encryption context it should use for en/decrypting a request. However,
it's the upper layers (like the filesystem/fscrypt) that know about and
manages encryption contexts. As such, when the upper layer submits a bio
to the block layer, and this bio eventually reaches a device driver with
support for inline encryption, the device driver will need to have been
told the encryption context for that bio.

We want to communicate the encryption context from the upper layer to the
storage device along with the bio, when the bio is submitted to the block
layer. To do this, we add a struct bio_crypt_ctx to struct bio, which can
represent an encryption context (note that we can't use the bi_private
field in struct bio to do this because that field does not function to pass
information across layers in the storage stack). We also introduce various
functions to manipulate the bio_crypt_ctx and make the bio/request merging
logic aware of the bio_crypt_ctx.

We also make changes to blk-mq to make it handle bios with encryption
contexts. blk-mq can merge many bios into the same request. These bios need
to have contiguous data unit numbers (the necessary changes to blk-merge
are also made to ensure this) - as such, it suffices to keep the data unit
number of just the first bio, since that's all a storage driver needs to
infer the data unit number to use for each data block in each bio in a
request. blk-mq keeps track of the encryption context to be used for all
the bios in a request with the request's rq_crypt_ctx. When the first bio
is added to an empty request, blk-mq will program the encryption context
of that bio into the request_queue's keyslot manager, and store the
returned keyslot in the request's rq_crypt_ctx. All the functions to
operate on encryption contexts are in blk-crypto.c.

Upper layers only need to call bio_crypt_set_ctx with the encryption key,
algorithm and data_unit_num; they don't have to worry about getting a
keyslot for each encryption context, as blk-mq/blk-crypto handles that.
Blk-crypto also makes it possible for request-based layered devices like
dm-rq to make use of inline encryption hardware by cloning the
rq_crypt_ctx and programming a keyslot in the new request_queue when
necessary.

Note that any user of the block layer can submit bios with an
encryption context, such as filesystems, device-mapper targets, etc.

Signed-off-by: Satya Tangirala <satyat@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-05-14 09:47:53 -06:00

764 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Functions related to mapping data to requests
*/
#include <linux/kernel.h>
#include <linux/sched/task_stack.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/uio.h>
#include "blk.h"
struct bio_map_data {
int is_our_pages;
struct iov_iter iter;
struct iovec iov[];
};
static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
gfp_t gfp_mask)
{
struct bio_map_data *bmd;
if (data->nr_segs > UIO_MAXIOV)
return NULL;
bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
if (!bmd)
return NULL;
memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
bmd->iter = *data;
bmd->iter.iov = bmd->iov;
return bmd;
}
/**
* bio_copy_from_iter - copy all pages from iov_iter to bio
* @bio: The &struct bio which describes the I/O as destination
* @iter: iov_iter as source
*
* Copy all pages from iov_iter to bio.
* Returns 0 on success, or error on failure.
*/
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
ssize_t ret;
ret = copy_page_from_iter(bvec->bv_page,
bvec->bv_offset,
bvec->bv_len,
iter);
if (!iov_iter_count(iter))
break;
if (ret < bvec->bv_len)
return -EFAULT;
}
return 0;
}
/**
* bio_copy_to_iter - copy all pages from bio to iov_iter
* @bio: The &struct bio which describes the I/O as source
* @iter: iov_iter as destination
*
* Copy all pages from bio to iov_iter.
* Returns 0 on success, or error on failure.
*/
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
ssize_t ret;
ret = copy_page_to_iter(bvec->bv_page,
bvec->bv_offset,
bvec->bv_len,
&iter);
if (!iov_iter_count(&iter))
break;
if (ret < bvec->bv_len)
return -EFAULT;
}
return 0;
}
/**
* bio_uncopy_user - finish previously mapped bio
* @bio: bio being terminated
*
* Free pages allocated from bio_copy_user_iov() and write back data
* to user space in case of a read.
*/
static int bio_uncopy_user(struct bio *bio)
{
struct bio_map_data *bmd = bio->bi_private;
int ret = 0;
if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
/*
* if we're in a workqueue, the request is orphaned, so
* don't copy into a random user address space, just free
* and return -EINTR so user space doesn't expect any data.
*/
if (!current->mm)
ret = -EINTR;
else if (bio_data_dir(bio) == READ)
ret = bio_copy_to_iter(bio, bmd->iter);
if (bmd->is_our_pages)
bio_free_pages(bio);
}
kfree(bmd);
bio_put(bio);
return ret;
}
/**
* bio_copy_user_iov - copy user data to bio
* @q: destination block queue
* @map_data: pointer to the rq_map_data holding pages (if necessary)
* @iter: iovec iterator
* @gfp_mask: memory allocation flags
*
* Prepares and returns a bio for indirect user io, bouncing data
* to/from kernel pages as necessary. Must be paired with
* call bio_uncopy_user() on io completion.
*/
static struct bio *bio_copy_user_iov(struct request_queue *q,
struct rq_map_data *map_data, struct iov_iter *iter,
gfp_t gfp_mask)
{
struct bio_map_data *bmd;
struct page *page;
struct bio *bio;
int i = 0, ret;
int nr_pages;
unsigned int len = iter->count;
unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
bmd = bio_alloc_map_data(iter, gfp_mask);
if (!bmd)
return ERR_PTR(-ENOMEM);
/*
* We need to do a deep copy of the iov_iter including the iovecs.
* The caller provided iov might point to an on-stack or otherwise
* shortlived one.
*/
bmd->is_our_pages = map_data ? 0 : 1;
nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
if (nr_pages > BIO_MAX_PAGES)
nr_pages = BIO_MAX_PAGES;
ret = -ENOMEM;
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
goto out_bmd;
ret = 0;
if (map_data) {
nr_pages = 1 << map_data->page_order;
i = map_data->offset / PAGE_SIZE;
}
while (len) {
unsigned int bytes = PAGE_SIZE;
bytes -= offset;
if (bytes > len)
bytes = len;
if (map_data) {
if (i == map_data->nr_entries * nr_pages) {
ret = -ENOMEM;
break;
}
page = map_data->pages[i / nr_pages];
page += (i % nr_pages);
i++;
} else {
page = alloc_page(q->bounce_gfp | gfp_mask);
if (!page) {
ret = -ENOMEM;
break;
}
}
if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
if (!map_data)
__free_page(page);
break;
}
len -= bytes;
offset = 0;
}
if (ret)
goto cleanup;
if (map_data)
map_data->offset += bio->bi_iter.bi_size;
/*
* success
*/
if ((iov_iter_rw(iter) == WRITE &&
(!map_data || !map_data->null_mapped)) ||
(map_data && map_data->from_user)) {
ret = bio_copy_from_iter(bio, iter);
if (ret)
goto cleanup;
} else {
if (bmd->is_our_pages)
zero_fill_bio(bio);
iov_iter_advance(iter, bio->bi_iter.bi_size);
}
bio->bi_private = bmd;
if (map_data && map_data->null_mapped)
bio_set_flag(bio, BIO_NULL_MAPPED);
return bio;
cleanup:
if (!map_data)
bio_free_pages(bio);
bio_put(bio);
out_bmd:
kfree(bmd);
return ERR_PTR(ret);
}
/**
* bio_map_user_iov - map user iovec into bio
* @q: the struct request_queue for the bio
* @iter: iovec iterator
* @gfp_mask: memory allocation flags
*
* Map the user space address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
static struct bio *bio_map_user_iov(struct request_queue *q,
struct iov_iter *iter, gfp_t gfp_mask)
{
unsigned int max_sectors = queue_max_hw_sectors(q);
int j;
struct bio *bio;
int ret;
if (!iov_iter_count(iter))
return ERR_PTR(-EINVAL);
bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
if (!bio)
return ERR_PTR(-ENOMEM);
while (iov_iter_count(iter)) {
struct page **pages;
ssize_t bytes;
size_t offs, added = 0;
int npages;
bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
if (unlikely(bytes <= 0)) {
ret = bytes ? bytes : -EFAULT;
goto out_unmap;
}
npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
if (unlikely(offs & queue_dma_alignment(q))) {
ret = -EINVAL;
j = 0;
} else {
for (j = 0; j < npages; j++) {
struct page *page = pages[j];
unsigned int n = PAGE_SIZE - offs;
bool same_page = false;
if (n > bytes)
n = bytes;
if (!bio_add_hw_page(q, bio, page, n, offs,
max_sectors, &same_page)) {
if (same_page)
put_page(page);
break;
}
added += n;
bytes -= n;
offs = 0;
}
iov_iter_advance(iter, added);
}
/*
* release the pages we didn't map into the bio, if any
*/
while (j < npages)
put_page(pages[j++]);
kvfree(pages);
/* couldn't stuff something into bio? */
if (bytes)
break;
}
bio_set_flag(bio, BIO_USER_MAPPED);
/*
* subtle -- if bio_map_user_iov() ended up bouncing a bio,
* it would normally disappear when its bi_end_io is run.
* however, we need it for the unmap, so grab an extra
* reference to it
*/
bio_get(bio);
return bio;
out_unmap:
bio_release_pages(bio, false);
bio_put(bio);
return ERR_PTR(ret);
}
/**
* bio_unmap_user - unmap a bio
* @bio: the bio being unmapped
*
* Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
* process context.
*
* bio_unmap_user() may sleep.
*/
static void bio_unmap_user(struct bio *bio)
{
bio_release_pages(bio, bio_data_dir(bio) == READ);
bio_put(bio);
bio_put(bio);
}
static void bio_invalidate_vmalloc_pages(struct bio *bio)
{
#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
if (bio->bi_private && !op_is_write(bio_op(bio))) {
unsigned long i, len = 0;
for (i = 0; i < bio->bi_vcnt; i++)
len += bio->bi_io_vec[i].bv_len;
invalidate_kernel_vmap_range(bio->bi_private, len);
}
#endif
}
static void bio_map_kern_endio(struct bio *bio)
{
bio_invalidate_vmalloc_pages(bio);
bio_put(bio);
}
/**
* bio_map_kern - map kernel address into bio
* @q: the struct request_queue for the bio
* @data: pointer to buffer to map
* @len: length in bytes
* @gfp_mask: allocation flags for bio allocation
*
* Map the kernel address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
static struct bio *bio_map_kern(struct request_queue *q, void *data,
unsigned int len, gfp_t gfp_mask)
{
unsigned long kaddr = (unsigned long)data;
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = kaddr >> PAGE_SHIFT;
const int nr_pages = end - start;
bool is_vmalloc = is_vmalloc_addr(data);
struct page *page;
int offset, i;
struct bio *bio;
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
return ERR_PTR(-ENOMEM);
if (is_vmalloc) {
flush_kernel_vmap_range(data, len);
bio->bi_private = data;
}
offset = offset_in_page(kaddr);
for (i = 0; i < nr_pages; i++) {
unsigned int bytes = PAGE_SIZE - offset;
if (len <= 0)
break;
if (bytes > len)
bytes = len;
if (!is_vmalloc)
page = virt_to_page(data);
else
page = vmalloc_to_page(data);
if (bio_add_pc_page(q, bio, page, bytes,
offset) < bytes) {
/* we don't support partial mappings */
bio_put(bio);
return ERR_PTR(-EINVAL);
}
data += bytes;
len -= bytes;
offset = 0;
}
bio->bi_end_io = bio_map_kern_endio;
return bio;
}
static void bio_copy_kern_endio(struct bio *bio)
{
bio_free_pages(bio);
bio_put(bio);
}
static void bio_copy_kern_endio_read(struct bio *bio)
{
char *p = bio->bi_private;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
p += bvec->bv_len;
}
bio_copy_kern_endio(bio);
}
/**
* bio_copy_kern - copy kernel address into bio
* @q: the struct request_queue for the bio
* @data: pointer to buffer to copy
* @len: length in bytes
* @gfp_mask: allocation flags for bio and page allocation
* @reading: data direction is READ
*
* copy the kernel address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
static struct bio *bio_copy_kern(struct request_queue *q, void *data,
unsigned int len, gfp_t gfp_mask, int reading)
{
unsigned long kaddr = (unsigned long)data;
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = kaddr >> PAGE_SHIFT;
struct bio *bio;
void *p = data;
int nr_pages = 0;
/*
* Overflow, abort
*/
if (end < start)
return ERR_PTR(-EINVAL);
nr_pages = end - start;
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
return ERR_PTR(-ENOMEM);
while (len) {
struct page *page;
unsigned int bytes = PAGE_SIZE;
if (bytes > len)
bytes = len;
page = alloc_page(q->bounce_gfp | gfp_mask);
if (!page)
goto cleanup;
if (!reading)
memcpy(page_address(page), p, bytes);
if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
break;
len -= bytes;
p += bytes;
}
if (reading) {
bio->bi_end_io = bio_copy_kern_endio_read;
bio->bi_private = data;
} else {
bio->bi_end_io = bio_copy_kern_endio;
}
return bio;
cleanup:
bio_free_pages(bio);
bio_put(bio);
return ERR_PTR(-ENOMEM);
}
/*
* Append a bio to a passthrough request. Only works if the bio can be merged
* into the request based on the driver constraints.
*/
int blk_rq_append_bio(struct request *rq, struct bio **bio)
{
struct bio *orig_bio = *bio;
struct bvec_iter iter;
struct bio_vec bv;
unsigned int nr_segs = 0;
blk_queue_bounce(rq->q, bio);
bio_for_each_bvec(bv, *bio, iter)
nr_segs++;
if (!rq->bio) {
blk_rq_bio_prep(rq, *bio, nr_segs);
} else {
if (!ll_back_merge_fn(rq, *bio, nr_segs)) {
if (orig_bio != *bio) {
bio_put(*bio);
*bio = orig_bio;
}
return -EINVAL;
}
rq->biotail->bi_next = *bio;
rq->biotail = *bio;
rq->__data_len += (*bio)->bi_iter.bi_size;
bio_crypt_free_ctx(*bio);
}
return 0;
}
EXPORT_SYMBOL(blk_rq_append_bio);
static int __blk_rq_unmap_user(struct bio *bio)
{
int ret = 0;
if (bio) {
if (bio_flagged(bio, BIO_USER_MAPPED))
bio_unmap_user(bio);
else
ret = bio_uncopy_user(bio);
}
return ret;
}
static int __blk_rq_map_user_iov(struct request *rq,
struct rq_map_data *map_data, struct iov_iter *iter,
gfp_t gfp_mask, bool copy)
{
struct request_queue *q = rq->q;
struct bio *bio, *orig_bio;
int ret;
if (copy)
bio = bio_copy_user_iov(q, map_data, iter, gfp_mask);
else
bio = bio_map_user_iov(q, iter, gfp_mask);
if (IS_ERR(bio))
return PTR_ERR(bio);
bio->bi_opf &= ~REQ_OP_MASK;
bio->bi_opf |= req_op(rq);
orig_bio = bio;
/*
* We link the bounce buffer in and could have to traverse it
* later so we have to get a ref to prevent it from being freed
*/
ret = blk_rq_append_bio(rq, &bio);
if (ret) {
__blk_rq_unmap_user(orig_bio);
return ret;
}
bio_get(bio);
return 0;
}
/**
* blk_rq_map_user_iov - map user data to a request, for passthrough requests
* @q: request queue where request should be inserted
* @rq: request to map data to
* @map_data: pointer to the rq_map_data holding pages (if necessary)
* @iter: iovec iterator
* @gfp_mask: memory allocation flags
*
* Description:
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
* a kernel bounce buffer is used.
*
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
* still in process context.
*
* Note: The mapped bio may need to be bounced through blk_queue_bounce()
* before being submitted to the device, as pages mapped may be out of
* reach. It's the callers responsibility to make sure this happens. The
* original bio must be passed back in to blk_rq_unmap_user() for proper
* unmapping.
*/
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
struct rq_map_data *map_data,
const struct iov_iter *iter, gfp_t gfp_mask)
{
bool copy = false;
unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
struct bio *bio = NULL;
struct iov_iter i;
int ret = -EINVAL;
if (!iter_is_iovec(iter))
goto fail;
if (map_data)
copy = true;
else if (iov_iter_alignment(iter) & align)
copy = true;
else if (queue_virt_boundary(q))
copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
i = *iter;
do {
ret =__blk_rq_map_user_iov(rq, map_data, &i, gfp_mask, copy);
if (ret)
goto unmap_rq;
if (!bio)
bio = rq->bio;
} while (iov_iter_count(&i));
return 0;
unmap_rq:
blk_rq_unmap_user(bio);
fail:
rq->bio = NULL;
return ret;
}
EXPORT_SYMBOL(blk_rq_map_user_iov);
int blk_rq_map_user(struct request_queue *q, struct request *rq,
struct rq_map_data *map_data, void __user *ubuf,
unsigned long len, gfp_t gfp_mask)
{
struct iovec iov;
struct iov_iter i;
int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
if (unlikely(ret < 0))
return ret;
return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
}
EXPORT_SYMBOL(blk_rq_map_user);
/**
* blk_rq_unmap_user - unmap a request with user data
* @bio: start of bio list
*
* Description:
* Unmap a rq previously mapped by blk_rq_map_user(). The caller must
* supply the original rq->bio from the blk_rq_map_user() return, since
* the I/O completion may have changed rq->bio.
*/
int blk_rq_unmap_user(struct bio *bio)
{
struct bio *mapped_bio;
int ret = 0, ret2;
while (bio) {
mapped_bio = bio;
if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
mapped_bio = bio->bi_private;
ret2 = __blk_rq_unmap_user(mapped_bio);
if (ret2 && !ret)
ret = ret2;
mapped_bio = bio;
bio = bio->bi_next;
bio_put(mapped_bio);
}
return ret;
}
EXPORT_SYMBOL(blk_rq_unmap_user);
/**
* blk_rq_map_kern - map kernel data to a request, for passthrough requests
* @q: request queue where request should be inserted
* @rq: request to fill
* @kbuf: the kernel buffer
* @len: length of user data
* @gfp_mask: memory allocation flags
*
* Description:
* Data will be mapped directly if possible. Otherwise a bounce
* buffer is used. Can be called multiple times to append multiple
* buffers.
*/
int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
unsigned int len, gfp_t gfp_mask)
{
int reading = rq_data_dir(rq) == READ;
unsigned long addr = (unsigned long) kbuf;
struct bio *bio, *orig_bio;
int ret;
if (len > (queue_max_hw_sectors(q) << 9))
return -EINVAL;
if (!len || !kbuf)
return -EINVAL;
if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf))
bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
else
bio = bio_map_kern(q, kbuf, len, gfp_mask);
if (IS_ERR(bio))
return PTR_ERR(bio);
bio->bi_opf &= ~REQ_OP_MASK;
bio->bi_opf |= req_op(rq);
orig_bio = bio;
ret = blk_rq_append_bio(rq, &bio);
if (unlikely(ret)) {
/* request is too big */
bio_put(orig_bio);
return ret;
}
return 0;
}
EXPORT_SYMBOL(blk_rq_map_kern);