alistair23-linux/drivers/w1/w1.h
Evgeniy Polyakov 6adf87bd7b [PATCH] w1: reconnect feature.
I've created reconnect feature - if on start there are no registered families
all new devices will have defailt family, later when driver for appropriate
family is loaded, slaves, which were faound earlier, will still have defult
family instead of right one. Reconnect feature will force control thread to run
through all master devices and all slaves found and search for slaves with
default family id and try to reconnect them.

It does not store newly registered family and does not check only those slaves
which have reg_num.family the same as being registered one - all slaves with
default family are reconnected.

Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-06-21 21:43:12 -07:00

197 lines
4.4 KiB
C

/*
* w1.h
*
* Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __W1_H
#define __W1_H
struct w1_reg_num
{
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u64 family:8,
id:48,
crc:8;
#elif defined(__BIG_ENDIAN_BITFIELD)
__u64 crc:8,
id:48,
family:8;
#else
#error "Please fix <asm/byteorder.h>"
#endif
};
#ifdef __KERNEL__
#include <linux/completion.h>
#include <linux/device.h>
#include <net/sock.h>
#include <asm/semaphore.h>
#include "w1_family.h"
#define W1_MAXNAMELEN 32
#define W1_SLAVE_DATA_SIZE 128
#define W1_SEARCH 0xF0
#define W1_CONDITIONAL_SEARCH 0xEC
#define W1_CONVERT_TEMP 0x44
#define W1_SKIP_ROM 0xCC
#define W1_READ_SCRATCHPAD 0xBE
#define W1_READ_ROM 0x33
#define W1_READ_PSUPPLY 0xB4
#define W1_MATCH_ROM 0x55
#define W1_SLAVE_ACTIVE (1<<0)
struct w1_slave
{
struct module *owner;
unsigned char name[W1_MAXNAMELEN];
struct list_head w1_slave_entry;
struct w1_reg_num reg_num;
atomic_t refcnt;
u8 rom[9];
u32 flags;
int ttl;
struct w1_master *master;
struct w1_family *family;
struct device dev;
struct completion dev_released;
struct bin_attribute attr_bin;
struct device_attribute attr_name;
};
typedef void (* w1_slave_found_callback)(unsigned long, u64);
/**
* Note: read_bit and write_bit are very low level functions and should only
* be used with hardware that doesn't really support 1-wire operations,
* like a parallel/serial port.
* Either define read_bit and write_bit OR define, at minimum, touch_bit and
* reset_bus.
*/
struct w1_bus_master
{
/** the first parameter in all the functions below */
unsigned long data;
/**
* Sample the line level
* @return the level read (0 or 1)
*/
u8 (*read_bit)(unsigned long);
/** Sets the line level */
void (*write_bit)(unsigned long, u8);
/**
* touch_bit is the lowest-level function for devices that really
* support the 1-wire protocol.
* touch_bit(0) = write-0 cycle
* touch_bit(1) = write-1 / read cycle
* @return the bit read (0 or 1)
*/
u8 (*touch_bit)(unsigned long, u8);
/**
* Reads a bytes. Same as 8 touch_bit(1) calls.
* @return the byte read
*/
u8 (*read_byte)(unsigned long);
/**
* Writes a byte. Same as 8 touch_bit(x) calls.
*/
void (*write_byte)(unsigned long, u8);
/**
* Same as a series of read_byte() calls
* @return the number of bytes read
*/
u8 (*read_block)(unsigned long, u8 *, int);
/** Same as a series of write_byte() calls */
void (*write_block)(unsigned long, const u8 *, int);
/**
* Combines two reads and a smart write for ROM searches
* @return bit0=Id bit1=comp_id bit2=dir_taken
*/
u8 (*triplet)(unsigned long, u8);
/**
* long write-0 with a read for the presence pulse detection
* @return -1=Error, 0=Device present, 1=No device present
*/
u8 (*reset_bus)(unsigned long);
/** Really nice hardware can handles the ROM searches */
void (*search)(unsigned long, w1_slave_found_callback);
};
#define W1_MASTER_NEED_EXIT 0
#define W1_MASTER_NEED_RECONNECT 1
struct w1_master
{
struct list_head w1_master_entry;
struct module *owner;
unsigned char name[W1_MAXNAMELEN];
struct list_head slist;
int max_slave_count, slave_count;
unsigned long attempts;
int slave_ttl;
int initialized;
u32 id;
int search_count;
atomic_t refcnt;
void *priv;
int priv_size;
long flags;
pid_t kpid;
struct semaphore mutex;
struct device_driver *driver;
struct device dev;
struct completion dev_released;
struct completion dev_exited;
struct w1_bus_master *bus_master;
u32 seq, groups;
struct sock *nls;
};
int w1_create_master_attributes(struct w1_master *);
void w1_search(struct w1_master *dev, w1_slave_found_callback cb);
#endif /* __KERNEL__ */
#endif /* __W1_H */