1
0
Fork 0
alistair23-linux/tools/testing/selftests/kvm/lib/x86_64/processor.c

1139 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* tools/testing/selftests/kvm/lib/x86_64/processor.c
*
* Copyright (C) 2018, Google LLC.
*/
#define _GNU_SOURCE /* for program_invocation_name */
#include "test_util.h"
#include "kvm_util.h"
#include "../kvm_util_internal.h"
#include "processor.h"
/* Minimum physical address used for virtual translation tables. */
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
/* Virtual translation table structure declarations */
struct pageMapL4Entry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t ignored_06:1;
uint64_t page_size:1;
uint64_t ignored_11_08:4;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
struct pageDirectoryPointerEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t ignored_06:1;
uint64_t page_size:1;
uint64_t ignored_11_08:4;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
struct pageDirectoryEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t ignored_06:1;
uint64_t page_size:1;
uint64_t ignored_11_08:4;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
struct pageTableEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t dirty:1;
uint64_t reserved_07:1;
uint64_t global:1;
uint64_t ignored_11_09:3;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
/* Register Dump
*
* Input Args:
* indent - Left margin indent amount
* regs - register
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the registers given by regs, to the FILE stream
* given by steam.
*/
void regs_dump(FILE *stream, struct kvm_regs *regs,
uint8_t indent)
{
fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
"rcx: 0x%.16llx rdx: 0x%.16llx\n",
indent, "",
regs->rax, regs->rbx, regs->rcx, regs->rdx);
fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
"rsp: 0x%.16llx rbp: 0x%.16llx\n",
indent, "",
regs->rsi, regs->rdi, regs->rsp, regs->rbp);
fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
"r10: 0x%.16llx r11: 0x%.16llx\n",
indent, "",
regs->r8, regs->r9, regs->r10, regs->r11);
fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
"r14: 0x%.16llx r15: 0x%.16llx\n",
indent, "",
regs->r12, regs->r13, regs->r14, regs->r15);
fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
indent, "",
regs->rip, regs->rflags);
}
/* Segment Dump
*
* Input Args:
* indent - Left margin indent amount
* segment - KVM segment
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the KVM segment given by segment, to the FILE stream
* given by steam.
*/
static void segment_dump(FILE *stream, struct kvm_segment *segment,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
"selector: 0x%.4x type: 0x%.2x\n",
indent, "", segment->base, segment->limit,
segment->selector, segment->type);
fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
indent, "", segment->present, segment->dpl,
segment->db, segment->s, segment->l);
fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
"unusable: 0x%.2x padding: 0x%.2x\n",
indent, "", segment->g, segment->avl,
segment->unusable, segment->padding);
}
/* dtable Dump
*
* Input Args:
* indent - Left margin indent amount
* dtable - KVM dtable
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the KVM dtable given by dtable, to the FILE stream
* given by steam.
*/
static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
"padding: 0x%.4x 0x%.4x 0x%.4x\n",
indent, "", dtable->base, dtable->limit,
dtable->padding[0], dtable->padding[1], dtable->padding[2]);
}
/* System Register Dump
*
* Input Args:
* indent - Left margin indent amount
* sregs - System registers
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the system registers given by sregs, to the FILE stream
* given by steam.
*/
void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
uint8_t indent)
{
unsigned int i;
fprintf(stream, "%*scs:\n", indent, "");
segment_dump(stream, &sregs->cs, indent + 2);
fprintf(stream, "%*sds:\n", indent, "");
segment_dump(stream, &sregs->ds, indent + 2);
fprintf(stream, "%*ses:\n", indent, "");
segment_dump(stream, &sregs->es, indent + 2);
fprintf(stream, "%*sfs:\n", indent, "");
segment_dump(stream, &sregs->fs, indent + 2);
fprintf(stream, "%*sgs:\n", indent, "");
segment_dump(stream, &sregs->gs, indent + 2);
fprintf(stream, "%*sss:\n", indent, "");
segment_dump(stream, &sregs->ss, indent + 2);
fprintf(stream, "%*str:\n", indent, "");
segment_dump(stream, &sregs->tr, indent + 2);
fprintf(stream, "%*sldt:\n", indent, "");
segment_dump(stream, &sregs->ldt, indent + 2);
fprintf(stream, "%*sgdt:\n", indent, "");
dtable_dump(stream, &sregs->gdt, indent + 2);
fprintf(stream, "%*sidt:\n", indent, "");
dtable_dump(stream, &sregs->idt, indent + 2);
fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
"cr3: 0x%.16llx cr4: 0x%.16llx\n",
indent, "",
sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
"apic_base: 0x%.16llx\n",
indent, "",
sregs->cr8, sregs->efer, sregs->apic_base);
fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
fprintf(stream, "%*s%.16llx\n", indent + 2, "",
sregs->interrupt_bitmap[i]);
}
}
void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
{
TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
/* If needed, create page map l4 table. */
if (!vm->pgd_created) {
vm_paddr_t paddr = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
vm->pgd = paddr;
vm->pgd_created = true;
}
}
/* VM Virtual Page Map
*
* Input Args:
* vm - Virtual Machine
* vaddr - VM Virtual Address
* paddr - VM Physical Address
* pgd_memslot - Memory region slot for new virtual translation tables
*
* Output Args: None
*
* Return: None
*
* Within the VM given by vm, creates a virtual translation for the page
* starting at vaddr to the page starting at paddr.
*/
void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
uint32_t pgd_memslot)
{
uint16_t index[4];
struct pageMapL4Entry *pml4e;
TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
TEST_ASSERT((vaddr % vm->page_size) == 0,
"Virtual address not on page boundary,\n"
" vaddr: 0x%lx vm->page_size: 0x%x",
vaddr, vm->page_size);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
(vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx",
vaddr);
TEST_ASSERT((paddr % vm->page_size) == 0,
"Physical address not on page boundary,\n"
" paddr: 0x%lx vm->page_size: 0x%x",
paddr, vm->page_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
index[0] = (vaddr >> 12) & 0x1ffu;
index[1] = (vaddr >> 21) & 0x1ffu;
index[2] = (vaddr >> 30) & 0x1ffu;
index[3] = (vaddr >> 39) & 0x1ffu;
/* Allocate page directory pointer table if not present. */
pml4e = addr_gpa2hva(vm, vm->pgd);
if (!pml4e[index[3]].present) {
pml4e[index[3]].address = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
>> vm->page_shift;
pml4e[index[3]].writable = true;
pml4e[index[3]].present = true;
}
/* Allocate page directory table if not present. */
struct pageDirectoryPointerEntry *pdpe;
pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
if (!pdpe[index[2]].present) {
pdpe[index[2]].address = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
>> vm->page_shift;
pdpe[index[2]].writable = true;
pdpe[index[2]].present = true;
}
/* Allocate page table if not present. */
struct pageDirectoryEntry *pde;
pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
if (!pde[index[1]].present) {
pde[index[1]].address = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
>> vm->page_shift;
pde[index[1]].writable = true;
pde[index[1]].present = true;
}
/* Fill in page table entry. */
struct pageTableEntry *pte;
pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
pte[index[0]].address = paddr >> vm->page_shift;
pte[index[0]].writable = true;
pte[index[0]].present = 1;
}
/* Virtual Translation Tables Dump
*
* Input Args:
* vm - Virtual Machine
* indent - Left margin indent amount
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps to the FILE stream given by stream, the contents of all the
* virtual translation tables for the VM given by vm.
*/
void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
struct pageMapL4Entry *pml4e, *pml4e_start;
struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
struct pageDirectoryEntry *pde, *pde_start;
struct pageTableEntry *pte, *pte_start;
if (!vm->pgd_created)
return;
fprintf(stream, "%*s "
" no\n", indent, "");
fprintf(stream, "%*s index hvaddr gpaddr "
"addr w exec dirty\n",
indent, "");
pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
vm->pgd);
for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
pml4e = &pml4e_start[n1];
if (!pml4e->present)
continue;
fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
" %u\n",
indent, "",
pml4e - pml4e_start, pml4e,
addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address,
pml4e->writable, pml4e->execute_disable);
pdpe_start = addr_gpa2hva(vm, pml4e->address
* vm->page_size);
for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
pdpe = &pdpe_start[n2];
if (!pdpe->present)
continue;
fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx "
"%u %u\n",
indent, "",
pdpe - pdpe_start, pdpe,
addr_hva2gpa(vm, pdpe),
(uint64_t) pdpe->address, pdpe->writable,
pdpe->execute_disable);
pde_start = addr_gpa2hva(vm,
pdpe->address * vm->page_size);
for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
pde = &pde_start[n3];
if (!pde->present)
continue;
fprintf(stream, "%*spde 0x%-3zx %p "
"0x%-12lx 0x%-10lx %u %u\n",
indent, "", pde - pde_start, pde,
addr_hva2gpa(vm, pde),
(uint64_t) pde->address, pde->writable,
pde->execute_disable);
pte_start = addr_gpa2hva(vm,
pde->address * vm->page_size);
for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
pte = &pte_start[n4];
if (!pte->present)
continue;
fprintf(stream, "%*spte 0x%-3zx %p "
"0x%-12lx 0x%-10lx %u %u "
" %u 0x%-10lx\n",
indent, "",
pte - pte_start, pte,
addr_hva2gpa(vm, pte),
(uint64_t) pte->address,
pte->writable,
pte->execute_disable,
pte->dirty,
((uint64_t) n1 << 27)
| ((uint64_t) n2 << 18)
| ((uint64_t) n3 << 9)
| ((uint64_t) n4));
}
}
}
}
}
/* Set Unusable Segment
*
* Input Args: None
*
* Output Args:
* segp - Pointer to segment register
*
* Return: None
*
* Sets the segment register pointed to by segp to an unusable state.
*/
static void kvm_seg_set_unusable(struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->unusable = true;
}
static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
{
void *gdt = addr_gva2hva(vm, vm->gdt);
struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
desc->limit0 = segp->limit & 0xFFFF;
desc->base0 = segp->base & 0xFFFF;
desc->base1 = segp->base >> 16;
desc->s = segp->s;
desc->type = segp->type;
desc->dpl = segp->dpl;
desc->p = segp->present;
desc->limit1 = segp->limit >> 16;
desc->l = segp->l;
desc->db = segp->db;
desc->g = segp->g;
desc->base2 = segp->base >> 24;
if (!segp->s)
desc->base3 = segp->base >> 32;
}
/* Set Long Mode Flat Kernel Code Segment
*
* Input Args:
* vm - VM whose GDT is being filled, or NULL to only write segp
* selector - selector value
*
* Output Args:
* segp - Pointer to KVM segment
*
* Return: None
*
* Sets up the KVM segment pointed to by segp, to be a code segment
* with the selector value given by selector.
*/
static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = selector;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
* | kFlagCodeReadable
*/
segp->g = true;
segp->l = true;
segp->present = 1;
if (vm)
kvm_seg_fill_gdt_64bit(vm, segp);
}
/* Set Long Mode Flat Kernel Data Segment
*
* Input Args:
* vm - VM whose GDT is being filled, or NULL to only write segp
* selector - selector value
*
* Output Args:
* segp - Pointer to KVM segment
*
* Return: None
*
* Sets up the KVM segment pointed to by segp, to be a data segment
* with the selector value given by selector.
*/
static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = selector;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
* | kFlagDataWritable
*/
segp->g = true;
segp->present = true;
if (vm)
kvm_seg_fill_gdt_64bit(vm, segp);
}
/* Address Guest Virtual to Guest Physical
*
* Input Args:
* vm - Virtual Machine
* gpa - VM virtual address
*
* Output Args: None
*
* Return:
* Equivalent VM physical address
*
* Translates the VM virtual address given by gva to a VM physical
* address and then locates the memory region containing the VM
* physical address, within the VM given by vm. When found, the host
* virtual address providing the memory to the vm physical address is returned.
* A TEST_ASSERT failure occurs if no region containing translated
* VM virtual address exists.
*/
vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
uint16_t index[4];
struct pageMapL4Entry *pml4e;
struct pageDirectoryPointerEntry *pdpe;
struct pageDirectoryEntry *pde;
struct pageTableEntry *pte;
TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
index[0] = (gva >> 12) & 0x1ffu;
index[1] = (gva >> 21) & 0x1ffu;
index[2] = (gva >> 30) & 0x1ffu;
index[3] = (gva >> 39) & 0x1ffu;
if (!vm->pgd_created)
goto unmapped_gva;
pml4e = addr_gpa2hva(vm, vm->pgd);
if (!pml4e[index[3]].present)
goto unmapped_gva;
pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
if (!pdpe[index[2]].present)
goto unmapped_gva;
pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
if (!pde[index[1]].present)
goto unmapped_gva;
pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
if (!pte[index[0]].present)
goto unmapped_gva;
return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu);
unmapped_gva:
TEST_ASSERT(false, "No mapping for vm virtual address, "
"gva: 0x%lx", gva);
exit(EXIT_FAILURE);
}
static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot,
int pgd_memslot)
{
if (!vm->gdt)
vm->gdt = vm_vaddr_alloc(vm, getpagesize(),
KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
dt->base = vm->gdt;
dt->limit = getpagesize();
}
static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
int selector, int gdt_memslot,
int pgd_memslot)
{
if (!vm->tss)
vm->tss = vm_vaddr_alloc(vm, getpagesize(),
KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
memset(segp, 0, sizeof(*segp));
segp->base = vm->tss;
segp->limit = 0x67;
segp->selector = selector;
segp->type = 0xb;
segp->present = 1;
kvm_seg_fill_gdt_64bit(vm, segp);
}
void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
{
struct kvm_sregs sregs;
/* Set mode specific system register values. */
vcpu_sregs_get(vm, vcpuid, &sregs);
sregs.idt.limit = 0;
kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot);
switch (vm->mode) {
case VM_MODE_P52V48_4K:
sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
kvm_seg_set_unusable(&sregs.ldt);
kvm_seg_set_kernel_code_64bit(vm, 0x8, &sregs.cs);
kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.ds);
kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.es);
kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot);
break;
default:
TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode);
}
sregs.cr3 = vm->pgd;
vcpu_sregs_set(vm, vcpuid, &sregs);
}
/* Adds a vCPU with reasonable defaults (i.e., a stack)
*
* Input Args:
* vcpuid - The id of the VCPU to add to the VM.
* guest_code - The vCPU's entry point
*/
void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
{
struct kvm_mp_state mp_state;
struct kvm_regs regs;
vm_vaddr_t stack_vaddr;
stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);
/* Create VCPU */
vm_vcpu_add(vm, vcpuid, 0, 0);
/* Setup guest general purpose registers */
vcpu_regs_get(vm, vcpuid, &regs);
regs.rflags = regs.rflags | 0x2;
regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
regs.rip = (unsigned long) guest_code;
vcpu_regs_set(vm, vcpuid, &regs);
/* Setup the MP state */
mp_state.mp_state = 0;
vcpu_set_mp_state(vm, vcpuid, &mp_state);
}
/* Allocate an instance of struct kvm_cpuid2
*
* Input Args: None
*
* Output Args: None
*
* Return: A pointer to the allocated struct. The caller is responsible
* for freeing this struct.
*
* Since kvm_cpuid2 uses a 0-length array to allow a the size of the
* array to be decided at allocation time, allocation is slightly
* complicated. This function uses a reasonable default length for
* the array and performs the appropriate allocation.
*/
static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
{
struct kvm_cpuid2 *cpuid;
int nent = 100;
size_t size;
size = sizeof(*cpuid);
size += nent * sizeof(struct kvm_cpuid_entry2);
cpuid = malloc(size);
if (!cpuid) {
perror("malloc");
abort();
}
cpuid->nent = nent;
return cpuid;
}
/* KVM Supported CPUID Get
*
* Input Args: None
*
* Output Args:
*
* Return: The supported KVM CPUID
*
* Get the guest CPUID supported by KVM.
*/
struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
{
static struct kvm_cpuid2 *cpuid;
int ret;
int kvm_fd;
if (cpuid)
return cpuid;
cpuid = allocate_kvm_cpuid2();
kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
if (kvm_fd < 0)
exit(KSFT_SKIP);
ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
ret, errno);
close(kvm_fd);
return cpuid;
}
/* Locate a cpuid entry.
*
* Input Args:
* cpuid: The cpuid.
* function: The function of the cpuid entry to find.
*
* Output Args: None
*
* Return: A pointer to the cpuid entry. Never returns NULL.
*/
struct kvm_cpuid_entry2 *
kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
{
struct kvm_cpuid2 *cpuid;
struct kvm_cpuid_entry2 *entry = NULL;
int i;
cpuid = kvm_get_supported_cpuid();
for (i = 0; i < cpuid->nent; i++) {
if (cpuid->entries[i].function == function &&
cpuid->entries[i].index == index) {
entry = &cpuid->entries[i];
break;
}
}
TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
function, index);
return entry;
}
/* VM VCPU CPUID Set
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU id
* cpuid - The CPUID values to set.
*
* Output Args: None
*
* Return: void
*
* Set the VCPU's CPUID.
*/
void vcpu_set_cpuid(struct kvm_vm *vm,
uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int rc;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
rc, errno);
}
/* Create a VM with reasonable defaults
*
* Input Args:
* vcpuid - The id of the single VCPU to add to the VM.
* extra_mem_pages - The size of extra memories to add (this will
* decide how much extra space we will need to
* setup the page tables using mem slot 0)
* guest_code - The vCPU's entry point
*
* Output Args: None
*
* Return:
* Pointer to opaque structure that describes the created VM.
*/
struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
void *guest_code)
{
struct kvm_vm *vm;
/*
* For x86 the maximum page table size for a memory region
* will be when only 4K pages are used. In that case the
* total extra size for page tables (for extra N pages) will
* be: N/512+N/512^2+N/512^3+... which is definitely smaller
* than N/512*2.
*/
uint64_t extra_pg_pages = extra_mem_pages / 512 * 2;
/* Create VM */
vm = vm_create(VM_MODE_P52V48_4K,
DEFAULT_GUEST_PHY_PAGES + extra_pg_pages,
O_RDWR);
/* Setup guest code */
kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
/* Setup IRQ Chip */
vm_create_irqchip(vm);
/* Add the first vCPU. */
vm_vcpu_add_default(vm, vcpuid, guest_code);
return vm;
}
/* VCPU Get MSR
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* msr_index - Index of MSR
*
* Output Args: None
*
* Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
*
* Get value of MSR for VCPU.
*/
uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
int r;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
" rc: %i errno: %i", r, errno);
return buffer.entry.data;
}
/* VCPU Set MSR
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* msr_index - Index of MSR
* msr_value - New value of MSR
*
* Output Args: None
*
* Return: On success, nothing. On failure a TEST_ASSERT is produced.
*
* Set value of MSR for VCPU.
*/
void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
uint64_t msr_value)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
int r;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
memset(&buffer, 0, sizeof(buffer));
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
buffer.entry.data = msr_value;
r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
" rc: %i errno: %i", r, errno);
}
/* VM VCPU Args Set
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* num - number of arguments
* ... - arguments, each of type uint64_t
*
* Output Args: None
*
* Return: None
*
* Sets the first num function input arguments to the values
* given as variable args. Each of the variable args is expected to
* be of type uint64_t.
*/
void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
{
va_list ap;
struct kvm_regs regs;
TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
" num: %u\n",
num);
va_start(ap, num);
vcpu_regs_get(vm, vcpuid, &regs);
if (num >= 1)
regs.rdi = va_arg(ap, uint64_t);
if (num >= 2)
regs.rsi = va_arg(ap, uint64_t);
if (num >= 3)
regs.rdx = va_arg(ap, uint64_t);
if (num >= 4)
regs.rcx = va_arg(ap, uint64_t);
if (num >= 5)
regs.r8 = va_arg(ap, uint64_t);
if (num >= 6)
regs.r9 = va_arg(ap, uint64_t);
vcpu_regs_set(vm, vcpuid, &regs);
va_end(ap);
}
/*
* VM VCPU Dump
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* indent - Left margin indent amount
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the current state of the VCPU specified by vcpuid, within the VM
* given by vm, to the FILE stream given by stream.
*/
void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
{
struct kvm_regs regs;
struct kvm_sregs sregs;
fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
fprintf(stream, "%*sregs:\n", indent + 2, "");
vcpu_regs_get(vm, vcpuid, &regs);
regs_dump(stream, &regs, indent + 4);
fprintf(stream, "%*ssregs:\n", indent + 2, "");
vcpu_sregs_get(vm, vcpuid, &sregs);
sregs_dump(stream, &sregs, indent + 4);
}
struct kvm_x86_state {
struct kvm_vcpu_events events;
struct kvm_mp_state mp_state;
struct kvm_regs regs;
struct kvm_xsave xsave;
struct kvm_xcrs xcrs;
struct kvm_sregs sregs;
struct kvm_debugregs debugregs;
union {
struct kvm_nested_state nested;
char nested_[16384];
};
struct kvm_msrs msrs;
};
static int kvm_get_num_msrs(struct kvm_vm *vm)
{
struct kvm_msr_list nmsrs;
int r;
nmsrs.nmsrs = 0;
r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
r);
return nmsrs.nmsrs;
}
struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct kvm_msr_list *list;
struct kvm_x86_state *state;
int nmsrs, r, i;
static int nested_size = -1;
if (nested_size == -1) {
nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
TEST_ASSERT(nested_size <= sizeof(state->nested_),
"Nested state size too big, %i > %zi",
nested_size, sizeof(state->nested_));
}
/*
* When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
* guest state is consistent only after userspace re-enters the
* kernel with KVM_RUN. Complete IO prior to migrating state
* to a new VM.
*/
vcpu_run_complete_io(vm, vcpuid);
nmsrs = kvm_get_num_msrs(vm);
list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
list->nmsrs = nmsrs;
r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
r);
state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
r);
if (nested_size) {
state->nested.size = sizeof(state->nested_);
r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
r);
TEST_ASSERT(state->nested.size <= nested_size,
"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
state->nested.size, nested_size);
} else
state->nested.size = 0;
state->msrs.nmsrs = nmsrs;
for (i = 0; i < nmsrs; i++)
state->msrs.entries[i].index = list->indices[i];
r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed at %x)",
r, r == nmsrs ? -1 : list->indices[r]);
r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
r);
free(list);
return state;
}
void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int r;
r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
r);
if (state->nested.size) {
r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
r);
}
}