alistair23-linux/fs/btrfs/file-item.c
Filipe Manana 27b9a8122f Btrfs: fix csum tree corruption, duplicate and outdated checksums
Under rare circumstances we can end up leaving 2 versions of a checksum
for the same file extent range.

The reason for this is that after calling btrfs_next_leaf we process
slot 0 of the leaf it returns, instead of processing the slot set in
path->slots[0]. Most of the time (by far) path->slots[0] is 0, but after
btrfs_next_leaf() releases the path and before it searches for the next
leaf, another task might cause a split of the next leaf, which migrates
some of its keys to the leaf we were processing before calling
btrfs_next_leaf(). In this case btrfs_next_leaf() returns again the
same leaf but with path->slots[0] having a slot number corresponding
to the first new key it got, that is, a slot number that didn't exist
before calling btrfs_next_leaf(), as the leaf now has more keys than
it had before. So we must really process the returned leaf starting at
path->slots[0] always, as it isn't always 0, and the key at slot 0 can
have an offset much lower than our search offset/bytenr.

For example, consider the following scenario, where we have:

sums->bytenr: 40157184, sums->len: 16384, sums end: 40173568
four 4kb file data blocks with offsets 40157184, 40161280, 40165376, 40169472

  Leaf N:

    slot = 0                           slot = btrfs_header_nritems() - 1
  |-------------------------------------------------------------------|
  | [(CSUM CSUM 39239680), size 8] ... [(CSUM CSUM 40116224), size 4] |
  |-------------------------------------------------------------------|

  Leaf N + 1:

      slot = 0                          slot = btrfs_header_nritems() - 1
  |--------------------------------------------------------------------|
  | [(CSUM CSUM 40161280), size 32] ... [((CSUM CSUM 40615936), size 8 |
  |--------------------------------------------------------------------|

Because we are at the last slot of leaf N, we call btrfs_next_leaf() to
find the next highest key, which releases the current path and then searches
for that next key. However after releasing the path and before finding that
next key, the item at slot 0 of leaf N + 1 gets moved to leaf N, due to a call
to ctree.c:push_leaf_left() (via ctree.c:split_leaf()), and therefore
btrfs_next_leaf() will returns us a path again with leaf N but with the slot
pointing to its new last key (CSUM CSUM 40161280). This new version of leaf N
is then:

    slot = 0                        slot = btrfs_header_nritems() - 2  slot = btrfs_header_nritems() - 1
  |----------------------------------------------------------------------------------------------------|
  | [(CSUM CSUM 39239680), size 8] ... [(CSUM CSUM 40116224), size 4]  [(CSUM CSUM 40161280), size 32] |
  |----------------------------------------------------------------------------------------------------|

And incorrecly using slot 0, makes us set next_offset to 39239680 and we jump
into the "insert:" label, which will set tmp to:

    tmp = min((sums->len - total_bytes) >> blocksize_bits,
        (next_offset - file_key.offset) >> blocksize_bits) =
    min((16384 - 0) >> 12, (39239680 - 40157184) >> 12) =
    min(4, (u64)-917504 = 18446744073708634112 >> 12) = 4

and

   ins_size = csum_size * tmp = 4 * 4 = 16 bytes.

In other words, we insert a new csum item in the tree with key
(CSUM_OBJECTID CSUM_KEY 40157184 = sums->bytenr) that contains the checksums
for all the data (4 blocks of 4096 bytes each = sums->len). Which is wrong,
because the item with key (CSUM CSUM 40161280) (the one that was moved from
leaf N + 1 to the end of leaf N) contains the old checksums of the last 12288
bytes of our data and won't get those old checksums removed.

So this leaves us 2 different checksums for 3 4kb blocks of data in the tree,
and breaks the logical rule:

   Key_N+1.offset >= Key_N.offset + length_of_data_its_checksums_cover

An obvious bad effect of this is that a subsequent csum tree lookup to get
the checksum of any of the blocks with logical offset of 40161280, 40165376
or 40169472 (the last 3 4kb blocks of file data), will get the old checksums.

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-08-15 07:43:40 -07:00

964 lines
26 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "volumes.h"
#include "print-tree.h"
#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
sizeof(struct btrfs_item) * 2) / \
size) - 1))
#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
PAGE_CACHE_SIZE))
#define MAX_ORDERED_SUM_BYTES(r) ((PAGE_SIZE - \
sizeof(struct btrfs_ordered_sum)) / \
sizeof(u32) * (r)->sectorsize)
int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 pos,
u64 disk_offset, u64 disk_num_bytes,
u64 num_bytes, u64 offset, u64 ram_bytes,
u8 compression, u8 encryption, u16 other_encoding)
{
int ret = 0;
struct btrfs_file_extent_item *item;
struct btrfs_key file_key;
struct btrfs_path *path;
struct extent_buffer *leaf;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
file_key.objectid = objectid;
file_key.offset = pos;
btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
sizeof(*item));
if (ret < 0)
goto out;
BUG_ON(ret); /* Can't happen */
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
btrfs_set_file_extent_offset(leaf, item, offset);
btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
btrfs_set_file_extent_generation(leaf, item, trans->transid);
btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_compression(leaf, item, compression);
btrfs_set_file_extent_encryption(leaf, item, encryption);
btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return ret;
}
static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, int cow)
{
int ret;
struct btrfs_key file_key;
struct btrfs_key found_key;
struct btrfs_csum_item *item;
struct extent_buffer *leaf;
u64 csum_offset = 0;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
int csums_in_item;
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
file_key.offset = bytenr;
btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
if (ret < 0)
goto fail;
leaf = path->nodes[0];
if (ret > 0) {
ret = 1;
if (path->slots[0] == 0)
goto fail;
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY)
goto fail;
csum_offset = (bytenr - found_key.offset) >>
root->fs_info->sb->s_blocksize_bits;
csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
csums_in_item /= csum_size;
if (csum_offset == csums_in_item) {
ret = -EFBIG;
goto fail;
} else if (csum_offset > csums_in_item) {
goto fail;
}
}
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
item = (struct btrfs_csum_item *)((unsigned char *)item +
csum_offset * csum_size);
return item;
fail:
if (ret > 0)
ret = -ENOENT;
return ERR_PTR(ret);
}
int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid,
u64 offset, int mod)
{
int ret;
struct btrfs_key file_key;
int ins_len = mod < 0 ? -1 : 0;
int cow = mod != 0;
file_key.objectid = objectid;
file_key.offset = offset;
btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
return ret;
}
static void btrfs_io_bio_endio_readpage(struct btrfs_io_bio *bio, int err)
{
kfree(bio->csum_allocated);
}
static int __btrfs_lookup_bio_sums(struct btrfs_root *root,
struct inode *inode, struct bio *bio,
u64 logical_offset, u32 *dst, int dio)
{
struct bio_vec *bvec = bio->bi_io_vec;
struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
struct btrfs_csum_item *item = NULL;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct btrfs_path *path;
u8 *csum;
u64 offset = 0;
u64 item_start_offset = 0;
u64 item_last_offset = 0;
u64 disk_bytenr;
u32 diff;
int nblocks;
int bio_index = 0;
int count;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
if (!dst) {
if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
btrfs_bio->csum_allocated = kmalloc(nblocks * csum_size,
GFP_NOFS);
if (!btrfs_bio->csum_allocated) {
btrfs_free_path(path);
return -ENOMEM;
}
btrfs_bio->csum = btrfs_bio->csum_allocated;
btrfs_bio->end_io = btrfs_io_bio_endio_readpage;
} else {
btrfs_bio->csum = btrfs_bio->csum_inline;
}
csum = btrfs_bio->csum;
} else {
csum = (u8 *)dst;
}
if (bio->bi_iter.bi_size > PAGE_CACHE_SIZE * 8)
path->reada = 2;
WARN_ON(bio->bi_vcnt <= 0);
/*
* the free space stuff is only read when it hasn't been
* updated in the current transaction. So, we can safely
* read from the commit root and sidestep a nasty deadlock
* between reading the free space cache and updating the csum tree.
*/
if (btrfs_is_free_space_inode(inode)) {
path->search_commit_root = 1;
path->skip_locking = 1;
}
disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
if (dio)
offset = logical_offset;
while (bio_index < bio->bi_vcnt) {
if (!dio)
offset = page_offset(bvec->bv_page) + bvec->bv_offset;
count = btrfs_find_ordered_sum(inode, offset, disk_bytenr,
(u32 *)csum, nblocks);
if (count)
goto found;
if (!item || disk_bytenr < item_start_offset ||
disk_bytenr >= item_last_offset) {
struct btrfs_key found_key;
u32 item_size;
if (item)
btrfs_release_path(path);
item = btrfs_lookup_csum(NULL, root->fs_info->csum_root,
path, disk_bytenr, 0);
if (IS_ERR(item)) {
count = 1;
memset(csum, 0, csum_size);
if (BTRFS_I(inode)->root->root_key.objectid ==
BTRFS_DATA_RELOC_TREE_OBJECTID) {
set_extent_bits(io_tree, offset,
offset + bvec->bv_len - 1,
EXTENT_NODATASUM, GFP_NOFS);
} else {
btrfs_info(BTRFS_I(inode)->root->fs_info,
"no csum found for inode %llu start %llu",
btrfs_ino(inode), offset);
}
item = NULL;
btrfs_release_path(path);
goto found;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
item_start_offset = found_key.offset;
item_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
item_last_offset = item_start_offset +
(item_size / csum_size) *
root->sectorsize;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_csum_item);
}
/*
* this byte range must be able to fit inside
* a single leaf so it will also fit inside a u32
*/
diff = disk_bytenr - item_start_offset;
diff = diff / root->sectorsize;
diff = diff * csum_size;
count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
inode->i_sb->s_blocksize_bits);
read_extent_buffer(path->nodes[0], csum,
((unsigned long)item) + diff,
csum_size * count);
found:
csum += count * csum_size;
nblocks -= count;
bio_index += count;
while (count--) {
disk_bytenr += bvec->bv_len;
offset += bvec->bv_len;
bvec++;
}
}
btrfs_free_path(path);
return 0;
}
int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
struct bio *bio, u32 *dst)
{
return __btrfs_lookup_bio_sums(root, inode, bio, 0, dst, 0);
}
int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
struct btrfs_dio_private *dip, struct bio *bio,
u64 offset)
{
int len = (bio->bi_iter.bi_sector << 9) - dip->disk_bytenr;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
int ret;
len >>= inode->i_sb->s_blocksize_bits;
len *= csum_size;
ret = __btrfs_lookup_bio_sums(root, inode, bio, offset,
(u32 *)(dip->csum + len), 1);
return ret;
}
int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
struct list_head *list, int search_commit)
{
struct btrfs_key key;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_ordered_sum *sums;
struct btrfs_csum_item *item;
LIST_HEAD(tmplist);
unsigned long offset;
int ret;
size_t size;
u64 csum_end;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
ASSERT(start == ALIGN(start, root->sectorsize) &&
(end + 1) == ALIGN(end + 1, root->sectorsize));
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (search_commit) {
path->skip_locking = 1;
path->reada = 2;
path->search_commit_root = 1;
}
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
key.offset = start;
key.type = BTRFS_EXTENT_CSUM_KEY;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto fail;
if (ret > 0 && path->slots[0] > 0) {
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
key.type == BTRFS_EXTENT_CSUM_KEY) {
offset = (start - key.offset) >>
root->fs_info->sb->s_blocksize_bits;
if (offset * csum_size <
btrfs_item_size_nr(leaf, path->slots[0] - 1))
path->slots[0]--;
}
}
while (start <= end) {
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto fail;
if (ret > 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
key.type != BTRFS_EXTENT_CSUM_KEY ||
key.offset > end)
break;
if (key.offset > start)
start = key.offset;
size = btrfs_item_size_nr(leaf, path->slots[0]);
csum_end = key.offset + (size / csum_size) * root->sectorsize;
if (csum_end <= start) {
path->slots[0]++;
continue;
}
csum_end = min(csum_end, end + 1);
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_csum_item);
while (start < csum_end) {
size = min_t(size_t, csum_end - start,
MAX_ORDERED_SUM_BYTES(root));
sums = kzalloc(btrfs_ordered_sum_size(root, size),
GFP_NOFS);
if (!sums) {
ret = -ENOMEM;
goto fail;
}
sums->bytenr = start;
sums->len = (int)size;
offset = (start - key.offset) >>
root->fs_info->sb->s_blocksize_bits;
offset *= csum_size;
size >>= root->fs_info->sb->s_blocksize_bits;
read_extent_buffer(path->nodes[0],
sums->sums,
((unsigned long)item) + offset,
csum_size * size);
start += root->sectorsize * size;
list_add_tail(&sums->list, &tmplist);
}
path->slots[0]++;
}
ret = 0;
fail:
while (ret < 0 && !list_empty(&tmplist)) {
sums = list_entry(&tmplist, struct btrfs_ordered_sum, list);
list_del(&sums->list);
kfree(sums);
}
list_splice_tail(&tmplist, list);
btrfs_free_path(path);
return ret;
}
int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
struct bio *bio, u64 file_start, int contig)
{
struct btrfs_ordered_sum *sums;
struct btrfs_ordered_extent *ordered;
char *data;
struct bio_vec *bvec = bio->bi_io_vec;
int bio_index = 0;
int index;
unsigned long total_bytes = 0;
unsigned long this_sum_bytes = 0;
u64 offset;
WARN_ON(bio->bi_vcnt <= 0);
sums = kzalloc(btrfs_ordered_sum_size(root, bio->bi_iter.bi_size),
GFP_NOFS);
if (!sums)
return -ENOMEM;
sums->len = bio->bi_iter.bi_size;
INIT_LIST_HEAD(&sums->list);
if (contig)
offset = file_start;
else
offset = page_offset(bvec->bv_page) + bvec->bv_offset;
ordered = btrfs_lookup_ordered_extent(inode, offset);
BUG_ON(!ordered); /* Logic error */
sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
index = 0;
while (bio_index < bio->bi_vcnt) {
if (!contig)
offset = page_offset(bvec->bv_page) + bvec->bv_offset;
if (offset >= ordered->file_offset + ordered->len ||
offset < ordered->file_offset) {
unsigned long bytes_left;
sums->len = this_sum_bytes;
this_sum_bytes = 0;
btrfs_add_ordered_sum(inode, ordered, sums);
btrfs_put_ordered_extent(ordered);
bytes_left = bio->bi_iter.bi_size - total_bytes;
sums = kzalloc(btrfs_ordered_sum_size(root, bytes_left),
GFP_NOFS);
BUG_ON(!sums); /* -ENOMEM */
sums->len = bytes_left;
ordered = btrfs_lookup_ordered_extent(inode, offset);
BUG_ON(!ordered); /* Logic error */
sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9) +
total_bytes;
index = 0;
}
data = kmap_atomic(bvec->bv_page);
sums->sums[index] = ~(u32)0;
sums->sums[index] = btrfs_csum_data(data + bvec->bv_offset,
sums->sums[index],
bvec->bv_len);
kunmap_atomic(data);
btrfs_csum_final(sums->sums[index],
(char *)(sums->sums + index));
bio_index++;
index++;
total_bytes += bvec->bv_len;
this_sum_bytes += bvec->bv_len;
offset += bvec->bv_len;
bvec++;
}
this_sum_bytes = 0;
btrfs_add_ordered_sum(inode, ordered, sums);
btrfs_put_ordered_extent(ordered);
return 0;
}
/*
* helper function for csum removal, this expects the
* key to describe the csum pointed to by the path, and it expects
* the csum to overlap the range [bytenr, len]
*
* The csum should not be entirely contained in the range and the
* range should not be entirely contained in the csum.
*
* This calls btrfs_truncate_item with the correct args based on the
* overlap, and fixes up the key as required.
*/
static noinline void truncate_one_csum(struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *key,
u64 bytenr, u64 len)
{
struct extent_buffer *leaf;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
u64 csum_end;
u64 end_byte = bytenr + len;
u32 blocksize_bits = root->fs_info->sb->s_blocksize_bits;
leaf = path->nodes[0];
csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
csum_end <<= root->fs_info->sb->s_blocksize_bits;
csum_end += key->offset;
if (key->offset < bytenr && csum_end <= end_byte) {
/*
* [ bytenr - len ]
* [ ]
* [csum ]
* A simple truncate off the end of the item
*/
u32 new_size = (bytenr - key->offset) >> blocksize_bits;
new_size *= csum_size;
btrfs_truncate_item(root, path, new_size, 1);
} else if (key->offset >= bytenr && csum_end > end_byte &&
end_byte > key->offset) {
/*
* [ bytenr - len ]
* [ ]
* [csum ]
* we need to truncate from the beginning of the csum
*/
u32 new_size = (csum_end - end_byte) >> blocksize_bits;
new_size *= csum_size;
btrfs_truncate_item(root, path, new_size, 0);
key->offset = end_byte;
btrfs_set_item_key_safe(root, path, key);
} else {
BUG();
}
}
/*
* deletes the csum items from the csum tree for a given
* range of bytes.
*/
int btrfs_del_csums(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr, u64 len)
{
struct btrfs_path *path;
struct btrfs_key key;
u64 end_byte = bytenr + len;
u64 csum_end;
struct extent_buffer *leaf;
int ret;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
int blocksize_bits = root->fs_info->sb->s_blocksize_bits;
root = root->fs_info->csum_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
key.offset = end_byte - 1;
key.type = BTRFS_EXTENT_CSUM_KEY;
path->leave_spinning = 1;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
} else if (ret < 0) {
break;
}
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
key.type != BTRFS_EXTENT_CSUM_KEY) {
break;
}
if (key.offset >= end_byte)
break;
csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
csum_end <<= blocksize_bits;
csum_end += key.offset;
/* this csum ends before we start, we're done */
if (csum_end <= bytenr)
break;
/* delete the entire item, it is inside our range */
if (key.offset >= bytenr && csum_end <= end_byte) {
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
if (key.offset == bytenr)
break;
} else if (key.offset < bytenr && csum_end > end_byte) {
unsigned long offset;
unsigned long shift_len;
unsigned long item_offset;
/*
* [ bytenr - len ]
* [csum ]
*
* Our bytes are in the middle of the csum,
* we need to split this item and insert a new one.
*
* But we can't drop the path because the
* csum could change, get removed, extended etc.
*
* The trick here is the max size of a csum item leaves
* enough room in the tree block for a single
* item header. So, we split the item in place,
* adding a new header pointing to the existing
* bytes. Then we loop around again and we have
* a nicely formed csum item that we can neatly
* truncate.
*/
offset = (bytenr - key.offset) >> blocksize_bits;
offset *= csum_size;
shift_len = (len >> blocksize_bits) * csum_size;
item_offset = btrfs_item_ptr_offset(leaf,
path->slots[0]);
memset_extent_buffer(leaf, 0, item_offset + offset,
shift_len);
key.offset = bytenr;
/*
* btrfs_split_item returns -EAGAIN when the
* item changed size or key
*/
ret = btrfs_split_item(trans, root, path, &key, offset);
if (ret && ret != -EAGAIN) {
btrfs_abort_transaction(trans, root, ret);
goto out;
}
key.offset = end_byte - 1;
} else {
truncate_one_csum(root, path, &key, bytenr, len);
if (key.offset < bytenr)
break;
}
btrfs_release_path(path);
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_ordered_sum *sums)
{
struct btrfs_key file_key;
struct btrfs_key found_key;
struct btrfs_path *path;
struct btrfs_csum_item *item;
struct btrfs_csum_item *item_end;
struct extent_buffer *leaf = NULL;
u64 next_offset;
u64 total_bytes = 0;
u64 csum_offset;
u64 bytenr;
u32 nritems;
u32 ins_size;
int index = 0;
int found_next;
int ret;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
again:
next_offset = (u64)-1;
found_next = 0;
bytenr = sums->bytenr + total_bytes;
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
file_key.offset = bytenr;
btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
if (!IS_ERR(item)) {
ret = 0;
leaf = path->nodes[0];
item_end = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_csum_item);
item_end = (struct btrfs_csum_item *)((char *)item_end +
btrfs_item_size_nr(leaf, path->slots[0]));
goto found;
}
ret = PTR_ERR(item);
if (ret != -EFBIG && ret != -ENOENT)
goto fail_unlock;
if (ret == -EFBIG) {
u32 item_size;
/* we found one, but it isn't big enough yet */
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
if ((item_size / csum_size) >=
MAX_CSUM_ITEMS(root, csum_size)) {
/* already at max size, make a new one */
goto insert;
}
} else {
int slot = path->slots[0] + 1;
/* we didn't find a csum item, insert one */
nritems = btrfs_header_nritems(path->nodes[0]);
if (!nritems || (path->slots[0] >= nritems - 1)) {
ret = btrfs_next_leaf(root, path);
if (ret == 1)
found_next = 1;
if (ret != 0)
goto insert;
slot = path->slots[0];
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
found_key.type != BTRFS_EXTENT_CSUM_KEY) {
found_next = 1;
goto insert;
}
next_offset = found_key.offset;
found_next = 1;
goto insert;
}
/*
* at this point, we know the tree has an item, but it isn't big
* enough yet to put our csum in. Grow it
*/
btrfs_release_path(path);
ret = btrfs_search_slot(trans, root, &file_key, path,
csum_size, 1);
if (ret < 0)
goto fail_unlock;
if (ret > 0) {
if (path->slots[0] == 0)
goto insert;
path->slots[0]--;
}
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
csum_offset = (bytenr - found_key.offset) >>
root->fs_info->sb->s_blocksize_bits;
if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY ||
found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
csum_offset >= MAX_CSUM_ITEMS(root, csum_size)) {
goto insert;
}
if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
csum_size) {
int extend_nr;
u64 tmp;
u32 diff;
u32 free_space;
if (btrfs_leaf_free_space(root, leaf) <
sizeof(struct btrfs_item) + csum_size * 2)
goto insert;
free_space = btrfs_leaf_free_space(root, leaf) -
sizeof(struct btrfs_item) - csum_size;
tmp = sums->len - total_bytes;
tmp >>= root->fs_info->sb->s_blocksize_bits;
WARN_ON(tmp < 1);
extend_nr = max_t(int, 1, (int)tmp);
diff = (csum_offset + extend_nr) * csum_size;
diff = min(diff, MAX_CSUM_ITEMS(root, csum_size) * csum_size);
diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
diff = min(free_space, diff);
diff /= csum_size;
diff *= csum_size;
btrfs_extend_item(root, path, diff);
ret = 0;
goto csum;
}
insert:
btrfs_release_path(path);
csum_offset = 0;
if (found_next) {
u64 tmp;
tmp = sums->len - total_bytes;
tmp >>= root->fs_info->sb->s_blocksize_bits;
tmp = min(tmp, (next_offset - file_key.offset) >>
root->fs_info->sb->s_blocksize_bits);
tmp = max((u64)1, tmp);
tmp = min(tmp, (u64)MAX_CSUM_ITEMS(root, csum_size));
ins_size = csum_size * tmp;
} else {
ins_size = csum_size;
}
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
ins_size);
path->leave_spinning = 0;
if (ret < 0)
goto fail_unlock;
if (WARN_ON(ret != 0))
goto fail_unlock;
leaf = path->nodes[0];
csum:
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
item_end = (struct btrfs_csum_item *)((unsigned char *)item +
btrfs_item_size_nr(leaf, path->slots[0]));
item = (struct btrfs_csum_item *)((unsigned char *)item +
csum_offset * csum_size);
found:
ins_size = (u32)(sums->len - total_bytes) >>
root->fs_info->sb->s_blocksize_bits;
ins_size *= csum_size;
ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
ins_size);
write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
ins_size);
ins_size /= csum_size;
total_bytes += ins_size * root->sectorsize;
index += ins_size;
btrfs_mark_buffer_dirty(path->nodes[0]);
if (total_bytes < sums->len) {
btrfs_release_path(path);
cond_resched();
goto again;
}
out:
btrfs_free_path(path);
return ret;
fail_unlock:
goto out;
}
void btrfs_extent_item_to_extent_map(struct inode *inode,
const struct btrfs_path *path,
struct btrfs_file_extent_item *fi,
const bool new_inline,
struct extent_map *em)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_buffer *leaf = path->nodes[0];
const int slot = path->slots[0];
struct btrfs_key key;
u64 extent_start, extent_end;
u64 bytenr;
u8 type = btrfs_file_extent_type(leaf, fi);
int compress_type = btrfs_file_extent_compression(leaf, fi);
em->bdev = root->fs_info->fs_devices->latest_bdev;
btrfs_item_key_to_cpu(leaf, &key, slot);
extent_start = key.offset;
if (type == BTRFS_FILE_EXTENT_REG ||
type == BTRFS_FILE_EXTENT_PREALLOC) {
extent_end = extent_start +
btrfs_file_extent_num_bytes(leaf, fi);
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
size_t size;
size = btrfs_file_extent_inline_len(leaf, slot, fi);
extent_end = ALIGN(extent_start + size, root->sectorsize);
}
em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
if (type == BTRFS_FILE_EXTENT_REG ||
type == BTRFS_FILE_EXTENT_PREALLOC) {
em->start = extent_start;
em->len = extent_end - extent_start;
em->orig_start = extent_start -
btrfs_file_extent_offset(leaf, fi);
em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
if (bytenr == 0) {
em->block_start = EXTENT_MAP_HOLE;
return;
}
if (compress_type != BTRFS_COMPRESS_NONE) {
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
em->compress_type = compress_type;
em->block_start = bytenr;
em->block_len = em->orig_block_len;
} else {
bytenr += btrfs_file_extent_offset(leaf, fi);
em->block_start = bytenr;
em->block_len = em->len;
if (type == BTRFS_FILE_EXTENT_PREALLOC)
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
}
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
em->block_start = EXTENT_MAP_INLINE;
em->start = extent_start;
em->len = extent_end - extent_start;
/*
* Initialize orig_start and block_len with the same values
* as in inode.c:btrfs_get_extent().
*/
em->orig_start = EXTENT_MAP_HOLE;
em->block_len = (u64)-1;
if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
em->compress_type = compress_type;
}
} else {
btrfs_err(root->fs_info,
"unknown file extent item type %d, inode %llu, offset %llu, root %llu",
type, btrfs_ino(inode), extent_start,
root->root_key.objectid);
}
}