alistair23-linux/net/ipv6/ip6_output.c
Linus Torvalds 9ff9b0d392 networking changes for the 5.10 merge window
Add redirect_neigh() BPF packet redirect helper, allowing to limit stack
 traversal in common container configs and improving TCP back-pressure.
 Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.
 
 Expand netlink policy support and improve policy export to user space.
 (Ge)netlink core performs request validation according to declared
 policies. Expand the expressiveness of those policies (min/max length
 and bitmasks). Allow dumping policies for particular commands.
 This is used for feature discovery by user space (instead of kernel
 version parsing or trial and error).
 
 Support IGMPv3/MLDv2 multicast listener discovery protocols in bridge.
 
 Allow more than 255 IPv4 multicast interfaces.
 
 Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
 packets of TCPv6.
 
 In Multi-patch TCP (MPTCP) support concurrent transmission of data
 on multiple subflows in a load balancing scenario. Enhance advertising
 addresses via the RM_ADDR/ADD_ADDR options.
 
 Support SMC-Dv2 version of SMC, which enables multi-subnet deployments.
 
 Allow more calls to same peer in RxRPC.
 
 Support two new Controller Area Network (CAN) protocols -
 CAN-FD and ISO 15765-2:2016.
 
 Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
 kernel problem.
 
 Add TC actions for implementing MPLS L2 VPNs.
 
 Improve nexthop code - e.g. handle various corner cases when nexthop
 objects are removed from groups better, skip unnecessary notifications
 and make it easier to offload nexthops into HW by converting
 to a blocking notifier.
 
 Support adding and consuming TCP header options by BPF programs,
 opening the doors for easy experimental and deployment-specific
 TCP option use.
 
 Reorganize TCP congestion control (CC) initialization to simplify life
 of TCP CC implemented in BPF.
 
 Add support for shipping BPF programs with the kernel and loading them
 early on boot via the User Mode Driver mechanism, hence reusing all the
 user space infra we have.
 
 Support sleepable BPF programs, initially targeting LSM and tracing.
 
 Add bpf_d_path() helper for returning full path for given 'struct path'.
 
 Make bpf_tail_call compatible with bpf-to-bpf calls.
 
 Allow BPF programs to call map_update_elem on sockmaps.
 
 Add BPF Type Format (BTF) support for type and enum discovery, as
 well as support for using BTF within the kernel itself (current use
 is for pretty printing structures).
 
 Support listing and getting information about bpf_links via the bpf
 syscall.
 
 Enhance kernel interfaces around NIC firmware update. Allow specifying
 overwrite mask to control if settings etc. are reset during update;
 report expected max time operation may take to users; support firmware
 activation without machine reboot incl. limits of how much impact
 reset may have (e.g. dropping link or not).
 
 Extend ethtool configuration interface to report IEEE-standard
 counters, to limit the need for per-vendor logic in user space.
 
 Adopt or extend devlink use for debug, monitoring, fw update
 in many drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw,
 mv88e6xxx, dpaa2-eth).
 
 In mlxsw expose critical and emergency SFP module temperature alarms.
 Refactor port buffer handling to make the defaults more suitable and
 support setting these values explicitly via the DCBNL interface.
 
 Add XDP support for Intel's igb driver.
 
 Support offloading TC flower classification and filtering rules to
 mscc_ocelot switches.
 
 Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
 fixed interval period pulse generator and one-step timestamping in
 dpaa-eth.
 
 Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
 offload.
 
 Add Lynx PHY/PCS MDIO module, and convert various drivers which have
 this HW to use it. Convert mvpp2 to split PCS.
 
 Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
 7-port Mediatek MT7531 IP.
 
 Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
 and wcn3680 support in wcn36xx.
 
 Improve performance for packets which don't require much offloads
 on recent Mellanox NICs by 20% by making multiple packets share
 a descriptor entry.
 
 Move chelsio inline crypto drivers (for TLS and IPsec) from the crypto
 subtree to drivers/net. Move MDIO drivers out of the phy directory.
 
 Clean up a lot of W=1 warnings, reportedly the actively developed
 subsections of networking drivers should now build W=1 warning free.
 
 Make sure drivers don't use in_interrupt() to dynamically adapt their
 code. Convert tasklets to use new tasklet_setup API (sadly this
 conversion is not yet complete).
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl+ItRwACgkQMUZtbf5S
 IrtTMg//UxpdR/MirT1DatBU0K/UGAZY82hV7F/UC8tPgjfHZeHvWlDFxfi3YP81
 PtPKbhRZ7DhwBXefUp6nY3UdvjftrJK2lJm8prJUPSsZRye8Wlcb7y65q7/P2y2U
 Efucyopg6RUrmrM0DUsIGYGJgylQLHnMYUl/keCsD4t5Bp4ksyi9R2t5eitGoWzh
 r3QGdbSa0AuWx4iu0i+tqp6Tj0ekMBMXLVb35dtU1t0joj2KTNEnSgABN3prOa8E
 iWYf2erOau68Ogp3yU3miCy0ZU4p/7qGHTtzbcp677692P/ekak6+zmfHLT9/Pjy
 2Stq2z6GoKuVxdktr91D9pA3jxG4LxSJmr0TImcGnXbvkMP3Ez3g9RrpV5fn8j6F
 mZCH8TKZAoD5aJrAJAMkhZmLYE1pvDa7KolSk8WogXrbCnTEb5Nv8FHTS1Qnk3yl
 wSKXuvutFVNLMEHCnWQLtODbTST9DI/aOi6EctPpuOA/ZyL1v3pl+gfp37S+LUTe
 owMnT/7TdvKaTD0+gIyU53M6rAWTtr5YyRQorX9awIu/4Ha0F0gYD7BJZQUGtegp
 HzKt59NiSrFdbSH7UdyemdBF4LuCgIhS7rgfeoUXMXmuPHq7eHXyHZt5dzPPa/xP
 81P0MAvdpFVwg8ij2yp2sHS7sISIRKq17fd1tIewUabxQbjXqPc=
 =bc1U
 -----END PGP SIGNATURE-----

Merge tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:

 - Add redirect_neigh() BPF packet redirect helper, allowing to limit
   stack traversal in common container configs and improving TCP
   back-pressure.

   Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.

 - Expand netlink policy support and improve policy export to user
   space. (Ge)netlink core performs request validation according to
   declared policies. Expand the expressiveness of those policies
   (min/max length and bitmasks). Allow dumping policies for particular
   commands. This is used for feature discovery by user space (instead
   of kernel version parsing or trial and error).

 - Support IGMPv3/MLDv2 multicast listener discovery protocols in
   bridge.

 - Allow more than 255 IPv4 multicast interfaces.

 - Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
   packets of TCPv6.

 - In Multi-patch TCP (MPTCP) support concurrent transmission of data on
   multiple subflows in a load balancing scenario. Enhance advertising
   addresses via the RM_ADDR/ADD_ADDR options.

 - Support SMC-Dv2 version of SMC, which enables multi-subnet
   deployments.

 - Allow more calls to same peer in RxRPC.

 - Support two new Controller Area Network (CAN) protocols - CAN-FD and
   ISO 15765-2:2016.

 - Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
   kernel problem.

 - Add TC actions for implementing MPLS L2 VPNs.

 - Improve nexthop code - e.g. handle various corner cases when nexthop
   objects are removed from groups better, skip unnecessary
   notifications and make it easier to offload nexthops into HW by
   converting to a blocking notifier.

 - Support adding and consuming TCP header options by BPF programs,
   opening the doors for easy experimental and deployment-specific TCP
   option use.

 - Reorganize TCP congestion control (CC) initialization to simplify
   life of TCP CC implemented in BPF.

 - Add support for shipping BPF programs with the kernel and loading
   them early on boot via the User Mode Driver mechanism, hence reusing
   all the user space infra we have.

 - Support sleepable BPF programs, initially targeting LSM and tracing.

 - Add bpf_d_path() helper for returning full path for given 'struct
   path'.

 - Make bpf_tail_call compatible with bpf-to-bpf calls.

 - Allow BPF programs to call map_update_elem on sockmaps.

 - Add BPF Type Format (BTF) support for type and enum discovery, as
   well as support for using BTF within the kernel itself (current use
   is for pretty printing structures).

 - Support listing and getting information about bpf_links via the bpf
   syscall.

 - Enhance kernel interfaces around NIC firmware update. Allow
   specifying overwrite mask to control if settings etc. are reset
   during update; report expected max time operation may take to users;
   support firmware activation without machine reboot incl. limits of
   how much impact reset may have (e.g. dropping link or not).

 - Extend ethtool configuration interface to report IEEE-standard
   counters, to limit the need for per-vendor logic in user space.

 - Adopt or extend devlink use for debug, monitoring, fw update in many
   drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw, mv88e6xxx,
   dpaa2-eth).

 - In mlxsw expose critical and emergency SFP module temperature alarms.
   Refactor port buffer handling to make the defaults more suitable and
   support setting these values explicitly via the DCBNL interface.

 - Add XDP support for Intel's igb driver.

 - Support offloading TC flower classification and filtering rules to
   mscc_ocelot switches.

 - Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
   fixed interval period pulse generator and one-step timestamping in
   dpaa-eth.

 - Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
   offload.

 - Add Lynx PHY/PCS MDIO module, and convert various drivers which have
   this HW to use it. Convert mvpp2 to split PCS.

 - Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
   7-port Mediatek MT7531 IP.

 - Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
   and wcn3680 support in wcn36xx.

 - Improve performance for packets which don't require much offloads on
   recent Mellanox NICs by 20% by making multiple packets share a
   descriptor entry.

 - Move chelsio inline crypto drivers (for TLS and IPsec) from the
   crypto subtree to drivers/net. Move MDIO drivers out of the phy
   directory.

 - Clean up a lot of W=1 warnings, reportedly the actively developed
   subsections of networking drivers should now build W=1 warning free.

 - Make sure drivers don't use in_interrupt() to dynamically adapt their
   code. Convert tasklets to use new tasklet_setup API (sadly this
   conversion is not yet complete).

* tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2583 commits)
  Revert "bpfilter: Fix build error with CONFIG_BPFILTER_UMH"
  net, sockmap: Don't call bpf_prog_put() on NULL pointer
  bpf, selftest: Fix flaky tcp_hdr_options test when adding addr to lo
  bpf, sockmap: Add locking annotations to iterator
  netfilter: nftables: allow re-computing sctp CRC-32C in 'payload' statements
  net: fix pos incrementment in ipv6_route_seq_next
  net/smc: fix invalid return code in smcd_new_buf_create()
  net/smc: fix valid DMBE buffer sizes
  net/smc: fix use-after-free of delayed events
  bpfilter: Fix build error with CONFIG_BPFILTER_UMH
  cxgb4/ch_ipsec: Replace the module name to ch_ipsec from chcr
  net: sched: Fix suspicious RCU usage while accessing tcf_tunnel_info
  bpf: Fix register equivalence tracking.
  rxrpc: Fix loss of final ack on shutdown
  rxrpc: Fix bundle counting for exclusive connections
  netfilter: restore NF_INET_NUMHOOKS
  ibmveth: Identify ingress large send packets.
  ibmveth: Switch order of ibmveth_helper calls.
  cxgb4: handle 4-tuple PEDIT to NAT mode translation
  selftests: Add VRF route leaking tests
  ...
2020-10-15 18:42:13 -07:00

1955 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* IPv6 output functions
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
*
* Based on linux/net/ipv4/ip_output.c
*
* Changes:
* A.N.Kuznetsov : airthmetics in fragmentation.
* extension headers are implemented.
* route changes now work.
* ip6_forward does not confuse sniffers.
* etc.
*
* H. von Brand : Added missing #include <linux/string.h>
* Imran Patel : frag id should be in NBO
* Kazunori MIYAZAWA @USAGI
* : add ip6_append_data and related functions
* for datagram xmit
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/in6.h>
#include <linux/tcp.h>
#include <linux/route.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/bpf-cgroup.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv6.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
#include <net/protocol.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/rawv6.h>
#include <net/icmp.h>
#include <net/xfrm.h>
#include <net/checksum.h>
#include <linux/mroute6.h>
#include <net/l3mdev.h>
#include <net/lwtunnel.h>
#include <net/ip_tunnels.h>
static int ip6_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct net_device *dev = dst->dev;
const struct in6_addr *nexthop;
struct neighbour *neigh;
int ret;
if (ipv6_addr_is_multicast(&ipv6_hdr(skb)->daddr)) {
struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb));
if (!(dev->flags & IFF_LOOPBACK) && sk_mc_loop(sk) &&
((mroute6_is_socket(net, skb) &&
!(IP6CB(skb)->flags & IP6SKB_FORWARDED)) ||
ipv6_chk_mcast_addr(dev, &ipv6_hdr(skb)->daddr,
&ipv6_hdr(skb)->saddr))) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
/* Do not check for IFF_ALLMULTI; multicast routing
is not supported in any case.
*/
if (newskb)
NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING,
net, sk, newskb, NULL, newskb->dev,
dev_loopback_xmit);
if (ipv6_hdr(skb)->hop_limit == 0) {
IP6_INC_STATS(net, idev,
IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
return 0;
}
}
IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUTMCAST, skb->len);
if (IPV6_ADDR_MC_SCOPE(&ipv6_hdr(skb)->daddr) <=
IPV6_ADDR_SCOPE_NODELOCAL &&
!(dev->flags & IFF_LOOPBACK)) {
kfree_skb(skb);
return 0;
}
}
if (lwtunnel_xmit_redirect(dst->lwtstate)) {
int res = lwtunnel_xmit(skb);
if (res < 0 || res == LWTUNNEL_XMIT_DONE)
return res;
}
rcu_read_lock_bh();
nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
if (unlikely(!neigh))
neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
if (!IS_ERR(neigh)) {
sock_confirm_neigh(skb, neigh);
ret = neigh_output(neigh, skb, false);
rcu_read_unlock_bh();
return ret;
}
rcu_read_unlock_bh();
IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
kfree_skb(skb);
return -EINVAL;
}
static int __ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
/* Policy lookup after SNAT yielded a new policy */
if (skb_dst(skb)->xfrm) {
IPCB(skb)->flags |= IPSKB_REROUTED;
return dst_output(net, sk, skb);
}
#endif
if ((skb->len > ip6_skb_dst_mtu(skb) && !skb_is_gso(skb)) ||
dst_allfrag(skb_dst(skb)) ||
(IP6CB(skb)->frag_max_size && skb->len > IP6CB(skb)->frag_max_size))
return ip6_fragment(net, sk, skb, ip6_finish_output2);
else
return ip6_finish_output2(net, sk, skb);
}
static int ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
int ret;
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
switch (ret) {
case NET_XMIT_SUCCESS:
return __ip6_finish_output(net, sk, skb);
case NET_XMIT_CN:
return __ip6_finish_output(net, sk, skb) ? : ret;
default:
kfree_skb(skb);
return ret;
}
}
int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb));
skb->protocol = htons(ETH_P_IPV6);
skb->dev = dev;
if (unlikely(idev->cnf.disable_ipv6)) {
IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
return 0;
}
return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
net, sk, skb, indev, dev,
ip6_finish_output,
!(IP6CB(skb)->flags & IP6SKB_REROUTED));
}
bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np)
{
if (!np->autoflowlabel_set)
return ip6_default_np_autolabel(net);
else
return np->autoflowlabel;
}
/*
* xmit an sk_buff (used by TCP, SCTP and DCCP)
* Note : socket lock is not held for SYNACK packets, but might be modified
* by calls to skb_set_owner_w() and ipv6_local_error(),
* which are using proper atomic operations or spinlocks.
*/
int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
__u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority)
{
struct net *net = sock_net(sk);
const struct ipv6_pinfo *np = inet6_sk(sk);
struct in6_addr *first_hop = &fl6->daddr;
struct dst_entry *dst = skb_dst(skb);
unsigned int head_room;
struct ipv6hdr *hdr;
u8 proto = fl6->flowi6_proto;
int seg_len = skb->len;
int hlimit = -1;
u32 mtu;
head_room = sizeof(struct ipv6hdr) + LL_RESERVED_SPACE(dst->dev);
if (opt)
head_room += opt->opt_nflen + opt->opt_flen;
if (unlikely(skb_headroom(skb) < head_room)) {
struct sk_buff *skb2 = skb_realloc_headroom(skb, head_room);
if (!skb2) {
IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
return -ENOBUFS;
}
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
consume_skb(skb);
skb = skb2;
}
if (opt) {
seg_len += opt->opt_nflen + opt->opt_flen;
if (opt->opt_flen)
ipv6_push_frag_opts(skb, opt, &proto);
if (opt->opt_nflen)
ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop,
&fl6->saddr);
}
skb_push(skb, sizeof(struct ipv6hdr));
skb_reset_network_header(skb);
hdr = ipv6_hdr(skb);
/*
* Fill in the IPv6 header
*/
if (np)
hlimit = np->hop_limit;
if (hlimit < 0)
hlimit = ip6_dst_hoplimit(dst);
ip6_flow_hdr(hdr, tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel,
ip6_autoflowlabel(net, np), fl6));
hdr->payload_len = htons(seg_len);
hdr->nexthdr = proto;
hdr->hop_limit = hlimit;
hdr->saddr = fl6->saddr;
hdr->daddr = *first_hop;
skb->protocol = htons(ETH_P_IPV6);
skb->priority = priority;
skb->mark = mark;
mtu = dst_mtu(dst);
if ((skb->len <= mtu) || skb->ignore_df || skb_is_gso(skb)) {
IP6_UPD_PO_STATS(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_OUT, skb->len);
/* if egress device is enslaved to an L3 master device pass the
* skb to its handler for processing
*/
skb = l3mdev_ip6_out((struct sock *)sk, skb);
if (unlikely(!skb))
return 0;
/* hooks should never assume socket lock is held.
* we promote our socket to non const
*/
return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT,
net, (struct sock *)sk, skb, NULL, dst->dev,
dst_output);
}
skb->dev = dst->dev;
/* ipv6_local_error() does not require socket lock,
* we promote our socket to non const
*/
ipv6_local_error((struct sock *)sk, EMSGSIZE, fl6, mtu);
IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS);
kfree_skb(skb);
return -EMSGSIZE;
}
EXPORT_SYMBOL(ip6_xmit);
static int ip6_call_ra_chain(struct sk_buff *skb, int sel)
{
struct ip6_ra_chain *ra;
struct sock *last = NULL;
read_lock(&ip6_ra_lock);
for (ra = ip6_ra_chain; ra; ra = ra->next) {
struct sock *sk = ra->sk;
if (sk && ra->sel == sel &&
(!sk->sk_bound_dev_if ||
sk->sk_bound_dev_if == skb->dev->ifindex)) {
struct ipv6_pinfo *np = inet6_sk(sk);
if (np && np->rtalert_isolate &&
!net_eq(sock_net(sk), dev_net(skb->dev))) {
continue;
}
if (last) {
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2)
rawv6_rcv(last, skb2);
}
last = sk;
}
}
if (last) {
rawv6_rcv(last, skb);
read_unlock(&ip6_ra_lock);
return 1;
}
read_unlock(&ip6_ra_lock);
return 0;
}
static int ip6_forward_proxy_check(struct sk_buff *skb)
{
struct ipv6hdr *hdr = ipv6_hdr(skb);
u8 nexthdr = hdr->nexthdr;
__be16 frag_off;
int offset;
if (ipv6_ext_hdr(nexthdr)) {
offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off);
if (offset < 0)
return 0;
} else
offset = sizeof(struct ipv6hdr);
if (nexthdr == IPPROTO_ICMPV6) {
struct icmp6hdr *icmp6;
if (!pskb_may_pull(skb, (skb_network_header(skb) +
offset + 1 - skb->data)))
return 0;
icmp6 = (struct icmp6hdr *)(skb_network_header(skb) + offset);
switch (icmp6->icmp6_type) {
case NDISC_ROUTER_SOLICITATION:
case NDISC_ROUTER_ADVERTISEMENT:
case NDISC_NEIGHBOUR_SOLICITATION:
case NDISC_NEIGHBOUR_ADVERTISEMENT:
case NDISC_REDIRECT:
/* For reaction involving unicast neighbor discovery
* message destined to the proxied address, pass it to
* input function.
*/
return 1;
default:
break;
}
}
/*
* The proxying router can't forward traffic sent to a link-local
* address, so signal the sender and discard the packet. This
* behavior is clarified by the MIPv6 specification.
*/
if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) {
dst_link_failure(skb);
return -1;
}
return 0;
}
static inline int ip6_forward_finish(struct net *net, struct sock *sk,
struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
__IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS);
__IP6_ADD_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTOCTETS, skb->len);
#ifdef CONFIG_NET_SWITCHDEV
if (skb->offload_l3_fwd_mark) {
consume_skb(skb);
return 0;
}
#endif
skb->tstamp = 0;
return dst_output(net, sk, skb);
}
static bool ip6_pkt_too_big(const struct sk_buff *skb, unsigned int mtu)
{
if (skb->len <= mtu)
return false;
/* ipv6 conntrack defrag sets max_frag_size + ignore_df */
if (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu)
return true;
if (skb->ignore_df)
return false;
if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu))
return false;
return true;
}
int ip6_forward(struct sk_buff *skb)
{
struct inet6_dev *idev = __in6_dev_get_safely(skb->dev);
struct dst_entry *dst = skb_dst(skb);
struct ipv6hdr *hdr = ipv6_hdr(skb);
struct inet6_skb_parm *opt = IP6CB(skb);
struct net *net = dev_net(dst->dev);
u32 mtu;
if (net->ipv6.devconf_all->forwarding == 0)
goto error;
if (skb->pkt_type != PACKET_HOST)
goto drop;
if (unlikely(skb->sk))
goto drop;
if (skb_warn_if_lro(skb))
goto drop;
if (!xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) {
__IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS);
goto drop;
}
skb_forward_csum(skb);
/*
* We DO NOT make any processing on
* RA packets, pushing them to user level AS IS
* without ane WARRANTY that application will be able
* to interpret them. The reason is that we
* cannot make anything clever here.
*
* We are not end-node, so that if packet contains
* AH/ESP, we cannot make anything.
* Defragmentation also would be mistake, RA packets
* cannot be fragmented, because there is no warranty
* that different fragments will go along one path. --ANK
*/
if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) {
if (ip6_call_ra_chain(skb, ntohs(opt->ra)))
return 0;
}
/*
* check and decrement ttl
*/
if (hdr->hop_limit <= 1) {
icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0);
__IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS);
kfree_skb(skb);
return -ETIMEDOUT;
}
/* XXX: idev->cnf.proxy_ndp? */
if (net->ipv6.devconf_all->proxy_ndp &&
pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) {
int proxied = ip6_forward_proxy_check(skb);
if (proxied > 0)
return ip6_input(skb);
else if (proxied < 0) {
__IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS);
goto drop;
}
}
if (!xfrm6_route_forward(skb)) {
__IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS);
goto drop;
}
dst = skb_dst(skb);
/* IPv6 specs say nothing about it, but it is clear that we cannot
send redirects to source routed frames.
We don't send redirects to frames decapsulated from IPsec.
*/
if (IP6CB(skb)->iif == dst->dev->ifindex &&
opt->srcrt == 0 && !skb_sec_path(skb)) {
struct in6_addr *target = NULL;
struct inet_peer *peer;
struct rt6_info *rt;
/*
* incoming and outgoing devices are the same
* send a redirect.
*/
rt = (struct rt6_info *) dst;
if (rt->rt6i_flags & RTF_GATEWAY)
target = &rt->rt6i_gateway;
else
target = &hdr->daddr;
peer = inet_getpeer_v6(net->ipv6.peers, &hdr->daddr, 1);
/* Limit redirects both by destination (here)
and by source (inside ndisc_send_redirect)
*/
if (inet_peer_xrlim_allow(peer, 1*HZ))
ndisc_send_redirect(skb, target);
if (peer)
inet_putpeer(peer);
} else {
int addrtype = ipv6_addr_type(&hdr->saddr);
/* This check is security critical. */
if (addrtype == IPV6_ADDR_ANY ||
addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK))
goto error;
if (addrtype & IPV6_ADDR_LINKLOCAL) {
icmpv6_send(skb, ICMPV6_DEST_UNREACH,
ICMPV6_NOT_NEIGHBOUR, 0);
goto error;
}
}
mtu = ip6_dst_mtu_forward(dst);
if (mtu < IPV6_MIN_MTU)
mtu = IPV6_MIN_MTU;
if (ip6_pkt_too_big(skb, mtu)) {
/* Again, force OUTPUT device used as source address */
skb->dev = dst->dev;
icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu);
__IP6_INC_STATS(net, idev, IPSTATS_MIB_INTOOBIGERRORS);
__IP6_INC_STATS(net, ip6_dst_idev(dst),
IPSTATS_MIB_FRAGFAILS);
kfree_skb(skb);
return -EMSGSIZE;
}
if (skb_cow(skb, dst->dev->hard_header_len)) {
__IP6_INC_STATS(net, ip6_dst_idev(dst),
IPSTATS_MIB_OUTDISCARDS);
goto drop;
}
hdr = ipv6_hdr(skb);
/* Mangling hops number delayed to point after skb COW */
hdr->hop_limit--;
return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD,
net, NULL, skb, skb->dev, dst->dev,
ip6_forward_finish);
error:
__IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS);
drop:
kfree_skb(skb);
return -EINVAL;
}
static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from)
{
to->pkt_type = from->pkt_type;
to->priority = from->priority;
to->protocol = from->protocol;
skb_dst_drop(to);
skb_dst_set(to, dst_clone(skb_dst(from)));
to->dev = from->dev;
to->mark = from->mark;
skb_copy_hash(to, from);
#ifdef CONFIG_NET_SCHED
to->tc_index = from->tc_index;
#endif
nf_copy(to, from);
skb_ext_copy(to, from);
skb_copy_secmark(to, from);
}
int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
u8 nexthdr, __be32 frag_id,
struct ip6_fraglist_iter *iter)
{
unsigned int first_len;
struct frag_hdr *fh;
/* BUILD HEADER */
*prevhdr = NEXTHDR_FRAGMENT;
iter->tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC);
if (!iter->tmp_hdr)
return -ENOMEM;
iter->frag = skb_shinfo(skb)->frag_list;
skb_frag_list_init(skb);
iter->offset = 0;
iter->hlen = hlen;
iter->frag_id = frag_id;
iter->nexthdr = nexthdr;
__skb_pull(skb, hlen);
fh = __skb_push(skb, sizeof(struct frag_hdr));
__skb_push(skb, hlen);
skb_reset_network_header(skb);
memcpy(skb_network_header(skb), iter->tmp_hdr, hlen);
fh->nexthdr = nexthdr;
fh->reserved = 0;
fh->frag_off = htons(IP6_MF);
fh->identification = frag_id;
first_len = skb_pagelen(skb);
skb->data_len = first_len - skb_headlen(skb);
skb->len = first_len;
ipv6_hdr(skb)->payload_len = htons(first_len - sizeof(struct ipv6hdr));
return 0;
}
EXPORT_SYMBOL(ip6_fraglist_init);
void ip6_fraglist_prepare(struct sk_buff *skb,
struct ip6_fraglist_iter *iter)
{
struct sk_buff *frag = iter->frag;
unsigned int hlen = iter->hlen;
struct frag_hdr *fh;
frag->ip_summed = CHECKSUM_NONE;
skb_reset_transport_header(frag);
fh = __skb_push(frag, sizeof(struct frag_hdr));
__skb_push(frag, hlen);
skb_reset_network_header(frag);
memcpy(skb_network_header(frag), iter->tmp_hdr, hlen);
iter->offset += skb->len - hlen - sizeof(struct frag_hdr);
fh->nexthdr = iter->nexthdr;
fh->reserved = 0;
fh->frag_off = htons(iter->offset);
if (frag->next)
fh->frag_off |= htons(IP6_MF);
fh->identification = iter->frag_id;
ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr));
ip6_copy_metadata(frag, skb);
}
EXPORT_SYMBOL(ip6_fraglist_prepare);
void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state)
{
state->prevhdr = prevhdr;
state->nexthdr = nexthdr;
state->frag_id = frag_id;
state->hlen = hlen;
state->mtu = mtu;
state->left = skb->len - hlen; /* Space per frame */
state->ptr = hlen; /* Where to start from */
state->hroom = hdr_room;
state->troom = needed_tailroom;
state->offset = 0;
}
EXPORT_SYMBOL(ip6_frag_init);
struct sk_buff *ip6_frag_next(struct sk_buff *skb, struct ip6_frag_state *state)
{
u8 *prevhdr = state->prevhdr, *fragnexthdr_offset;
struct sk_buff *frag;
struct frag_hdr *fh;
unsigned int len;
len = state->left;
/* IF: it doesn't fit, use 'mtu' - the data space left */
if (len > state->mtu)
len = state->mtu;
/* IF: we are not sending up to and including the packet end
then align the next start on an eight byte boundary */
if (len < state->left)
len &= ~7;
/* Allocate buffer */
frag = alloc_skb(len + state->hlen + sizeof(struct frag_hdr) +
state->hroom + state->troom, GFP_ATOMIC);
if (!frag)
return ERR_PTR(-ENOMEM);
/*
* Set up data on packet
*/
ip6_copy_metadata(frag, skb);
skb_reserve(frag, state->hroom);
skb_put(frag, len + state->hlen + sizeof(struct frag_hdr));
skb_reset_network_header(frag);
fh = (struct frag_hdr *)(skb_network_header(frag) + state->hlen);
frag->transport_header = (frag->network_header + state->hlen +
sizeof(struct frag_hdr));
/*
* Charge the memory for the fragment to any owner
* it might possess
*/
if (skb->sk)
skb_set_owner_w(frag, skb->sk);
/*
* Copy the packet header into the new buffer.
*/
skb_copy_from_linear_data(skb, skb_network_header(frag), state->hlen);
fragnexthdr_offset = skb_network_header(frag);
fragnexthdr_offset += prevhdr - skb_network_header(skb);
*fragnexthdr_offset = NEXTHDR_FRAGMENT;
/*
* Build fragment header.
*/
fh->nexthdr = state->nexthdr;
fh->reserved = 0;
fh->identification = state->frag_id;
/*
* Copy a block of the IP datagram.
*/
BUG_ON(skb_copy_bits(skb, state->ptr, skb_transport_header(frag),
len));
state->left -= len;
fh->frag_off = htons(state->offset);
if (state->left > 0)
fh->frag_off |= htons(IP6_MF);
ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr));
state->ptr += len;
state->offset += len;
return frag;
}
EXPORT_SYMBOL(ip6_frag_next);
int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
int (*output)(struct net *, struct sock *, struct sk_buff *))
{
struct sk_buff *frag;
struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ?
inet6_sk(skb->sk) : NULL;
struct ip6_frag_state state;
unsigned int mtu, hlen, nexthdr_offset;
ktime_t tstamp = skb->tstamp;
int hroom, err = 0;
__be32 frag_id;
u8 *prevhdr, nexthdr = 0;
err = ip6_find_1stfragopt(skb, &prevhdr);
if (err < 0)
goto fail;
hlen = err;
nexthdr = *prevhdr;
nexthdr_offset = prevhdr - skb_network_header(skb);
mtu = ip6_skb_dst_mtu(skb);
/* We must not fragment if the socket is set to force MTU discovery
* or if the skb it not generated by a local socket.
*/
if (unlikely(!skb->ignore_df && skb->len > mtu))
goto fail_toobig;
if (IP6CB(skb)->frag_max_size) {
if (IP6CB(skb)->frag_max_size > mtu)
goto fail_toobig;
/* don't send fragments larger than what we received */
mtu = IP6CB(skb)->frag_max_size;
if (mtu < IPV6_MIN_MTU)
mtu = IPV6_MIN_MTU;
}
if (np && np->frag_size < mtu) {
if (np->frag_size)
mtu = np->frag_size;
}
if (mtu < hlen + sizeof(struct frag_hdr) + 8)
goto fail_toobig;
mtu -= hlen + sizeof(struct frag_hdr);
frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr,
&ipv6_hdr(skb)->saddr);
if (skb->ip_summed == CHECKSUM_PARTIAL &&
(err = skb_checksum_help(skb)))
goto fail;
prevhdr = skb_network_header(skb) + nexthdr_offset;
hroom = LL_RESERVED_SPACE(rt->dst.dev);
if (skb_has_frag_list(skb)) {
unsigned int first_len = skb_pagelen(skb);
struct ip6_fraglist_iter iter;
struct sk_buff *frag2;
if (first_len - hlen > mtu ||
((first_len - hlen) & 7) ||
skb_cloned(skb) ||
skb_headroom(skb) < (hroom + sizeof(struct frag_hdr)))
goto slow_path;
skb_walk_frags(skb, frag) {
/* Correct geometry. */
if (frag->len > mtu ||
((frag->len & 7) && frag->next) ||
skb_headroom(frag) < (hlen + hroom + sizeof(struct frag_hdr)))
goto slow_path_clean;
/* Partially cloned skb? */
if (skb_shared(frag))
goto slow_path_clean;
BUG_ON(frag->sk);
if (skb->sk) {
frag->sk = skb->sk;
frag->destructor = sock_wfree;
}
skb->truesize -= frag->truesize;
}
err = ip6_fraglist_init(skb, hlen, prevhdr, nexthdr, frag_id,
&iter);
if (err < 0)
goto fail;
for (;;) {
/* Prepare header of the next frame,
* before previous one went down. */
if (iter.frag)
ip6_fraglist_prepare(skb, &iter);
skb->tstamp = tstamp;
err = output(net, sk, skb);
if (!err)
IP6_INC_STATS(net, ip6_dst_idev(&rt->dst),
IPSTATS_MIB_FRAGCREATES);
if (err || !iter.frag)
break;
skb = ip6_fraglist_next(&iter);
}
kfree(iter.tmp_hdr);
if (err == 0) {
IP6_INC_STATS(net, ip6_dst_idev(&rt->dst),
IPSTATS_MIB_FRAGOKS);
return 0;
}
kfree_skb_list(iter.frag);
IP6_INC_STATS(net, ip6_dst_idev(&rt->dst),
IPSTATS_MIB_FRAGFAILS);
return err;
slow_path_clean:
skb_walk_frags(skb, frag2) {
if (frag2 == frag)
break;
frag2->sk = NULL;
frag2->destructor = NULL;
skb->truesize += frag2->truesize;
}
}
slow_path:
/*
* Fragment the datagram.
*/
ip6_frag_init(skb, hlen, mtu, rt->dst.dev->needed_tailroom,
LL_RESERVED_SPACE(rt->dst.dev), prevhdr, nexthdr, frag_id,
&state);
/*
* Keep copying data until we run out.
*/
while (state.left > 0) {
frag = ip6_frag_next(skb, &state);
if (IS_ERR(frag)) {
err = PTR_ERR(frag);
goto fail;
}
/*
* Put this fragment into the sending queue.
*/
frag->tstamp = tstamp;
err = output(net, sk, frag);
if (err)
goto fail;
IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_FRAGCREATES);
}
IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_FRAGOKS);
consume_skb(skb);
return err;
fail_toobig:
if (skb->sk && dst_allfrag(skb_dst(skb)))
sk_nocaps_add(skb->sk, NETIF_F_GSO_MASK);
icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu);
err = -EMSGSIZE;
fail:
IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_FRAGFAILS);
kfree_skb(skb);
return err;
}
static inline int ip6_rt_check(const struct rt6key *rt_key,
const struct in6_addr *fl_addr,
const struct in6_addr *addr_cache)
{
return (rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) &&
(!addr_cache || !ipv6_addr_equal(fl_addr, addr_cache));
}
static struct dst_entry *ip6_sk_dst_check(struct sock *sk,
struct dst_entry *dst,
const struct flowi6 *fl6)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct rt6_info *rt;
if (!dst)
goto out;
if (dst->ops->family != AF_INET6) {
dst_release(dst);
return NULL;
}
rt = (struct rt6_info *)dst;
/* Yes, checking route validity in not connected
* case is not very simple. Take into account,
* that we do not support routing by source, TOS,
* and MSG_DONTROUTE --ANK (980726)
*
* 1. ip6_rt_check(): If route was host route,
* check that cached destination is current.
* If it is network route, we still may
* check its validity using saved pointer
* to the last used address: daddr_cache.
* We do not want to save whole address now,
* (because main consumer of this service
* is tcp, which has not this problem),
* so that the last trick works only on connected
* sockets.
* 2. oif also should be the same.
*/
if (ip6_rt_check(&rt->rt6i_dst, &fl6->daddr, np->daddr_cache) ||
#ifdef CONFIG_IPV6_SUBTREES
ip6_rt_check(&rt->rt6i_src, &fl6->saddr, np->saddr_cache) ||
#endif
(!(fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) &&
(fl6->flowi6_oif && fl6->flowi6_oif != dst->dev->ifindex))) {
dst_release(dst);
dst = NULL;
}
out:
return dst;
}
static int ip6_dst_lookup_tail(struct net *net, const struct sock *sk,
struct dst_entry **dst, struct flowi6 *fl6)
{
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
struct neighbour *n;
struct rt6_info *rt;
#endif
int err;
int flags = 0;
/* The correct way to handle this would be to do
* ip6_route_get_saddr, and then ip6_route_output; however,
* the route-specific preferred source forces the
* ip6_route_output call _before_ ip6_route_get_saddr.
*
* In source specific routing (no src=any default route),
* ip6_route_output will fail given src=any saddr, though, so
* that's why we try it again later.
*/
if (ipv6_addr_any(&fl6->saddr) && (!*dst || !(*dst)->error)) {
struct fib6_info *from;
struct rt6_info *rt;
bool had_dst = *dst != NULL;
if (!had_dst)
*dst = ip6_route_output(net, sk, fl6);
rt = (*dst)->error ? NULL : (struct rt6_info *)*dst;
rcu_read_lock();
from = rt ? rcu_dereference(rt->from) : NULL;
err = ip6_route_get_saddr(net, from, &fl6->daddr,
sk ? inet6_sk(sk)->srcprefs : 0,
&fl6->saddr);
rcu_read_unlock();
if (err)
goto out_err_release;
/* If we had an erroneous initial result, pretend it
* never existed and let the SA-enabled version take
* over.
*/
if (!had_dst && (*dst)->error) {
dst_release(*dst);
*dst = NULL;
}
if (fl6->flowi6_oif)
flags |= RT6_LOOKUP_F_IFACE;
}
if (!*dst)
*dst = ip6_route_output_flags(net, sk, fl6, flags);
err = (*dst)->error;
if (err)
goto out_err_release;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
/*
* Here if the dst entry we've looked up
* has a neighbour entry that is in the INCOMPLETE
* state and the src address from the flow is
* marked as OPTIMISTIC, we release the found
* dst entry and replace it instead with the
* dst entry of the nexthop router
*/
rt = (struct rt6_info *) *dst;
rcu_read_lock_bh();
n = __ipv6_neigh_lookup_noref(rt->dst.dev,
rt6_nexthop(rt, &fl6->daddr));
err = n && !(n->nud_state & NUD_VALID) ? -EINVAL : 0;
rcu_read_unlock_bh();
if (err) {
struct inet6_ifaddr *ifp;
struct flowi6 fl_gw6;
int redirect;
ifp = ipv6_get_ifaddr(net, &fl6->saddr,
(*dst)->dev, 1);
redirect = (ifp && ifp->flags & IFA_F_OPTIMISTIC);
if (ifp)
in6_ifa_put(ifp);
if (redirect) {
/*
* We need to get the dst entry for the
* default router instead
*/
dst_release(*dst);
memcpy(&fl_gw6, fl6, sizeof(struct flowi6));
memset(&fl_gw6.daddr, 0, sizeof(struct in6_addr));
*dst = ip6_route_output(net, sk, &fl_gw6);
err = (*dst)->error;
if (err)
goto out_err_release;
}
}
#endif
if (ipv6_addr_v4mapped(&fl6->saddr) &&
!(ipv6_addr_v4mapped(&fl6->daddr) || ipv6_addr_any(&fl6->daddr))) {
err = -EAFNOSUPPORT;
goto out_err_release;
}
return 0;
out_err_release:
dst_release(*dst);
*dst = NULL;
if (err == -ENETUNREACH)
IP6_INC_STATS(net, NULL, IPSTATS_MIB_OUTNOROUTES);
return err;
}
/**
* ip6_dst_lookup - perform route lookup on flow
* @net: Network namespace to perform lookup in
* @sk: socket which provides route info
* @dst: pointer to dst_entry * for result
* @fl6: flow to lookup
*
* This function performs a route lookup on the given flow.
*
* It returns zero on success, or a standard errno code on error.
*/
int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
struct flowi6 *fl6)
{
*dst = NULL;
return ip6_dst_lookup_tail(net, sk, dst, fl6);
}
EXPORT_SYMBOL_GPL(ip6_dst_lookup);
/**
* ip6_dst_lookup_flow - perform route lookup on flow with ipsec
* @net: Network namespace to perform lookup in
* @sk: socket which provides route info
* @fl6: flow to lookup
* @final_dst: final destination address for ipsec lookup
*
* This function performs a route lookup on the given flow.
*
* It returns a valid dst pointer on success, or a pointer encoded
* error code.
*/
struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
const struct in6_addr *final_dst)
{
struct dst_entry *dst = NULL;
int err;
err = ip6_dst_lookup_tail(net, sk, &dst, fl6);
if (err)
return ERR_PTR(err);
if (final_dst)
fl6->daddr = *final_dst;
return xfrm_lookup_route(net, dst, flowi6_to_flowi(fl6), sk, 0);
}
EXPORT_SYMBOL_GPL(ip6_dst_lookup_flow);
/**
* ip6_sk_dst_lookup_flow - perform socket cached route lookup on flow
* @sk: socket which provides the dst cache and route info
* @fl6: flow to lookup
* @final_dst: final destination address for ipsec lookup
* @connected: whether @sk is connected or not
*
* This function performs a route lookup on the given flow with the
* possibility of using the cached route in the socket if it is valid.
* It will take the socket dst lock when operating on the dst cache.
* As a result, this function can only be used in process context.
*
* In addition, for a connected socket, cache the dst in the socket
* if the current cache is not valid.
*
* It returns a valid dst pointer on success, or a pointer encoded
* error code.
*/
struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
const struct in6_addr *final_dst,
bool connected)
{
struct dst_entry *dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie);
dst = ip6_sk_dst_check(sk, dst, fl6);
if (dst)
return dst;
dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_dst);
if (connected && !IS_ERR(dst))
ip6_sk_dst_store_flow(sk, dst_clone(dst), fl6);
return dst;
}
EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup_flow);
/**
* ip6_dst_lookup_tunnel - perform route lookup on tunnel
* @skb: Packet for which lookup is done
* @dev: Tunnel device
* @net: Network namespace of tunnel device
* @sock: Socket which provides route info
* @saddr: Memory to store the src ip address
* @info: Tunnel information
* @protocol: IP protocol
* @use_cache: Flag to enable cache usage
* This function performs a route lookup on a tunnel
*
* It returns a valid dst pointer and stores src address to be used in
* tunnel in param saddr on success, else a pointer encoded error code.
*/
struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb,
struct net_device *dev,
struct net *net,
struct socket *sock,
struct in6_addr *saddr,
const struct ip_tunnel_info *info,
u8 protocol,
bool use_cache)
{
struct dst_entry *dst = NULL;
#ifdef CONFIG_DST_CACHE
struct dst_cache *dst_cache;
#endif
struct flowi6 fl6;
__u8 prio;
#ifdef CONFIG_DST_CACHE
dst_cache = (struct dst_cache *)&info->dst_cache;
if (use_cache) {
dst = dst_cache_get_ip6(dst_cache, saddr);
if (dst)
return dst;
}
#endif
memset(&fl6, 0, sizeof(fl6));
fl6.flowi6_mark = skb->mark;
fl6.flowi6_proto = protocol;
fl6.daddr = info->key.u.ipv6.dst;
fl6.saddr = info->key.u.ipv6.src;
prio = info->key.tos;
fl6.flowlabel = ip6_make_flowinfo(RT_TOS(prio),
info->key.label);
dst = ipv6_stub->ipv6_dst_lookup_flow(net, sock->sk, &fl6,
NULL);
if (IS_ERR(dst)) {
netdev_dbg(dev, "no route to %pI6\n", &fl6.daddr);
return ERR_PTR(-ENETUNREACH);
}
if (dst->dev == dev) { /* is this necessary? */
netdev_dbg(dev, "circular route to %pI6\n", &fl6.daddr);
dst_release(dst);
return ERR_PTR(-ELOOP);
}
#ifdef CONFIG_DST_CACHE
if (use_cache)
dst_cache_set_ip6(dst_cache, dst, &fl6.saddr);
#endif
*saddr = fl6.saddr;
return dst;
}
EXPORT_SYMBOL_GPL(ip6_dst_lookup_tunnel);
static inline struct ipv6_opt_hdr *ip6_opt_dup(struct ipv6_opt_hdr *src,
gfp_t gfp)
{
return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL;
}
static inline struct ipv6_rt_hdr *ip6_rthdr_dup(struct ipv6_rt_hdr *src,
gfp_t gfp)
{
return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL;
}
static void ip6_append_data_mtu(unsigned int *mtu,
int *maxfraglen,
unsigned int fragheaderlen,
struct sk_buff *skb,
struct rt6_info *rt,
unsigned int orig_mtu)
{
if (!(rt->dst.flags & DST_XFRM_TUNNEL)) {
if (!skb) {
/* first fragment, reserve header_len */
*mtu = orig_mtu - rt->dst.header_len;
} else {
/*
* this fragment is not first, the headers
* space is regarded as data space.
*/
*mtu = orig_mtu;
}
*maxfraglen = ((*mtu - fragheaderlen) & ~7)
+ fragheaderlen - sizeof(struct frag_hdr);
}
}
static int ip6_setup_cork(struct sock *sk, struct inet_cork_full *cork,
struct inet6_cork *v6_cork, struct ipcm6_cookie *ipc6,
struct rt6_info *rt, struct flowi6 *fl6)
{
struct ipv6_pinfo *np = inet6_sk(sk);
unsigned int mtu;
struct ipv6_txoptions *opt = ipc6->opt;
/*
* setup for corking
*/
if (opt) {
if (WARN_ON(v6_cork->opt))
return -EINVAL;
v6_cork->opt = kzalloc(sizeof(*opt), sk->sk_allocation);
if (unlikely(!v6_cork->opt))
return -ENOBUFS;
v6_cork->opt->tot_len = sizeof(*opt);
v6_cork->opt->opt_flen = opt->opt_flen;
v6_cork->opt->opt_nflen = opt->opt_nflen;
v6_cork->opt->dst0opt = ip6_opt_dup(opt->dst0opt,
sk->sk_allocation);
if (opt->dst0opt && !v6_cork->opt->dst0opt)
return -ENOBUFS;
v6_cork->opt->dst1opt = ip6_opt_dup(opt->dst1opt,
sk->sk_allocation);
if (opt->dst1opt && !v6_cork->opt->dst1opt)
return -ENOBUFS;
v6_cork->opt->hopopt = ip6_opt_dup(opt->hopopt,
sk->sk_allocation);
if (opt->hopopt && !v6_cork->opt->hopopt)
return -ENOBUFS;
v6_cork->opt->srcrt = ip6_rthdr_dup(opt->srcrt,
sk->sk_allocation);
if (opt->srcrt && !v6_cork->opt->srcrt)
return -ENOBUFS;
/* need source address above miyazawa*/
}
dst_hold(&rt->dst);
cork->base.dst = &rt->dst;
cork->fl.u.ip6 = *fl6;
v6_cork->hop_limit = ipc6->hlimit;
v6_cork->tclass = ipc6->tclass;
if (rt->dst.flags & DST_XFRM_TUNNEL)
mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ?
READ_ONCE(rt->dst.dev->mtu) : dst_mtu(&rt->dst);
else
mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ?
READ_ONCE(rt->dst.dev->mtu) : dst_mtu(xfrm_dst_path(&rt->dst));
if (np->frag_size < mtu) {
if (np->frag_size)
mtu = np->frag_size;
}
if (mtu < IPV6_MIN_MTU)
return -EINVAL;
cork->base.fragsize = mtu;
cork->base.gso_size = ipc6->gso_size;
cork->base.tx_flags = 0;
cork->base.mark = ipc6->sockc.mark;
sock_tx_timestamp(sk, ipc6->sockc.tsflags, &cork->base.tx_flags);
if (dst_allfrag(xfrm_dst_path(&rt->dst)))
cork->base.flags |= IPCORK_ALLFRAG;
cork->base.length = 0;
cork->base.transmit_time = ipc6->sockc.transmit_time;
return 0;
}
static int __ip6_append_data(struct sock *sk,
struct flowi6 *fl6,
struct sk_buff_head *queue,
struct inet_cork *cork,
struct inet6_cork *v6_cork,
struct page_frag *pfrag,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
unsigned int flags, struct ipcm6_cookie *ipc6)
{
struct sk_buff *skb, *skb_prev = NULL;
unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu, pmtu;
struct ubuf_info *uarg = NULL;
int exthdrlen = 0;
int dst_exthdrlen = 0;
int hh_len;
int copy;
int err;
int offset = 0;
u32 tskey = 0;
struct rt6_info *rt = (struct rt6_info *)cork->dst;
struct ipv6_txoptions *opt = v6_cork->opt;
int csummode = CHECKSUM_NONE;
unsigned int maxnonfragsize, headersize;
unsigned int wmem_alloc_delta = 0;
bool paged, extra_uref = false;
skb = skb_peek_tail(queue);
if (!skb) {
exthdrlen = opt ? opt->opt_flen : 0;
dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len;
}
paged = !!cork->gso_size;
mtu = cork->gso_size ? IP6_MAX_MTU : cork->fragsize;
orig_mtu = mtu;
if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
tskey = sk->sk_tskey++;
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len +
(opt ? opt->opt_nflen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen -
sizeof(struct frag_hdr);
headersize = sizeof(struct ipv6hdr) +
(opt ? opt->opt_flen + opt->opt_nflen : 0) +
(dst_allfrag(&rt->dst) ?
sizeof(struct frag_hdr) : 0) +
rt->rt6i_nfheader_len;
/* as per RFC 7112 section 5, the entire IPv6 Header Chain must fit
* the first fragment
*/
if (headersize + transhdrlen > mtu)
goto emsgsize;
if (cork->length + length > mtu - headersize && ipc6->dontfrag &&
(sk->sk_protocol == IPPROTO_UDP ||
sk->sk_protocol == IPPROTO_RAW)) {
ipv6_local_rxpmtu(sk, fl6, mtu - headersize +
sizeof(struct ipv6hdr));
goto emsgsize;
}
if (ip6_sk_ignore_df(sk))
maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN;
else
maxnonfragsize = mtu;
if (cork->length + length > maxnonfragsize - headersize) {
emsgsize:
pmtu = max_t(int, mtu - headersize + sizeof(struct ipv6hdr), 0);
ipv6_local_error(sk, EMSGSIZE, fl6, pmtu);
return -EMSGSIZE;
}
/* CHECKSUM_PARTIAL only with no extension headers and when
* we are not going to fragment
*/
if (transhdrlen && sk->sk_protocol == IPPROTO_UDP &&
headersize == sizeof(struct ipv6hdr) &&
length <= mtu - headersize &&
(!(flags & MSG_MORE) || cork->gso_size) &&
rt->dst.dev->features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
csummode = CHECKSUM_PARTIAL;
if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
if (!uarg)
return -ENOBUFS;
extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
if (rt->dst.dev->features & NETIF_F_SG &&
csummode == CHECKSUM_PARTIAL) {
paged = true;
} else {
uarg->zerocopy = 0;
skb_zcopy_set(skb, uarg, &extra_uref);
}
}
/*
* Let's try using as much space as possible.
* Use MTU if total length of the message fits into the MTU.
* Otherwise, we need to reserve fragment header and
* fragment alignment (= 8-15 octects, in total).
*
* Note that we may need to "move" the data from the tail
* of the buffer to the new fragment when we split
* the message.
*
* FIXME: It may be fragmented into multiple chunks
* at once if non-fragmentable extension headers
* are too large.
* --yoshfuji
*/
cork->length += length;
if (!skb)
goto alloc_new_skb;
while (length > 0) {
/* Check if the remaining data fits into current packet. */
copy = (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len;
if (copy < length)
copy = maxfraglen - skb->len;
if (copy <= 0) {
char *data;
unsigned int datalen;
unsigned int fraglen;
unsigned int fraggap;
unsigned int alloclen;
unsigned int pagedlen;
alloc_new_skb:
/* There's no room in the current skb */
if (skb)
fraggap = skb->len - maxfraglen;
else
fraggap = 0;
/* update mtu and maxfraglen if necessary */
if (!skb || !skb_prev)
ip6_append_data_mtu(&mtu, &maxfraglen,
fragheaderlen, skb, rt,
orig_mtu);
skb_prev = skb;
/*
* If remaining data exceeds the mtu,
* we know we need more fragment(s).
*/
datalen = length + fraggap;
if (datalen > (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen)
datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len;
fraglen = datalen + fragheaderlen;
pagedlen = 0;
if ((flags & MSG_MORE) &&
!(rt->dst.dev->features&NETIF_F_SG))
alloclen = mtu;
else if (!paged)
alloclen = fraglen;
else {
alloclen = min_t(int, fraglen, MAX_HEADER);
pagedlen = fraglen - alloclen;
}
alloclen += dst_exthdrlen;
if (datalen != length + fraggap) {
/*
* this is not the last fragment, the trailer
* space is regarded as data space.
*/
datalen += rt->dst.trailer_len;
}
alloclen += rt->dst.trailer_len;
fraglen = datalen + fragheaderlen;
/*
* We just reserve space for fragment header.
* Note: this may be overallocation if the message
* (without MSG_MORE) fits into the MTU.
*/
alloclen += sizeof(struct frag_hdr);
copy = datalen - transhdrlen - fraggap - pagedlen;
if (copy < 0) {
err = -EINVAL;
goto error;
}
if (transhdrlen) {
skb = sock_alloc_send_skb(sk,
alloclen + hh_len,
(flags & MSG_DONTWAIT), &err);
} else {
skb = NULL;
if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
2 * sk->sk_sndbuf)
skb = alloc_skb(alloclen + hh_len,
sk->sk_allocation);
if (unlikely(!skb))
err = -ENOBUFS;
}
if (!skb)
goto error;
/*
* Fill in the control structures
*/
skb->protocol = htons(ETH_P_IPV6);
skb->ip_summed = csummode;
skb->csum = 0;
/* reserve for fragmentation and ipsec header */
skb_reserve(skb, hh_len + sizeof(struct frag_hdr) +
dst_exthdrlen);
/*
* Find where to start putting bytes
*/
data = skb_put(skb, fraglen - pagedlen);
skb_set_network_header(skb, exthdrlen);
data += fragheaderlen;
skb->transport_header = (skb->network_header +
fragheaderlen);
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(
skb_prev, maxfraglen,
data + transhdrlen, fraggap);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
data += fraggap;
pskb_trim_unique(skb_prev, maxfraglen);
}
if (copy > 0 &&
getfrag(from, data + transhdrlen, offset,
copy, fraggap, skb) < 0) {
err = -EFAULT;
kfree_skb(skb);
goto error;
}
offset += copy;
length -= copy + transhdrlen;
transhdrlen = 0;
exthdrlen = 0;
dst_exthdrlen = 0;
/* Only the initial fragment is time stamped */
skb_shinfo(skb)->tx_flags = cork->tx_flags;
cork->tx_flags = 0;
skb_shinfo(skb)->tskey = tskey;
tskey = 0;
skb_zcopy_set(skb, uarg, &extra_uref);
if ((flags & MSG_CONFIRM) && !skb_prev)
skb_set_dst_pending_confirm(skb, 1);
/*
* Put the packet on the pending queue
*/
if (!skb->destructor) {
skb->destructor = sock_wfree;
skb->sk = sk;
wmem_alloc_delta += skb->truesize;
}
__skb_queue_tail(queue, skb);
continue;
}
if (copy > length)
copy = length;
if (!(rt->dst.dev->features&NETIF_F_SG) &&
skb_tailroom(skb) >= copy) {
unsigned int off;
off = skb->len;
if (getfrag(from, skb_put(skb, copy),
offset, copy, off, skb) < 0) {
__skb_trim(skb, off);
err = -EFAULT;
goto error;
}
} else if (!uarg || !uarg->zerocopy) {
int i = skb_shinfo(skb)->nr_frags;
err = -ENOMEM;
if (!sk_page_frag_refill(sk, pfrag))
goto error;
if (!skb_can_coalesce(skb, i, pfrag->page,
pfrag->offset)) {
err = -EMSGSIZE;
if (i == MAX_SKB_FRAGS)
goto error;
__skb_fill_page_desc(skb, i, pfrag->page,
pfrag->offset, 0);
skb_shinfo(skb)->nr_frags = ++i;
get_page(pfrag->page);
}
copy = min_t(int, copy, pfrag->size - pfrag->offset);
if (getfrag(from,
page_address(pfrag->page) + pfrag->offset,
offset, copy, skb->len, skb) < 0)
goto error_efault;
pfrag->offset += copy;
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
wmem_alloc_delta += copy;
} else {
err = skb_zerocopy_iter_dgram(skb, from, copy);
if (err < 0)
goto error;
}
offset += copy;
length -= copy;
}
if (wmem_alloc_delta)
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
return 0;
error_efault:
err = -EFAULT;
error:
if (uarg)
sock_zerocopy_put_abort(uarg, extra_uref);
cork->length -= length;
IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS);
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
return err;
}
int ip6_append_data(struct sock *sk,
int getfrag(void *from, char *to, int offset, int len,
int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
struct rt6_info *rt, unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
int exthdrlen;
int err;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue)) {
/*
* setup for corking
*/
err = ip6_setup_cork(sk, &inet->cork, &np->cork,
ipc6, rt, fl6);
if (err)
return err;
exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0);
length += exthdrlen;
transhdrlen += exthdrlen;
} else {
fl6 = &inet->cork.fl.u.ip6;
transhdrlen = 0;
}
return __ip6_append_data(sk, fl6, &sk->sk_write_queue, &inet->cork.base,
&np->cork, sk_page_frag(sk), getfrag,
from, length, transhdrlen, flags, ipc6);
}
EXPORT_SYMBOL_GPL(ip6_append_data);
static void ip6_cork_release(struct inet_cork_full *cork,
struct inet6_cork *v6_cork)
{
if (v6_cork->opt) {
kfree(v6_cork->opt->dst0opt);
kfree(v6_cork->opt->dst1opt);
kfree(v6_cork->opt->hopopt);
kfree(v6_cork->opt->srcrt);
kfree(v6_cork->opt);
v6_cork->opt = NULL;
}
if (cork->base.dst) {
dst_release(cork->base.dst);
cork->base.dst = NULL;
cork->base.flags &= ~IPCORK_ALLFRAG;
}
memset(&cork->fl, 0, sizeof(cork->fl));
}
struct sk_buff *__ip6_make_skb(struct sock *sk,
struct sk_buff_head *queue,
struct inet_cork_full *cork,
struct inet6_cork *v6_cork)
{
struct sk_buff *skb, *tmp_skb;
struct sk_buff **tail_skb;
struct in6_addr final_dst_buf, *final_dst = &final_dst_buf;
struct ipv6_pinfo *np = inet6_sk(sk);
struct net *net = sock_net(sk);
struct ipv6hdr *hdr;
struct ipv6_txoptions *opt = v6_cork->opt;
struct rt6_info *rt = (struct rt6_info *)cork->base.dst;
struct flowi6 *fl6 = &cork->fl.u.ip6;
unsigned char proto = fl6->flowi6_proto;
skb = __skb_dequeue(queue);
if (!skb)
goto out;
tail_skb = &(skb_shinfo(skb)->frag_list);
/* move skb->data to ip header from ext header */
if (skb->data < skb_network_header(skb))
__skb_pull(skb, skb_network_offset(skb));
while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
__skb_pull(tmp_skb, skb_network_header_len(skb));
*tail_skb = tmp_skb;
tail_skb = &(tmp_skb->next);
skb->len += tmp_skb->len;
skb->data_len += tmp_skb->len;
skb->truesize += tmp_skb->truesize;
tmp_skb->destructor = NULL;
tmp_skb->sk = NULL;
}
/* Allow local fragmentation. */
skb->ignore_df = ip6_sk_ignore_df(sk);
*final_dst = fl6->daddr;
__skb_pull(skb, skb_network_header_len(skb));
if (opt && opt->opt_flen)
ipv6_push_frag_opts(skb, opt, &proto);
if (opt && opt->opt_nflen)
ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst, &fl6->saddr);
skb_push(skb, sizeof(struct ipv6hdr));
skb_reset_network_header(skb);
hdr = ipv6_hdr(skb);
ip6_flow_hdr(hdr, v6_cork->tclass,
ip6_make_flowlabel(net, skb, fl6->flowlabel,
ip6_autoflowlabel(net, np), fl6));
hdr->hop_limit = v6_cork->hop_limit;
hdr->nexthdr = proto;
hdr->saddr = fl6->saddr;
hdr->daddr = *final_dst;
skb->priority = sk->sk_priority;
skb->mark = cork->base.mark;
skb->tstamp = cork->base.transmit_time;
skb_dst_set(skb, dst_clone(&rt->dst));
IP6_UPD_PO_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUT, skb->len);
if (proto == IPPROTO_ICMPV6) {
struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb));
ICMP6MSGOUT_INC_STATS(net, idev, icmp6_hdr(skb)->icmp6_type);
ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS);
}
ip6_cork_release(cork, v6_cork);
out:
return skb;
}
int ip6_send_skb(struct sk_buff *skb)
{
struct net *net = sock_net(skb->sk);
struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
int err;
err = ip6_local_out(net, skb->sk, skb);
if (err) {
if (err > 0)
err = net_xmit_errno(err);
if (err)
IP6_INC_STATS(net, rt->rt6i_idev,
IPSTATS_MIB_OUTDISCARDS);
}
return err;
}
int ip6_push_pending_frames(struct sock *sk)
{
struct sk_buff *skb;
skb = ip6_finish_skb(sk);
if (!skb)
return 0;
return ip6_send_skb(skb);
}
EXPORT_SYMBOL_GPL(ip6_push_pending_frames);
static void __ip6_flush_pending_frames(struct sock *sk,
struct sk_buff_head *queue,
struct inet_cork_full *cork,
struct inet6_cork *v6_cork)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue_tail(queue)) != NULL) {
if (skb_dst(skb))
IP6_INC_STATS(sock_net(sk), ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
}
ip6_cork_release(cork, v6_cork);
}
void ip6_flush_pending_frames(struct sock *sk)
{
__ip6_flush_pending_frames(sk, &sk->sk_write_queue,
&inet_sk(sk)->cork, &inet6_sk(sk)->cork);
}
EXPORT_SYMBOL_GPL(ip6_flush_pending_frames);
struct sk_buff *ip6_make_skb(struct sock *sk,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
struct rt6_info *rt, unsigned int flags,
struct inet_cork_full *cork)
{
struct inet6_cork v6_cork;
struct sk_buff_head queue;
int exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0);
int err;
if (flags & MSG_PROBE)
return NULL;
__skb_queue_head_init(&queue);
cork->base.flags = 0;
cork->base.addr = 0;
cork->base.opt = NULL;
cork->base.dst = NULL;
v6_cork.opt = NULL;
err = ip6_setup_cork(sk, cork, &v6_cork, ipc6, rt, fl6);
if (err) {
ip6_cork_release(cork, &v6_cork);
return ERR_PTR(err);
}
if (ipc6->dontfrag < 0)
ipc6->dontfrag = inet6_sk(sk)->dontfrag;
err = __ip6_append_data(sk, fl6, &queue, &cork->base, &v6_cork,
&current->task_frag, getfrag, from,
length + exthdrlen, transhdrlen + exthdrlen,
flags, ipc6);
if (err) {
__ip6_flush_pending_frames(sk, &queue, cork, &v6_cork);
return ERR_PTR(err);
}
return __ip6_make_skb(sk, &queue, cork, &v6_cork);
}