alistair23-linux/arch/metag/kernel/process.c
Tejun Heo a43cb95d54 dump_stack: unify debug information printed by show_regs()
show_regs() is inherently arch-dependent but it does make sense to print
generic debug information and some archs already do albeit in slightly
different forms.  This patch introduces a generic function to print debug
information from show_regs() so that different archs print out the same
information and it's much easier to modify what's printed.

show_regs_print_info() prints out the same debug info as dump_stack()
does plus task and thread_info pointers.

* Archs which didn't print debug info now do.

  alpha, arc, blackfin, c6x, cris, frv, h8300, hexagon, ia64, m32r,
  metag, microblaze, mn10300, openrisc, parisc, score, sh64, sparc,
  um, xtensa

* Already prints debug info.  Replaced with show_regs_print_info().
  The printed information is superset of what used to be there.

  arm, arm64, avr32, mips, powerpc, sh32, tile, unicore32, x86

* s390 is special in that it used to print arch-specific information
  along with generic debug info.  Heiko and Martin think that the
  arch-specific extra isn't worth keeping s390 specfic implementation.
  Converted to use the generic version.

Note that now all archs print the debug info before actual register
dumps.

An example BUG() dump follows.

 kernel BUG at /work/os/work/kernel/workqueue.c:4841!
 invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
 Modules linked in:
 CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.9.0-rc1-work+ #7
 Hardware name: empty empty/S3992, BIOS 080011  10/26/2007
 task: ffff88007c85e040 ti: ffff88007c860000 task.ti: ffff88007c860000
 RIP: 0010:[<ffffffff8234a07e>]  [<ffffffff8234a07e>] init_workqueues+0x4/0x6
 RSP: 0000:ffff88007c861ec8  EFLAGS: 00010246
 RAX: ffff88007c861fd8 RBX: ffffffff824466a8 RCX: 0000000000000001
 RDX: 0000000000000046 RSI: 0000000000000001 RDI: ffffffff8234a07a
 RBP: ffff88007c861ec8 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000001 R11: 0000000000000000 R12: ffffffff8234a07a
 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
 FS:  0000000000000000(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
 CR2: ffff88015f7ff000 CR3: 00000000021f1000 CR4: 00000000000007f0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
 Stack:
  ffff88007c861ef8 ffffffff81000312 ffffffff824466a8 ffff88007c85e650
  0000000000000003 0000000000000000 ffff88007c861f38 ffffffff82335e5d
  ffff88007c862080 ffffffff8223d8c0 ffff88007c862080 ffffffff81c47760
 Call Trace:
  [<ffffffff81000312>] do_one_initcall+0x122/0x170
  [<ffffffff82335e5d>] kernel_init_freeable+0x9b/0x1c8
  [<ffffffff81c47760>] ? rest_init+0x140/0x140
  [<ffffffff81c4776e>] kernel_init+0xe/0xf0
  [<ffffffff81c6be9c>] ret_from_fork+0x7c/0xb0
  [<ffffffff81c47760>] ? rest_init+0x140/0x140
  ...

v2: Typo fix in x86-32.

v3: CPU number dropped from show_regs_print_info() as
    dump_stack_print_info() has been updated to print it.  s390
    specific implementation dropped as requested by s390 maintainers.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>		[tile bits]
Acked-by: Richard Kuo <rkuo@codeaurora.org>		[hexagon bits]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 17:04:02 -07:00

441 lines
10 KiB
C

/*
* Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies
*
* This file contains the architecture-dependent parts of process handling.
*
*/
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/reboot.h>
#include <linux/elfcore.h>
#include <linux/fs.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/mman.h>
#include <linux/pm.h>
#include <linux/syscalls.h>
#include <linux/uaccess.h>
#include <linux/smp.h>
#include <asm/core_reg.h>
#include <asm/user_gateway.h>
#include <asm/tcm.h>
#include <asm/traps.h>
#include <asm/switch_to.h>
/*
* Wait for the next interrupt and enable local interrupts
*/
void arch_cpu_idle(void)
{
int tmp;
/*
* Quickly jump straight into the interrupt entry point without actually
* triggering an interrupt. When TXSTATI gets read the processor will
* block until an interrupt is triggered.
*/
asm volatile (/* Switch into ISTAT mode */
"RTH\n\t"
/* Enable local interrupts */
"MOV TXMASKI, %1\n\t"
/*
* We can't directly "SWAP PC, PCX", so we swap via a
* temporary. Essentially we do:
* PCX_new = 1f (the place to continue execution)
* PC = PCX_old
*/
"ADD %0, CPC0, #(1f-.)\n\t"
"SWAP PCX, %0\n\t"
"MOV PC, %0\n"
/* Continue execution here with interrupts enabled */
"1:"
: "=a" (tmp)
: "r" (get_trigger_mask()));
}
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
cpu_die();
}
#endif
void (*pm_power_off)(void);
EXPORT_SYMBOL(pm_power_off);
void (*soc_restart)(char *cmd);
void (*soc_halt)(void);
void machine_restart(char *cmd)
{
if (soc_restart)
soc_restart(cmd);
hard_processor_halt(HALT_OK);
}
void machine_halt(void)
{
if (soc_halt)
soc_halt();
smp_send_stop();
hard_processor_halt(HALT_OK);
}
void machine_power_off(void)
{
if (pm_power_off)
pm_power_off();
smp_send_stop();
hard_processor_halt(HALT_OK);
}
#define FLAG_Z 0x8
#define FLAG_N 0x4
#define FLAG_O 0x2
#define FLAG_C 0x1
void show_regs(struct pt_regs *regs)
{
int i;
const char *AX0_names[] = {"A0StP", "A0FrP"};
const char *AX1_names[] = {"A1GbP", "A1LbP"};
const char *DX0_names[] = {
"D0Re0",
"D0Ar6",
"D0Ar4",
"D0Ar2",
"D0FrT",
"D0.5 ",
"D0.6 ",
"D0.7 "
};
const char *DX1_names[] = {
"D1Re0",
"D1Ar5",
"D1Ar3",
"D1Ar1",
"D1RtP",
"D1.5 ",
"D1.6 ",
"D1.7 "
};
show_regs_print_info(KERN_INFO);
pr_info(" pt_regs @ %p\n", regs);
pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask);
pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags,
regs->ctx.Flags & FLAG_Z ? 'Z' : 'z',
regs->ctx.Flags & FLAG_N ? 'N' : 'n',
regs->ctx.Flags & FLAG_O ? 'O' : 'o',
regs->ctx.Flags & FLAG_C ? 'C' : 'c');
pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT);
pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC);
/* AX regs */
for (i = 0; i < 2; i++) {
pr_info(" %s = 0x%08x ",
AX0_names[i],
regs->ctx.AX[i].U0);
printk(" %s = 0x%08x\n",
AX1_names[i],
regs->ctx.AX[i].U1);
}
if (regs->ctx.SaveMask & TBICTX_XEXT_BIT)
pr_warn(" Extended state present - AX2.[01] will be WRONG\n");
/* Special place with AXx.2 */
pr_info(" A0.2 = 0x%08x ",
regs->ctx.Ext.AX2.U0);
printk(" A1.2 = 0x%08x\n",
regs->ctx.Ext.AX2.U1);
/* 'extended' AX regs (nominally, just AXx.3) */
for (i = 0; i < (TBICTX_AX_REGS - 3); i++) {
pr_info(" A0.%d = 0x%08x ", i + 3, regs->ctx.AX3[i].U0);
printk(" A1.%d = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1);
}
for (i = 0; i < 8; i++) {
pr_info(" %s = 0x%08x ", DX0_names[i], regs->ctx.DX[i].U0);
printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1);
}
show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs);
}
int copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long arg, struct task_struct *tsk)
{
struct pt_regs *childregs = task_pt_regs(tsk);
void *kernel_context = ((void *) childregs +
sizeof(struct pt_regs));
unsigned long global_base;
BUG_ON(((unsigned long)childregs) & 0x7);
BUG_ON(((unsigned long)kernel_context) & 0x7);
memset(&tsk->thread.kernel_context, 0,
sizeof(tsk->thread.kernel_context));
tsk->thread.kernel_context = __TBISwitchInit(kernel_context,
ret_from_fork,
0, 0);
if (unlikely(tsk->flags & PF_KTHREAD)) {
/*
* Make sure we don't leak any kernel data to child's regs
* if kernel thread becomes a userspace thread in the future
*/
memset(childregs, 0 , sizeof(struct pt_regs));
global_base = __core_reg_get(A1GbP);
childregs->ctx.AX[0].U1 = (unsigned long) global_base;
childregs->ctx.AX[0].U0 = (unsigned long) kernel_context;
/* Set D1Ar1=arg and D1RtP=usp (fn) */
childregs->ctx.DX[4].U1 = usp;
childregs->ctx.DX[3].U1 = arg;
tsk->thread.int_depth = 2;
return 0;
}
/*
* Get a pointer to where the new child's register block should have
* been pushed.
* The Meta's stack grows upwards, and the context is the the first
* thing to be pushed by TBX (phew)
*/
*childregs = *current_pt_regs();
/* Set the correct stack for the clone mode */
if (usp)
childregs->ctx.AX[0].U0 = ALIGN(usp, 8);
tsk->thread.int_depth = 1;
/* set return value for child process */
childregs->ctx.DX[0].U0 = 0;
/* The TLS pointer is passed as an argument to sys_clone. */
if (clone_flags & CLONE_SETTLS)
tsk->thread.tls_ptr =
(__force void __user *)childregs->ctx.DX[1].U1;
#ifdef CONFIG_METAG_FPU
if (tsk->thread.fpu_context) {
struct meta_fpu_context *ctx;
ctx = kmemdup(tsk->thread.fpu_context,
sizeof(struct meta_fpu_context), GFP_ATOMIC);
tsk->thread.fpu_context = ctx;
}
#endif
#ifdef CONFIG_METAG_DSP
if (tsk->thread.dsp_context) {
struct meta_ext_context *ctx;
int i;
ctx = kmemdup(tsk->thread.dsp_context,
sizeof(struct meta_ext_context), GFP_ATOMIC);
for (i = 0; i < 2; i++)
ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i],
GFP_ATOMIC);
tsk->thread.dsp_context = ctx;
}
#endif
return 0;
}
#ifdef CONFIG_METAG_FPU
static void alloc_fpu_context(struct thread_struct *thread)
{
thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context),
GFP_ATOMIC);
}
static void clear_fpu(struct thread_struct *thread)
{
thread->user_flags &= ~TBICTX_FPAC_BIT;
kfree(thread->fpu_context);
thread->fpu_context = NULL;
}
#else
static void clear_fpu(struct thread_struct *thread)
{
}
#endif
#ifdef CONFIG_METAG_DSP
static void clear_dsp(struct thread_struct *thread)
{
if (thread->dsp_context) {
kfree(thread->dsp_context->ram[0]);
kfree(thread->dsp_context->ram[1]);
kfree(thread->dsp_context);
thread->dsp_context = NULL;
}
__core_reg_set(D0.8, 0);
}
#else
static void clear_dsp(struct thread_struct *thread)
{
}
#endif
struct task_struct *__sched __switch_to(struct task_struct *prev,
struct task_struct *next)
{
TBIRES to, from;
to.Switch.pCtx = next->thread.kernel_context;
to.Switch.pPara = prev;
#ifdef CONFIG_METAG_FPU
if (prev->thread.user_flags & TBICTX_FPAC_BIT) {
struct pt_regs *regs = task_pt_regs(prev);
TBIRES state;
state.Sig.SaveMask = prev->thread.user_flags;
state.Sig.pCtx = &regs->ctx;
if (!prev->thread.fpu_context)
alloc_fpu_context(&prev->thread);
if (prev->thread.fpu_context)
__TBICtxFPUSave(state, prev->thread.fpu_context);
}
/*
* Force a restore of the FPU context next time this process is
* scheduled.
*/
if (prev->thread.fpu_context)
prev->thread.fpu_context->needs_restore = true;
#endif
from = __TBISwitch(to, &prev->thread.kernel_context);
/* Restore TLS pointer for this process. */
set_gateway_tls(current->thread.tls_ptr);
return (struct task_struct *) from.Switch.pPara;
}
void flush_thread(void)
{
clear_fpu(&current->thread);
clear_dsp(&current->thread);
}
/*
* Free current thread data structures etc.
*/
void exit_thread(void)
{
clear_fpu(&current->thread);
clear_dsp(&current->thread);
}
/* TODO: figure out how to unwind the kernel stack here to figure out
* where we went to sleep. */
unsigned long get_wchan(struct task_struct *p)
{
return 0;
}
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
{
/* Returning 0 indicates that the FPU state was not stored (as it was
* not in use) */
return 0;
}
#ifdef CONFIG_METAG_USER_TCM
#define ELF_MIN_ALIGN PAGE_SIZE
#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
unsigned long __metag_elf_map(struct file *filep, unsigned long addr,
struct elf_phdr *eppnt, int prot, int type,
unsigned long total_size)
{
unsigned long map_addr, size;
unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr);
unsigned long raw_size = eppnt->p_filesz + page_off;
unsigned long off = eppnt->p_offset - page_off;
unsigned int tcm_tag;
addr = ELF_PAGESTART(addr);
size = ELF_PAGEALIGN(raw_size);
/* mmap() will return -EINVAL if given a zero size, but a
* segment with zero filesize is perfectly valid */
if (!size)
return addr;
tcm_tag = tcm_lookup_tag(addr);
if (tcm_tag != TCM_INVALID_TAG)
type &= ~MAP_FIXED;
/*
* total_size is the size of the ELF (interpreter) image.
* The _first_ mmap needs to know the full size, otherwise
* randomization might put this image into an overlapping
* position with the ELF binary image. (since size < total_size)
* So we first map the 'big' image - and unmap the remainder at
* the end. (which unmap is needed for ELF images with holes.)
*/
if (total_size) {
total_size = ELF_PAGEALIGN(total_size);
map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
if (!BAD_ADDR(map_addr))
vm_munmap(map_addr+size, total_size-size);
} else
map_addr = vm_mmap(filep, addr, size, prot, type, off);
if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) {
struct tcm_allocation *tcm;
unsigned long tcm_addr;
tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
if (!tcm)
return -ENOMEM;
tcm_addr = tcm_alloc(tcm_tag, raw_size);
if (tcm_addr != addr) {
kfree(tcm);
return -ENOMEM;
}
tcm->tag = tcm_tag;
tcm->addr = tcm_addr;
tcm->size = raw_size;
list_add(&tcm->list, &current->mm->context.tcm);
eppnt->p_vaddr = map_addr;
if (copy_from_user((void *) addr, (void __user *) map_addr,
raw_size))
return -EFAULT;
}
return map_addr;
}
#endif