1
0
Fork 0
alistair23-linux/drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_err.c

1475 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2016-2017 Hisilicon Limited. */
#include "hclge_err.h"
static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err" },
{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err" },
{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err" },
{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err" },
{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err" },
{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err" },
{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err" },
{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err" },
{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err" },
{ .int_msk = BIT(19), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err" },
{ .int_msk = BIT(21), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err" },
{ .int_msk = BIT(23), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err" },
{ .int_msk = BIT(25), .msg = "cmdq_rocee_rx_head_ecc_mbit_err" },
{ .int_msk = BIT(27), .msg = "cmdq_rocee_tx_head_ecc_mbit_err" },
{ .int_msk = BIT(29), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err" },
{ .int_msk = BIT(31), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err" },
{ .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err" },
{ .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
{ .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "msix_rocee_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_igu_int[] = {
{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
{ .int_msk = BIT(0), .msg = "rx_buf_overflow" },
{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow" },
{ .int_msk = BIT(2), .msg = "rx_stp_fifo_undeflow" },
{ .int_msk = BIT(3), .msg = "tx_buf_overflow" },
{ .int_msk = BIT(4), .msg = "tx_buf_underrun" },
{ .int_msk = BIT(5), .msg = "rx_stp_buf_overflow" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ncsi_err_int[] = {
{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err" },
{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err" },
{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err" },
{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err" },
{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err" },
{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err" },
{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err" },
{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err" },
{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err" },
{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err" },
{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err" },
{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err" },
{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err" },
{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err" },
{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err" },
{ .int_msk = BIT(27),
.msg = "flow_director_ad_mem0_ecc_mbit_err" },
{ .int_msk = BIT(28),
.msg = "flow_director_ad_mem1_ecc_mbit_err" },
{ .int_msk = BIT(29),
.msg = "rx_vlan_tag_memory_ecc_mbit_err" },
{ .int_msk = BIT(30),
.msg = "Tx_UP_mapping_config_mem_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
{ .int_msk = BIT(0), .msg = "tx_vlan_tag_err" },
{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_tm_sch_rint[] = {
{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err" },
{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err" },
{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err" },
{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err" },
{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err" },
{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err" },
{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err" },
{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err" },
{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err" },
{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err" },
{ .int_msk = BIT(12),
.msg = "tm_sch_port_shap_offset_fifo_wr_err" },
{ .int_msk = BIT(13),
.msg = "tm_sch_port_shap_offset_fifo_rd_err" },
{ .int_msk = BIT(14),
.msg = "tm_sch_pg_pshap_offset_fifo_wr_err" },
{ .int_msk = BIT(15),
.msg = "tm_sch_pg_pshap_offset_fifo_rd_err" },
{ .int_msk = BIT(16),
.msg = "tm_sch_pg_cshap_offset_fifo_wr_err" },
{ .int_msk = BIT(17),
.msg = "tm_sch_pg_cshap_offset_fifo_rd_err" },
{ .int_msk = BIT(18),
.msg = "tm_sch_pri_pshap_offset_fifo_wr_err" },
{ .int_msk = BIT(19),
.msg = "tm_sch_pri_pshap_offset_fifo_rd_err" },
{ .int_msk = BIT(20),
.msg = "tm_sch_pri_cshap_offset_fifo_wr_err" },
{ .int_msk = BIT(21),
.msg = "tm_sch_pri_cshap_offset_fifo_rd_err" },
{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err" },
{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err" },
{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err" },
{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err" },
{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err" },
{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err" },
{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err" },
{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err" },
{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err" },
{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
{ .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err" },
{ .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err" },
{ .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err" },
{ .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err" },
{ .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err" },
{ .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err" },
{ .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err" },
{ .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err" },
{ .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err" },
{ .int_msk = BIT(9), .msg = "qcn_shap_gp0_offset_fifo_wr_err" },
{ .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err" },
{ .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err" },
{ .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err" },
{ .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err" },
{ .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err" },
{ .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err" },
{ .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err" },
{ .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err" },
{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err" },
{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err" },
{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err" },
{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
{ .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "cge_igu_afifo_overflow_err" },
{ .int_msk = BIT(9), .msg = "lge_igu_afifo_overflow_err" },
{ .int_msk = BIT(10), .msg = "egu_cge_afifo_underrun_err" },
{ .int_msk = BIT(11), .msg = "egu_lge_afifo_underrun_err" },
{ .int_msk = BIT(12), .msg = "egu_ge_afifo_underrun_err" },
{ .int_msk = BIT(13), .msg = "ge_igu_afifo_overflow_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
{ .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err" },
{ .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err" },
{ .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err" },
{ .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err" },
{ .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err" },
{ .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err" },
{ .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err" },
{ .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err" },
{ .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err" },
{ .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err" },
{ .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err" },
{ .int_msk = BIT(26), .msg = "rd_bus_err" },
{ .int_msk = BIT(27), .msg = "wr_bus_err" },
{ .int_msk = BIT(28), .msg = "reg_search_miss" },
{ .int_msk = BIT(29), .msg = "rx_q_search_miss" },
{ .int_msk = BIT(30), .msg = "ooo_ecc_err_detect" },
{ .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
{ .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
{ .int_msk = BIT(0), .msg = "over_8bd_no_fe" },
{ .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err" },
{ .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err" },
{ .int_msk = BIT(3), .msg = "tx_rd_fbd_poison" },
{ .int_msk = BIT(4), .msg = "rx_rd_ebd_poison" },
{ .int_msk = BIT(5), .msg = "buf_wait_timeout" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
{ .int_msk = BIT(0), .msg = "buf_sum_err" },
{ .int_msk = BIT(1), .msg = "ppp_mb_num_err" },
{ .int_msk = BIT(2), .msg = "ppp_mbid_err" },
{ .int_msk = BIT(3), .msg = "ppp_rlt_mac_err" },
{ .int_msk = BIT(4), .msg = "ppp_rlt_host_err" },
{ .int_msk = BIT(5), .msg = "cks_edit_position_err" },
{ .int_msk = BIT(6), .msg = "cks_edit_condition_err" },
{ .int_msk = BIT(7), .msg = "vlan_edit_condition_err" },
{ .int_msk = BIT(8), .msg = "vlan_num_ot_err" },
{ .int_msk = BIT(9), .msg = "vlan_num_in_err" },
{ /* sentinel */ }
};
#define HCLGE_SSU_MEM_ECC_ERR(x) \
{ .int_msk = BIT(x), .msg = "ssu_mem" #x "_ecc_mbit_err" }
static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = {
HCLGE_SSU_MEM_ECC_ERR(0),
HCLGE_SSU_MEM_ECC_ERR(1),
HCLGE_SSU_MEM_ECC_ERR(2),
HCLGE_SSU_MEM_ECC_ERR(3),
HCLGE_SSU_MEM_ECC_ERR(4),
HCLGE_SSU_MEM_ECC_ERR(5),
HCLGE_SSU_MEM_ECC_ERR(6),
HCLGE_SSU_MEM_ECC_ERR(7),
HCLGE_SSU_MEM_ECC_ERR(8),
HCLGE_SSU_MEM_ECC_ERR(9),
HCLGE_SSU_MEM_ECC_ERR(10),
HCLGE_SSU_MEM_ECC_ERR(11),
HCLGE_SSU_MEM_ECC_ERR(12),
HCLGE_SSU_MEM_ECC_ERR(13),
HCLGE_SSU_MEM_ECC_ERR(14),
HCLGE_SSU_MEM_ECC_ERR(15),
HCLGE_SSU_MEM_ECC_ERR(16),
HCLGE_SSU_MEM_ECC_ERR(17),
HCLGE_SSU_MEM_ECC_ERR(18),
HCLGE_SSU_MEM_ECC_ERR(19),
HCLGE_SSU_MEM_ECC_ERR(20),
HCLGE_SSU_MEM_ECC_ERR(21),
HCLGE_SSU_MEM_ECC_ERR(22),
HCLGE_SSU_MEM_ECC_ERR(23),
HCLGE_SSU_MEM_ECC_ERR(24),
HCLGE_SSU_MEM_ECC_ERR(25),
HCLGE_SSU_MEM_ECC_ERR(26),
HCLGE_SSU_MEM_ECC_ERR(27),
HCLGE_SSU_MEM_ECC_ERR(28),
HCLGE_SSU_MEM_ECC_ERR(29),
HCLGE_SSU_MEM_ECC_ERR(30),
HCLGE_SSU_MEM_ECC_ERR(31),
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port" },
{ .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port" },
{ .int_msk = BIT(2), .msg = "igu_pkt_without_key_port" },
{ .int_msk = BIT(3), .msg = "roc_eof_mis_match_port" },
{ .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port" },
{ .int_msk = BIT(5), .msg = "igu_eof_mis_match_port" },
{ .int_msk = BIT(6), .msg = "roc_sof_mis_match_port" },
{ .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port" },
{ .int_msk = BIT(8), .msg = "igu_sof_mis_match_port" },
{ .int_msk = BIT(11), .msg = "ets_rd_int_rx_port" },
{ .int_msk = BIT(12), .msg = "ets_wr_int_rx_port" },
{ .int_msk = BIT(13), .msg = "ets_rd_int_tx_port" },
{ .int_msk = BIT(14), .msg = "ets_wr_int_tx_port" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
{ .int_msk = BIT(0), .msg = "ig_mac_inf_int" },
{ .int_msk = BIT(1), .msg = "ig_host_inf_int" },
{ .int_msk = BIT(2), .msg = "ig_roc_buf_int" },
{ .int_msk = BIT(3), .msg = "ig_host_data_fifo_int" },
{ .int_msk = BIT(4), .msg = "ig_host_key_fifo_int" },
{ .int_msk = BIT(5), .msg = "tx_qcn_fifo_int" },
{ .int_msk = BIT(6), .msg = "rx_qcn_fifo_int" },
{ .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int" },
{ .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int" },
{ .int_msk = BIT(9), .msg = "qm_eof_fifo_int" },
{ .int_msk = BIT(10), .msg = "mb_rlt_fifo_int" },
{ .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int" },
{ .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int" },
{ .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int" },
{ .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int" },
{ .int_msk = BIT(15), .msg = "host_cmd_fifo_int" },
{ .int_msk = BIT(16), .msg = "mac_cmd_fifo_int" },
{ .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int" },
{ .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int" },
{ .int_msk = BIT(19), .msg = "dup_bitmap_empty_int" },
{ .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int" },
{ .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int" },
{ .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int" },
{ .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
{ .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg" },
{ .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg" },
{ .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg" },
{ .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port" },
{ .int_msk = BIT(9), .msg = "low_water_line_err_port" },
{ .int_msk = BIT(10), .msg = "hi_water_line_err_port" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
{ .int_msk = 0, .msg = "rocee qmm ovf: sgid invalid err" },
{ .int_msk = 0x4, .msg = "rocee qmm ovf: sgid ovf err" },
{ .int_msk = 0x8, .msg = "rocee qmm ovf: smac invalid err" },
{ .int_msk = 0xC, .msg = "rocee qmm ovf: smac ovf err" },
{ .int_msk = 0x10, .msg = "rocee qmm ovf: cqc invalid err" },
{ .int_msk = 0x11, .msg = "rocee qmm ovf: cqc ovf err" },
{ .int_msk = 0x12, .msg = "rocee qmm ovf: cqc hopnum err" },
{ .int_msk = 0x13, .msg = "rocee qmm ovf: cqc ba0 err" },
{ .int_msk = 0x14, .msg = "rocee qmm ovf: srqc invalid err" },
{ .int_msk = 0x15, .msg = "rocee qmm ovf: srqc ovf err" },
{ .int_msk = 0x16, .msg = "rocee qmm ovf: srqc hopnum err" },
{ .int_msk = 0x17, .msg = "rocee qmm ovf: srqc ba0 err" },
{ .int_msk = 0x18, .msg = "rocee qmm ovf: mpt invalid err" },
{ .int_msk = 0x19, .msg = "rocee qmm ovf: mpt ovf err" },
{ .int_msk = 0x1A, .msg = "rocee qmm ovf: mpt hopnum err" },
{ .int_msk = 0x1B, .msg = "rocee qmm ovf: mpt ba0 err" },
{ .int_msk = 0x1C, .msg = "rocee qmm ovf: qpc invalid err" },
{ .int_msk = 0x1D, .msg = "rocee qmm ovf: qpc ovf err" },
{ .int_msk = 0x1E, .msg = "rocee qmm ovf: qpc hopnum err" },
{ .int_msk = 0x1F, .msg = "rocee qmm ovf: qpc ba0 err" },
{ /* sentinel */ }
};
static void hclge_log_error(struct device *dev, char *reg,
const struct hclge_hw_error *err,
u32 err_sts)
{
while (err->msg) {
if (err->int_msk & err_sts)
dev_warn(dev, "%s %s found [error status=0x%x]\n",
reg, err->msg, err_sts);
err++;
}
}
/* hclge_cmd_query_error: read the error information
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @cmd: command opcode
* @flag: flag for extended command structure
* @w_num: offset for setting the read interrupt type.
* @int_type: select which type of the interrupt for which the error
* info will be read(RAS-CE/RAS-NFE/RAS-FE etc).
*
* This function query the error info from hw register/s using command
*/
static int hclge_cmd_query_error(struct hclge_dev *hdev,
struct hclge_desc *desc, u32 cmd,
u16 flag, u8 w_num,
enum hclge_err_int_type int_type)
{
struct device *dev = &hdev->pdev->dev;
int num = 1;
int ret;
hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
if (flag) {
desc[0].flag |= cpu_to_le16(flag);
hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
num = 2;
}
if (w_num)
desc[0].data[w_num] = cpu_to_le32(int_type);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "query error cmd failed (%d)\n", ret);
return ret;
}
static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* configure common error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
if (en) {
desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
}
desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"fail(%d) to configure common err interrupts\n", ret);
return ret;
}
static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
if (hdev->pdev->revision < 0x21)
return 0;
/* configure NCSI error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"fail(%d) to configure NCSI error interrupts\n", ret);
return ret;
}
static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* configure IGU,EGU error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"fail(%d) to configure IGU common interrupts\n", ret);
return ret;
}
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
return ret;
}
ret = hclge_config_ncsi_hw_err_int(hdev, en);
return ret;
}
static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* configure PPP error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
if (hdev->pdev->revision >= 0x21)
desc[1].data[2] =
cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
return ret;
}
static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
{
int ret;
ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
en);
if (ret)
return ret;
ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
en);
return ret;
}
static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* configure TM SCH hw errors */
hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
return ret;
}
/* configure TM QCN hw errors */
ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG,
0, 0, 0);
if (ret) {
dev_err(dev, "fail(%d) to read TM QCN CFG status\n", ret);
return ret;
}
hclge_cmd_reuse_desc(&desc, false);
if (en)
desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"fail(%d) to configure TM QCN mem errors\n", ret);
return ret;
}
static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* configure MAC common error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"fail(%d) to configure MAC COMMON error intr\n", ret);
return ret;
}
static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int num = 1;
int ret;
/* configure PPU error interrupts */
if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= HCLGE_CMD_FLAG_NEXT;
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
if (en) {
desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN;
desc[0].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN;
desc[1].data[3] = HCLGE_PPU_MPF_ABNORMAL_INT3_EN;
desc[1].data[4] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN;
}
desc[1].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK;
desc[1].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK;
desc[1].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK;
desc[1].data[3] |= HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK;
num = 2;
} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2;
desc[0].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK;
} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] = HCLGE_PPU_PF_ABNORMAL_INT_EN;
desc[0].data[2] = HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK;
} else {
dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
return -EINVAL;
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
return ret;
}
static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
int ret;
ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
en);
if (ret) {
dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
ret);
return ret;
}
ret = hclge_config_ppu_error_interrupts(hdev,
HCLGE_PPU_MPF_OTHER_INT_CMD,
en);
if (ret) {
dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
return ret;
}
ret = hclge_config_ppu_error_interrupts(hdev,
HCLGE_PPU_PF_OTHER_INT_CMD, en);
if (ret)
dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
ret);
return ret;
}
static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* configure SSU ecc error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
if (en) {
desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
}
desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret) {
dev_err(dev,
"fail(%d) to configure SSU ECC error interrupt\n", ret);
return ret;
}
/* configure SSU common error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
if (en) {
if (hdev->pdev->revision >= 0x21)
desc[0].data[0] =
cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
else
desc[0].data[0] =
cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
desc[0].data[2] =
cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
}
desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"fail(%d) to configure SSU COMMON error intr\n", ret);
return ret;
}
#define HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type) \
do { \
if (ae_dev->ops->set_default_reset_request) \
ae_dev->ops->set_default_reset_request(ae_dev, \
reset_type); \
} while (0)
/* hclge_handle_mpf_ras_error: handle all main PF RAS errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @num: number of extended command structures
*
* This function handles all the main PF RAS errors in the
* hw register/s using command.
*/
static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int num)
{
struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
struct device *dev = &hdev->pdev->dev;
__le32 *desc_data;
u32 status;
int ret;
/* query all main PF RAS errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret) {
dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
return ret;
}
/* log HNS common errors */
status = le32_to_cpu(desc[0].data[0]);
if (status) {
hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
&hclge_imp_tcm_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
status = le32_to_cpu(desc[0].data[1]);
if (status) {
hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
&hclge_cmdq_nic_mem_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
if ((le32_to_cpu(desc[0].data[2])) & BIT(0)) {
dev_warn(dev, "imp_rd_data_poison_err found\n");
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
status = le32_to_cpu(desc[0].data[3]);
if (status) {
hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
&hclge_tqp_int_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(desc[0].data[4]);
if (status) {
hclge_log_error(dev, "MSIX_ECC_INT_STS",
&hclge_msix_sram_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* log SSU(Storage Switch Unit) errors */
desc_data = (__le32 *)&desc[2];
status = le32_to_cpu(*(desc_data + 2));
if (status) {
hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0",
&hclge_ssu_mem_ecc_err_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
if (status) {
dev_warn(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n",
status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
if (status) {
hclge_log_error(dev, "SSU_COMMON_ERR_INT",
&hclge_ssu_com_err_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
/* log IGU(Ingress Unit) errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
if (status)
hclge_log_error(dev, "IGU_INT_STS",
&hclge_igu_int[0], status);
/* log PPP(Programmable Packet Process) errors */
desc_data = (__le32 *)&desc[4];
status = le32_to_cpu(*(desc_data + 1));
if (status)
hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
&hclge_ppp_mpf_abnormal_int_st1[0], status);
status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
if (status)
hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
&hclge_ppp_mpf_abnormal_int_st3[0], status);
/* log PPU(RCB) errors */
desc_data = (__le32 *)&desc[5];
status = le32_to_cpu(*(desc_data + 1));
if (status) {
dev_warn(dev, "PPU_MPF_ABNORMAL_INT_ST1 %s found\n",
"rpu_rx_pkt_ecc_mbit_err");
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 2));
if (status) {
hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
&hclge_ppu_mpf_abnormal_int_st2[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
if (status) {
hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
&hclge_ppu_mpf_abnormal_int_st3[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* log TM(Traffic Manager) errors */
desc_data = (__le32 *)&desc[6];
status = le32_to_cpu(*desc_data);
if (status) {
hclge_log_error(dev, "TM_SCH_RINT",
&hclge_tm_sch_rint[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* log QCN(Quantized Congestion Control) errors */
desc_data = (__le32 *)&desc[7];
status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
if (status) {
hclge_log_error(dev, "QCN_FIFO_RINT",
&hclge_qcn_fifo_rint[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
if (status) {
hclge_log_error(dev, "QCN_ECC_RINT",
&hclge_qcn_ecc_rint[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* log NCSI errors */
desc_data = (__le32 *)&desc[9];
status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
if (status) {
hclge_log_error(dev, "NCSI_ECC_INT_RPT",
&hclge_ncsi_err_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* clear all main PF RAS errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
return ret;
}
/* hclge_handle_pf_ras_error: handle all PF RAS errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @num: number of extended command structures
*
* This function handles all the PF RAS errors in the
* hw register/s using command.
*/
static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int num)
{
struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
struct device *dev = &hdev->pdev->dev;
__le32 *desc_data;
u32 status;
int ret;
/* query all PF RAS errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret) {
dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
return ret;
}
/* log SSU(Storage Switch Unit) errors */
status = le32_to_cpu(desc[0].data[0]);
if (status) {
hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
&hclge_ssu_port_based_err_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
status = le32_to_cpu(desc[0].data[1]);
if (status) {
hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
&hclge_ssu_fifo_overflow_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
status = le32_to_cpu(desc[0].data[2]);
if (status) {
hclge_log_error(dev, "SSU_ETS_TCG_INT",
&hclge_ssu_ets_tcg_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
desc_data = (__le32 *)&desc[1];
status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
if (status)
hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
&hclge_igu_egu_tnl_int[0], status);
/* log PPU(RCB) errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK;
if (status)
hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0",
&hclge_ppu_pf_abnormal_int[0], status);
/* clear all PF RAS errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
return ret;
}
static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
u32 mpf_bd_num, pf_bd_num, bd_num;
struct hclge_desc desc_bd;
struct hclge_desc *desc;
int ret;
/* query the number of registers in the RAS int status */
hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_RAS_INT_STS_BD_NUM,
true);
ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
if (ret) {
dev_err(dev, "fail(%d) to query ras int status bd num\n", ret);
return ret;
}
mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
pf_bd_num = le32_to_cpu(desc_bd.data[1]);
bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
/* handle all main PF RAS errors */
ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
if (ret) {
kfree(desc);
return ret;
}
memset(desc, 0, bd_num * sizeof(struct hclge_desc));
/* handle all PF RAS errors */
ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
kfree(desc);
return ret;
}
static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* read overflow error status */
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_ROCEE_PF_RAS_INT_CMD,
0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
return ret;
}
/* log overflow error */
if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
const struct hclge_hw_error *err;
u32 err_sts;
err = &hclge_rocee_qmm_ovf_err_int[0];
err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
le32_to_cpu(desc[0].data[0]);
while (err->msg) {
if (err->int_msk == err_sts) {
dev_warn(dev, "%s [error status=0x%x] found\n",
err->msg,
le32_to_cpu(desc[0].data[0]));
break;
}
err++;
}
}
if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
dev_warn(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
le32_to_cpu(desc[0].data[1]));
}
if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
dev_warn(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
le32_to_cpu(desc[0].data[2]));
}
return 0;
}
static enum hnae3_reset_type
hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
{
enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
unsigned int status;
int ret;
/* read RAS error interrupt status */
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_QUERY_CLEAR_ROCEE_RAS_INT,
0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
/* reset everything for now */
return HNAE3_GLOBAL_RESET;
}
status = le32_to_cpu(desc[0].data[0]);
if (status & HCLGE_ROCEE_RERR_INT_MASK) {
dev_warn(dev, "ROCEE RAS AXI rresp error\n");
reset_type = HNAE3_FUNC_RESET;
}
if (status & HCLGE_ROCEE_BERR_INT_MASK) {
dev_warn(dev, "ROCEE RAS AXI bresp error\n");
reset_type = HNAE3_FUNC_RESET;
}
if (status & HCLGE_ROCEE_ECC_INT_MASK) {
dev_warn(dev, "ROCEE RAS 2bit ECC error\n");
reset_type = HNAE3_GLOBAL_RESET;
}
if (status & HCLGE_ROCEE_OVF_INT_MASK) {
ret = hclge_log_rocee_ovf_error(hdev);
if (ret) {
dev_err(dev, "failed(%d) to process ovf error\n", ret);
/* reset everything for now */
return HNAE3_GLOBAL_RESET;
}
reset_type = HNAE3_FUNC_RESET;
}
/* clear error status */
hclge_cmd_reuse_desc(&desc[0], false);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
if (ret) {
dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
/* reset everything for now */
return HNAE3_GLOBAL_RESET;
}
return reset_type;
}
static int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
if (hdev->pdev->revision < 0x21 || !hnae3_dev_roce_supported(hdev))
return 0;
hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
if (en) {
/* enable ROCEE hw error interrupts */
desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
hclge_log_and_clear_rocee_ras_error(hdev);
}
desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
return ret;
}
static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
{
enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
struct hclge_dev *hdev = ae_dev->priv;
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
hdev->pdev->revision < 0x21)
return;
reset_type = hclge_log_and_clear_rocee_ras_error(hdev);
if (reset_type != HNAE3_NONE_RESET)
HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type);
}
static const struct hclge_hw_blk hw_blk[] = {
{
.msk = BIT(0), .name = "IGU_EGU",
.config_err_int = hclge_config_igu_egu_hw_err_int,
},
{
.msk = BIT(1), .name = "PPP",
.config_err_int = hclge_config_ppp_hw_err_int,
},
{
.msk = BIT(2), .name = "SSU",
.config_err_int = hclge_config_ssu_hw_err_int,
},
{
.msk = BIT(3), .name = "PPU",
.config_err_int = hclge_config_ppu_hw_err_int,
},
{
.msk = BIT(4), .name = "TM",
.config_err_int = hclge_config_tm_hw_err_int,
},
{
.msk = BIT(5), .name = "COMMON",
.config_err_int = hclge_config_common_hw_err_int,
},
{
.msk = BIT(8), .name = "MAC",
.config_err_int = hclge_config_mac_err_int,
},
{ /* sentinel */ }
};
int hclge_hw_error_set_state(struct hclge_dev *hdev, bool state)
{
const struct hclge_hw_blk *module = hw_blk;
struct device *dev = &hdev->pdev->dev;
int ret = 0;
while (module->name) {
if (module->config_err_int) {
ret = module->config_err_int(hdev, state);
if (ret)
return ret;
}
module++;
}
ret = hclge_config_rocee_ras_interrupt(hdev, state);
if (ret)
dev_err(dev, "fail(%d) to configure ROCEE err int\n", ret);
return ret;
}
pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct device *dev = &hdev->pdev->dev;
u32 status;
status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
/* Handling Non-fatal HNS RAS errors */
if (status & HCLGE_RAS_REG_NFE_MASK) {
dev_warn(dev,
"HNS Non-Fatal RAS error(status=0x%x) identified\n",
status);
hclge_handle_all_ras_errors(hdev);
} else {
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
hdev->pdev->revision < 0x21) {
ae_dev->override_pci_need_reset = 1;
return PCI_ERS_RESULT_RECOVERED;
}
}
if (status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
dev_warn(dev, "ROCEE uncorrected RAS error identified\n");
hclge_handle_rocee_ras_error(ae_dev);
}
if (status & HCLGE_RAS_REG_NFE_MASK ||
status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
ae_dev->override_pci_need_reset = 0;
return PCI_ERS_RESULT_NEED_RESET;
}
ae_dev->override_pci_need_reset = 1;
return PCI_ERS_RESULT_RECOVERED;
}
int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
unsigned long *reset_requests)
{
struct device *dev = &hdev->pdev->dev;
u32 mpf_bd_num, pf_bd_num, bd_num;
struct hclge_desc desc_bd;
struct hclge_desc *desc;
__le32 *desc_data;
int ret = 0;
u32 status;
/* set default handling */
set_bit(HNAE3_FUNC_RESET, reset_requests);
/* query the number of bds for the MSIx int status */
hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_MSIX_INT_STS_BD_NUM,
true);
ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
if (ret) {
dev_err(dev, "fail(%d) to query msix int status bd num\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
return ret;
}
mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
pf_bd_num = le32_to_cpu(desc_bd.data[1]);
bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
goto out;
/* query all main PF MSIx errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
if (ret) {
dev_err(dev, "query all mpf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
goto msi_error;
}
/* log MAC errors */
desc_data = (__le32 *)&desc[1];
status = le32_to_cpu(*desc_data);
if (status) {
hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
&hclge_mac_afifo_tnl_int[0], status);
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
}
/* log PPU(RCB) MPF errors */
desc_data = (__le32 *)&desc[5];
status = le32_to_cpu(*(desc_data + 2)) &
HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
if (status) {
hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
&hclge_ppu_mpf_abnormal_int_st2[0], status);
set_bit(HNAE3_CORE_RESET, reset_requests);
}
/* clear all main PF MSIx errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
if (ret) {
dev_err(dev, "clear all mpf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
goto msi_error;
}
/* query all PF MSIx errors */
memset(desc, 0, bd_num * sizeof(struct hclge_desc));
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
if (ret) {
dev_err(dev, "query all pf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
goto msi_error;
}
/* log SSU PF errors */
status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
if (status) {
hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
&hclge_ssu_port_based_pf_int[0], status);
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
}
/* read and log PPP PF errors */
desc_data = (__le32 *)&desc[2];
status = le32_to_cpu(*desc_data);
if (status)
hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
&hclge_ppp_pf_abnormal_int[0], status);
/* log PPU(RCB) PF errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
if (status)
hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
&hclge_ppu_pf_abnormal_int[0], status);
/* clear all PF MSIx errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
if (ret) {
dev_err(dev, "clear all pf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
}
msi_error:
kfree(desc);
out:
return ret;
}