alistair23-linux/samples/livepatch/livepatch-shadow-fix1.c
Petr Mladek 3b2c77d000 livepatch: Allow to call a custom callback when freeing shadow variables
We might need to do some actions before the shadow variable is freed.
For example, we might need to remove it from a list or free some data
that it points to.

This is already possible now. The user can get the shadow variable
by klp_shadow_get(), do the necessary actions, and then call
klp_shadow_free().

This patch allows to do it a more elegant way. The user could implement
the needed actions in a callback that is passed to klp_shadow_free()
as a parameter. The callback usually does reverse operations to
the constructor callback that can be called by klp_shadow_*alloc().

It is especially useful for klp_shadow_free_all(). There we need to do
these extra actions for each found shadow variable with the given ID.

Note that the memory used by the shadow variable itself is still released
later by rcu callback. It is needed to protect internal structures that
keep all shadow variables. But the destructor is called immediately.
The shadow variable must not be access anyway after klp_shadow_free()
is called. The user is responsible to protect this any suitable way.

Be aware that the destructor is called under klp_shadow_lock. It is
the same as for the contructor in klp_shadow_alloc().

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2018-04-17 13:42:48 +02:00

180 lines
4.3 KiB
C

/*
* Copyright (C) 2017 Joe Lawrence <joe.lawrence@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* livepatch-shadow-fix1.c - Shadow variables, livepatch demo
*
* Purpose
* -------
*
* Fixes the memory leak introduced in livepatch-shadow-mod through the
* use of a shadow variable. This fix demonstrates the "extending" of
* short-lived data structures by patching its allocation and release
* functions.
*
*
* Usage
* -----
*
* This module is not intended to be standalone. See the "Usage"
* section of livepatch-shadow-mod.c.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/livepatch.h>
#include <linux/slab.h>
/* Shadow variable enums */
#define SV_LEAK 1
/* Allocate new dummies every second */
#define ALLOC_PERIOD 1
/* Check for expired dummies after a few new ones have been allocated */
#define CLEANUP_PERIOD (3 * ALLOC_PERIOD)
/* Dummies expire after a few cleanup instances */
#define EXPIRE_PERIOD (4 * CLEANUP_PERIOD)
struct dummy {
struct list_head list;
unsigned long jiffies_expire;
};
/*
* The constructor makes more sense together with klp_shadow_get_or_alloc().
* In this example, it would be safe to assign the pointer also to the shadow
* variable returned by klp_shadow_alloc(). But we wanted to show the more
* complicated use of the API.
*/
static int shadow_leak_ctor(void *obj, void *shadow_data, void *ctor_data)
{
void **shadow_leak = shadow_data;
void *leak = ctor_data;
*shadow_leak = leak;
return 0;
}
struct dummy *livepatch_fix1_dummy_alloc(void)
{
struct dummy *d;
void *leak;
d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d)
return NULL;
d->jiffies_expire = jiffies +
msecs_to_jiffies(1000 * EXPIRE_PERIOD);
/*
* Patch: save the extra memory location into a SV_LEAK shadow
* variable. A patched dummy_free routine can later fetch this
* pointer to handle resource release.
*/
leak = kzalloc(sizeof(int), GFP_KERNEL);
klp_shadow_alloc(d, SV_LEAK, sizeof(leak), GFP_KERNEL,
shadow_leak_ctor, leak);
pr_info("%s: dummy @ %p, expires @ %lx\n",
__func__, d, d->jiffies_expire);
return d;
}
static void livepatch_fix1_dummy_leak_dtor(void *obj, void *shadow_data)
{
void *d = obj;
void **shadow_leak = shadow_data;
kfree(*shadow_leak);
pr_info("%s: dummy @ %p, prevented leak @ %p\n",
__func__, d, *shadow_leak);
}
void livepatch_fix1_dummy_free(struct dummy *d)
{
void **shadow_leak;
/*
* Patch: fetch the saved SV_LEAK shadow variable, detach and
* free it. Note: handle cases where this shadow variable does
* not exist (ie, dummy structures allocated before this livepatch
* was loaded.)
*/
shadow_leak = klp_shadow_get(d, SV_LEAK);
if (shadow_leak)
klp_shadow_free(d, SV_LEAK, livepatch_fix1_dummy_leak_dtor);
else
pr_info("%s: dummy @ %p leaked!\n", __func__, d);
kfree(d);
}
static struct klp_func funcs[] = {
{
.old_name = "dummy_alloc",
.new_func = livepatch_fix1_dummy_alloc,
},
{
.old_name = "dummy_free",
.new_func = livepatch_fix1_dummy_free,
}, { }
};
static struct klp_object objs[] = {
{
.name = "livepatch_shadow_mod",
.funcs = funcs,
}, { }
};
static struct klp_patch patch = {
.mod = THIS_MODULE,
.objs = objs,
};
static int livepatch_shadow_fix1_init(void)
{
int ret;
ret = klp_register_patch(&patch);
if (ret)
return ret;
ret = klp_enable_patch(&patch);
if (ret) {
WARN_ON(klp_unregister_patch(&patch));
return ret;
}
return 0;
}
static void livepatch_shadow_fix1_exit(void)
{
/* Cleanup any existing SV_LEAK shadow variables */
klp_shadow_free_all(SV_LEAK, livepatch_fix1_dummy_leak_dtor);
WARN_ON(klp_unregister_patch(&patch));
}
module_init(livepatch_shadow_fix1_init);
module_exit(livepatch_shadow_fix1_exit);
MODULE_LICENSE("GPL");
MODULE_INFO(livepatch, "Y");