alistair23-linux/drivers/net/irda/sh_irda.c
Peter Senna Tschudin 812b074b5b drivers/net/irda/sh_irda.c: fix error return code
The function sh_irda_probe() return 0 for success and negative value
for most of its internal tests failures. There is one exception
that is error case going to err_mem_4:. For this error case, the
function abort its success execution path, but returns non negative
value, making it difficult for a caller function to notice the error.

This patch fixes the error case that do not return negative value.

This was found by Coccinelle, but the code change was made by hand.
This patch is not robot generated.

A simplified version of the semantic match that finds this problem is
as follows: (http://coccinelle.lip6.fr/)

// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
 { ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
    when != &ret
*if(...)
{
  ... when != ret = e2
      when forall
 return ret;
}
// </smpl>

Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-07 14:37:11 -04:00

881 lines
20 KiB
C

/*
* SuperH IrDA Driver
*
* Copyright (C) 2010 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* Based on sh_sir.c
* Copyright (C) 2009 Renesas Solutions Corp.
* Copyright 2006-2009 Analog Devices Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* CAUTION
*
* This driver is very simple.
* So, it doesn't have below support now
* - MIR/FIR support
* - DMA transfer support
* - FIFO mode support
*/
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>
#define DRIVER_NAME "sh_irda"
#if defined(CONFIG_ARCH_SH7367) || defined(CONFIG_ARCH_SH7377)
#define __IRDARAM_LEN 0x13FF
#else
#define __IRDARAM_LEN 0x1039
#endif
#define IRTMR 0x1F00 /* Transfer mode */
#define IRCFR 0x1F02 /* Configuration */
#define IRCTR 0x1F04 /* IR control */
#define IRTFLR 0x1F20 /* Transmit frame length */
#define IRTCTR 0x1F22 /* Transmit control */
#define IRRFLR 0x1F40 /* Receive frame length */
#define IRRCTR 0x1F42 /* Receive control */
#define SIRISR 0x1F60 /* SIR-UART mode interrupt source */
#define SIRIMR 0x1F62 /* SIR-UART mode interrupt mask */
#define SIRICR 0x1F64 /* SIR-UART mode interrupt clear */
#define SIRBCR 0x1F68 /* SIR-UART mode baud rate count */
#define MFIRISR 0x1F70 /* MIR/FIR mode interrupt source */
#define MFIRIMR 0x1F72 /* MIR/FIR mode interrupt mask */
#define MFIRICR 0x1F74 /* MIR/FIR mode interrupt clear */
#define CRCCTR 0x1F80 /* CRC engine control */
#define CRCIR 0x1F86 /* CRC engine input data */
#define CRCCR 0x1F8A /* CRC engine calculation */
#define CRCOR 0x1F8E /* CRC engine output data */
#define FIFOCP 0x1FC0 /* FIFO current pointer */
#define FIFOFP 0x1FC2 /* FIFO follow pointer */
#define FIFORSMSK 0x1FC4 /* FIFO receive status mask */
#define FIFORSOR 0x1FC6 /* FIFO receive status OR */
#define FIFOSEL 0x1FC8 /* FIFO select */
#define FIFORS 0x1FCA /* FIFO receive status */
#define FIFORFL 0x1FCC /* FIFO receive frame length */
#define FIFORAMCP 0x1FCE /* FIFO RAM current pointer */
#define FIFORAMFP 0x1FD0 /* FIFO RAM follow pointer */
#define BIFCTL 0x1FD2 /* BUS interface control */
#define IRDARAM 0x0000 /* IrDA buffer RAM */
#define IRDARAM_LEN __IRDARAM_LEN /* - 8/16/32 (read-only for 32) */
/* IRTMR */
#define TMD_MASK (0x3 << 14) /* Transfer Mode */
#define TMD_SIR (0x0 << 14)
#define TMD_MIR (0x3 << 14)
#define TMD_FIR (0x2 << 14)
#define FIFORIM (1 << 8) /* FIFO receive interrupt mask */
#define MIM (1 << 4) /* MIR/FIR Interrupt Mask */
#define SIM (1 << 0) /* SIR Interrupt Mask */
#define xIM_MASK (FIFORIM | MIM | SIM)
/* IRCFR */
#define RTO_SHIFT 8 /* shift for Receive Timeout */
#define RTO (0x3 << RTO_SHIFT)
/* IRTCTR */
#define ARMOD (1 << 15) /* Auto-Receive Mode */
#define TE (1 << 0) /* Transmit Enable */
/* IRRFLR */
#define RFL_MASK (0x1FFF) /* mask for Receive Frame Length */
/* IRRCTR */
#define RE (1 << 0) /* Receive Enable */
/*
* SIRISR, SIRIMR, SIRICR,
* MFIRISR, MFIRIMR, MFIRICR
*/
#define FRE (1 << 15) /* Frame Receive End */
#define TROV (1 << 11) /* Transfer Area Overflow */
#define xIR_9 (1 << 9)
#define TOT xIR_9 /* for SIR Timeout */
#define ABTD xIR_9 /* for MIR/FIR Abort Detection */
#define xIR_8 (1 << 8)
#define FER xIR_8 /* for SIR Framing Error */
#define CRCER xIR_8 /* for MIR/FIR CRC error */
#define FTE (1 << 7) /* Frame Transmit End */
#define xIR_MASK (FRE | TROV | xIR_9 | xIR_8 | FTE)
/* SIRBCR */
#define BRC_MASK (0x3F) /* mask for Baud Rate Count */
/* CRCCTR */
#define CRC_RST (1 << 15) /* CRC Engine Reset */
#define CRC_CT_MASK 0x0FFF /* mask for CRC Engine Input Data Count */
/* CRCIR */
#define CRC_IN_MASK 0x0FFF /* mask for CRC Engine Input Data */
/************************************************************************
enum / structure
************************************************************************/
enum sh_irda_mode {
SH_IRDA_NONE = 0,
SH_IRDA_SIR,
SH_IRDA_MIR,
SH_IRDA_FIR,
};
struct sh_irda_self;
struct sh_irda_xir_func {
int (*xir_fre) (struct sh_irda_self *self);
int (*xir_trov) (struct sh_irda_self *self);
int (*xir_9) (struct sh_irda_self *self);
int (*xir_8) (struct sh_irda_self *self);
int (*xir_fte) (struct sh_irda_self *self);
};
struct sh_irda_self {
void __iomem *membase;
unsigned int irq;
struct platform_device *pdev;
struct net_device *ndev;
struct irlap_cb *irlap;
struct qos_info qos;
iobuff_t tx_buff;
iobuff_t rx_buff;
enum sh_irda_mode mode;
spinlock_t lock;
struct sh_irda_xir_func *xir_func;
};
/************************************************************************
common function
************************************************************************/
static void sh_irda_write(struct sh_irda_self *self, u32 offset, u16 data)
{
unsigned long flags;
spin_lock_irqsave(&self->lock, flags);
iowrite16(data, self->membase + offset);
spin_unlock_irqrestore(&self->lock, flags);
}
static u16 sh_irda_read(struct sh_irda_self *self, u32 offset)
{
unsigned long flags;
u16 ret;
spin_lock_irqsave(&self->lock, flags);
ret = ioread16(self->membase + offset);
spin_unlock_irqrestore(&self->lock, flags);
return ret;
}
static void sh_irda_update_bits(struct sh_irda_self *self, u32 offset,
u16 mask, u16 data)
{
unsigned long flags;
u16 old, new;
spin_lock_irqsave(&self->lock, flags);
old = ioread16(self->membase + offset);
new = (old & ~mask) | data;
if (old != new)
iowrite16(data, self->membase + offset);
spin_unlock_irqrestore(&self->lock, flags);
}
/************************************************************************
mode function
************************************************************************/
/*=====================================
*
* common
*
*=====================================*/
static void sh_irda_rcv_ctrl(struct sh_irda_self *self, int enable)
{
struct device *dev = &self->ndev->dev;
sh_irda_update_bits(self, IRRCTR, RE, enable ? RE : 0);
dev_dbg(dev, "recv %s\n", enable ? "enable" : "disable");
}
static int sh_irda_set_timeout(struct sh_irda_self *self, int interval)
{
struct device *dev = &self->ndev->dev;
if (SH_IRDA_SIR != self->mode)
interval = 0;
if (interval < 0 || interval > 2) {
dev_err(dev, "unsupported timeout interval\n");
return -EINVAL;
}
sh_irda_update_bits(self, IRCFR, RTO, interval << RTO_SHIFT);
return 0;
}
static int sh_irda_set_baudrate(struct sh_irda_self *self, int baudrate)
{
struct device *dev = &self->ndev->dev;
u16 val;
if (baudrate < 0)
return 0;
if (SH_IRDA_SIR != self->mode) {
dev_err(dev, "it is not SIR mode\n");
return -EINVAL;
}
/*
* Baud rate (bits/s) =
* (48 MHz / 26) / (baud rate counter value + 1) x 16
*/
val = (48000000 / 26 / 16 / baudrate) - 1;
dev_dbg(dev, "baudrate = %d, val = 0x%02x\n", baudrate, val);
sh_irda_update_bits(self, SIRBCR, BRC_MASK, val);
return 0;
}
static int sh_irda_get_rcv_length(struct sh_irda_self *self)
{
return RFL_MASK & sh_irda_read(self, IRRFLR);
}
/*=====================================
*
* NONE MODE
*
*=====================================*/
static int sh_irda_xir_fre(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: frame recv\n");
return 0;
}
static int sh_irda_xir_trov(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: buffer ram over\n");
return 0;
}
static int sh_irda_xir_9(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: time over\n");
return 0;
}
static int sh_irda_xir_8(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: framing error\n");
return 0;
}
static int sh_irda_xir_fte(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: frame transmit end\n");
return 0;
}
static struct sh_irda_xir_func sh_irda_xir_func = {
.xir_fre = sh_irda_xir_fre,
.xir_trov = sh_irda_xir_trov,
.xir_9 = sh_irda_xir_9,
.xir_8 = sh_irda_xir_8,
.xir_fte = sh_irda_xir_fte,
};
/*=====================================
*
* MIR/FIR MODE
*
* MIR/FIR are not supported now
*=====================================*/
static struct sh_irda_xir_func sh_irda_mfir_func = {
.xir_fre = sh_irda_xir_fre,
.xir_trov = sh_irda_xir_trov,
.xir_9 = sh_irda_xir_9,
.xir_8 = sh_irda_xir_8,
.xir_fte = sh_irda_xir_fte,
};
/*=====================================
*
* SIR MODE
*
*=====================================*/
static int sh_irda_sir_fre(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
u16 data16;
u8 *data = (u8 *)&data16;
int len = sh_irda_get_rcv_length(self);
int i, j;
if (len > IRDARAM_LEN)
len = IRDARAM_LEN;
dev_dbg(dev, "frame recv length = %d\n", len);
for (i = 0; i < len; i++) {
j = i % 2;
if (!j)
data16 = sh_irda_read(self, IRDARAM + i);
async_unwrap_char(self->ndev, &self->ndev->stats,
&self->rx_buff, data[j]);
}
self->ndev->last_rx = jiffies;
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_trov(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "buffer ram over\n");
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_tot(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "time over\n");
sh_irda_set_baudrate(self, 9600);
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_fer(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "framing error\n");
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_fte(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_dbg(dev, "frame transmit end\n");
netif_wake_queue(self->ndev);
return 0;
}
static struct sh_irda_xir_func sh_irda_sir_func = {
.xir_fre = sh_irda_sir_fre,
.xir_trov = sh_irda_sir_trov,
.xir_9 = sh_irda_sir_tot,
.xir_8 = sh_irda_sir_fer,
.xir_fte = sh_irda_sir_fte,
};
static void sh_irda_set_mode(struct sh_irda_self *self, enum sh_irda_mode mode)
{
struct device *dev = &self->ndev->dev;
struct sh_irda_xir_func *func;
const char *name;
u16 data;
switch (mode) {
case SH_IRDA_SIR:
name = "SIR";
data = TMD_SIR;
func = &sh_irda_sir_func;
break;
case SH_IRDA_MIR:
name = "MIR";
data = TMD_MIR;
func = &sh_irda_mfir_func;
break;
case SH_IRDA_FIR:
name = "FIR";
data = TMD_FIR;
func = &sh_irda_mfir_func;
break;
default:
name = "NONE";
data = 0;
func = &sh_irda_xir_func;
break;
}
self->mode = mode;
self->xir_func = func;
sh_irda_update_bits(self, IRTMR, TMD_MASK, data);
dev_dbg(dev, "switch to %s mode", name);
}
/************************************************************************
irq function
************************************************************************/
static void sh_irda_set_irq_mask(struct sh_irda_self *self)
{
u16 tmr_hole;
u16 xir_reg;
/* set all mask */
sh_irda_update_bits(self, IRTMR, xIM_MASK, xIM_MASK);
sh_irda_update_bits(self, SIRIMR, xIR_MASK, xIR_MASK);
sh_irda_update_bits(self, MFIRIMR, xIR_MASK, xIR_MASK);
/* clear irq */
sh_irda_update_bits(self, SIRICR, xIR_MASK, xIR_MASK);
sh_irda_update_bits(self, MFIRICR, xIR_MASK, xIR_MASK);
switch (self->mode) {
case SH_IRDA_SIR:
tmr_hole = SIM;
xir_reg = SIRIMR;
break;
case SH_IRDA_MIR:
case SH_IRDA_FIR:
tmr_hole = MIM;
xir_reg = MFIRIMR;
break;
default:
tmr_hole = 0;
xir_reg = 0;
break;
}
/* open mask */
if (xir_reg) {
sh_irda_update_bits(self, IRTMR, tmr_hole, 0);
sh_irda_update_bits(self, xir_reg, xIR_MASK, 0);
}
}
static irqreturn_t sh_irda_irq(int irq, void *dev_id)
{
struct sh_irda_self *self = dev_id;
struct sh_irda_xir_func *func = self->xir_func;
u16 isr = sh_irda_read(self, SIRISR);
/* clear irq */
sh_irda_write(self, SIRICR, isr);
if (isr & FRE)
func->xir_fre(self);
if (isr & TROV)
func->xir_trov(self);
if (isr & xIR_9)
func->xir_9(self);
if (isr & xIR_8)
func->xir_8(self);
if (isr & FTE)
func->xir_fte(self);
return IRQ_HANDLED;
}
/************************************************************************
CRC function
************************************************************************/
static void sh_irda_crc_reset(struct sh_irda_self *self)
{
sh_irda_write(self, CRCCTR, CRC_RST);
}
static void sh_irda_crc_add(struct sh_irda_self *self, u16 data)
{
sh_irda_write(self, CRCIR, data & CRC_IN_MASK);
}
static u16 sh_irda_crc_cnt(struct sh_irda_self *self)
{
return CRC_CT_MASK & sh_irda_read(self, CRCCTR);
}
static u16 sh_irda_crc_out(struct sh_irda_self *self)
{
return sh_irda_read(self, CRCOR);
}
static int sh_irda_crc_init(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
int ret = -EIO;
u16 val;
sh_irda_crc_reset(self);
sh_irda_crc_add(self, 0xCC);
sh_irda_crc_add(self, 0xF5);
sh_irda_crc_add(self, 0xF1);
sh_irda_crc_add(self, 0xA7);
val = sh_irda_crc_cnt(self);
if (4 != val) {
dev_err(dev, "CRC count error %x\n", val);
goto crc_init_out;
}
val = sh_irda_crc_out(self);
if (0x51DF != val) {
dev_err(dev, "CRC result error%x\n", val);
goto crc_init_out;
}
ret = 0;
crc_init_out:
sh_irda_crc_reset(self);
return ret;
}
/************************************************************************
iobuf function
************************************************************************/
static void sh_irda_remove_iobuf(struct sh_irda_self *self)
{
kfree(self->rx_buff.head);
self->tx_buff.head = NULL;
self->tx_buff.data = NULL;
self->rx_buff.head = NULL;
self->rx_buff.data = NULL;
}
static int sh_irda_init_iobuf(struct sh_irda_self *self, int rxsize, int txsize)
{
if (self->rx_buff.head ||
self->tx_buff.head) {
dev_err(&self->ndev->dev, "iobuff has already existed.");
return -EINVAL;
}
/* rx_buff */
self->rx_buff.head = kmalloc(rxsize, GFP_KERNEL);
if (!self->rx_buff.head)
return -ENOMEM;
self->rx_buff.truesize = rxsize;
self->rx_buff.in_frame = FALSE;
self->rx_buff.state = OUTSIDE_FRAME;
self->rx_buff.data = self->rx_buff.head;
/* tx_buff */
self->tx_buff.head = self->membase + IRDARAM;
self->tx_buff.truesize = IRDARAM_LEN;
return 0;
}
/************************************************************************
net_device_ops function
************************************************************************/
static int sh_irda_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
struct device *dev = &self->ndev->dev;
int speed = irda_get_next_speed(skb);
int ret;
dev_dbg(dev, "hard xmit\n");
netif_stop_queue(ndev);
sh_irda_rcv_ctrl(self, 0);
ret = sh_irda_set_baudrate(self, speed);
if (ret < 0)
goto sh_irda_hard_xmit_end;
self->tx_buff.len = 0;
if (skb->len) {
unsigned long flags;
spin_lock_irqsave(&self->lock, flags);
self->tx_buff.len = async_wrap_skb(skb,
self->tx_buff.head,
self->tx_buff.truesize);
spin_unlock_irqrestore(&self->lock, flags);
if (self->tx_buff.len > self->tx_buff.truesize)
self->tx_buff.len = self->tx_buff.truesize;
sh_irda_write(self, IRTFLR, self->tx_buff.len);
sh_irda_write(self, IRTCTR, ARMOD | TE);
} else
goto sh_irda_hard_xmit_end;
dev_kfree_skb(skb);
return 0;
sh_irda_hard_xmit_end:
sh_irda_set_baudrate(self, 9600);
netif_wake_queue(self->ndev);
sh_irda_rcv_ctrl(self, 1);
dev_kfree_skb(skb);
return ret;
}
static int sh_irda_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
{
/*
* FIXME
*
* This function is needed for irda framework.
* But nothing to do now
*/
return 0;
}
static struct net_device_stats *sh_irda_stats(struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
return &self->ndev->stats;
}
static int sh_irda_open(struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
int err;
pm_runtime_get_sync(&self->pdev->dev);
err = sh_irda_crc_init(self);
if (err)
goto open_err;
sh_irda_set_mode(self, SH_IRDA_SIR);
sh_irda_set_timeout(self, 2);
sh_irda_set_baudrate(self, 9600);
self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
if (!self->irlap) {
err = -ENODEV;
goto open_err;
}
netif_start_queue(ndev);
sh_irda_rcv_ctrl(self, 1);
sh_irda_set_irq_mask(self);
dev_info(&ndev->dev, "opened\n");
return 0;
open_err:
pm_runtime_put_sync(&self->pdev->dev);
return err;
}
static int sh_irda_stop(struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
/* Stop IrLAP */
if (self->irlap) {
irlap_close(self->irlap);
self->irlap = NULL;
}
netif_stop_queue(ndev);
pm_runtime_put_sync(&self->pdev->dev);
dev_info(&ndev->dev, "stopped\n");
return 0;
}
static const struct net_device_ops sh_irda_ndo = {
.ndo_open = sh_irda_open,
.ndo_stop = sh_irda_stop,
.ndo_start_xmit = sh_irda_hard_xmit,
.ndo_do_ioctl = sh_irda_ioctl,
.ndo_get_stats = sh_irda_stats,
};
/************************************************************************
platform_driver function
************************************************************************/
static int __devinit sh_irda_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct sh_irda_self *self;
struct resource *res;
int irq;
int err = -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (!res || irq < 0) {
dev_err(&pdev->dev, "Not enough platform resources.\n");
goto exit;
}
ndev = alloc_irdadev(sizeof(*self));
if (!ndev)
goto exit;
self = netdev_priv(ndev);
self->membase = ioremap_nocache(res->start, resource_size(res));
if (!self->membase) {
err = -ENXIO;
dev_err(&pdev->dev, "Unable to ioremap.\n");
goto err_mem_1;
}
err = sh_irda_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
if (err)
goto err_mem_2;
self->pdev = pdev;
pm_runtime_enable(&pdev->dev);
irda_init_max_qos_capabilies(&self->qos);
ndev->netdev_ops = &sh_irda_ndo;
ndev->irq = irq;
self->ndev = ndev;
self->qos.baud_rate.bits &= IR_9600; /* FIXME */
self->qos.min_turn_time.bits = 1; /* 10 ms or more */
spin_lock_init(&self->lock);
irda_qos_bits_to_value(&self->qos);
err = register_netdev(ndev);
if (err)
goto err_mem_4;
platform_set_drvdata(pdev, ndev);
err = request_irq(irq, sh_irda_irq, IRQF_DISABLED, "sh_irda", self);
if (err) {
dev_warn(&pdev->dev, "Unable to attach sh_irda interrupt\n");
goto err_mem_4;
}
dev_info(&pdev->dev, "SuperH IrDA probed\n");
goto exit;
err_mem_4:
pm_runtime_disable(&pdev->dev);
sh_irda_remove_iobuf(self);
err_mem_2:
iounmap(self->membase);
err_mem_1:
free_netdev(ndev);
exit:
return err;
}
static int __devexit sh_irda_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct sh_irda_self *self = netdev_priv(ndev);
if (!self)
return 0;
unregister_netdev(ndev);
pm_runtime_disable(&pdev->dev);
sh_irda_remove_iobuf(self);
iounmap(self->membase);
free_netdev(ndev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static int sh_irda_runtime_nop(struct device *dev)
{
/* Runtime PM callback shared between ->runtime_suspend()
* and ->runtime_resume(). Simply returns success.
*
* This driver re-initializes all registers after
* pm_runtime_get_sync() anyway so there is no need
* to save and restore registers here.
*/
return 0;
}
static const struct dev_pm_ops sh_irda_pm_ops = {
.runtime_suspend = sh_irda_runtime_nop,
.runtime_resume = sh_irda_runtime_nop,
};
static struct platform_driver sh_irda_driver = {
.probe = sh_irda_probe,
.remove = __devexit_p(sh_irda_remove),
.driver = {
.name = DRIVER_NAME,
.pm = &sh_irda_pm_ops,
},
};
module_platform_driver(sh_irda_driver);
MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");
MODULE_DESCRIPTION("SuperH IrDA driver");
MODULE_LICENSE("GPL");