alistair23-linux/drivers/rtc/rtc-mcp795.c
Emil Bartczak 644d4c366b rtc: mcp795: add alarm support.
This patch adds alarm support. This allows to configure the chip
to generate an interrupt when the alarm matches current time value.
Alarm can be programmed up to one year in the future
and is accurate to the second.

Signed-off-by: Emil Bartczak <emilbart@gmail.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
2017-01-11 17:23:04 +01:00

458 lines
12 KiB
C

/*
* SPI Driver for Microchip MCP795 RTC
*
* Copyright (C) Josef Gajdusek <atx@atx.name>
*
* based on other Linux RTC drivers
*
* Device datasheet:
* http://ww1.microchip.com/downloads/en/DeviceDoc/22280A.pdf
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/spi/spi.h>
#include <linux/rtc.h>
#include <linux/of.h>
#include <linux/bcd.h>
#include <linux/delay.h>
/* MCP795 Instructions, see datasheet table 3-1 */
#define MCP795_EEREAD 0x03
#define MCP795_EEWRITE 0x02
#define MCP795_EEWRDI 0x04
#define MCP795_EEWREN 0x06
#define MCP795_SRREAD 0x05
#define MCP795_SRWRITE 0x01
#define MCP795_READ 0x13
#define MCP795_WRITE 0x12
#define MCP795_UNLOCK 0x14
#define MCP795_IDWRITE 0x32
#define MCP795_IDREAD 0x33
#define MCP795_CLRWDT 0x44
#define MCP795_CLRRAM 0x54
/* MCP795 RTCC registers, see datasheet table 4-1 */
#define MCP795_REG_SECONDS 0x01
#define MCP795_REG_DAY 0x04
#define MCP795_REG_MONTH 0x06
#define MCP795_REG_CONTROL 0x08
#define MCP795_REG_ALM0_SECONDS 0x0C
#define MCP795_REG_ALM0_DAY 0x0F
#define MCP795_ST_BIT BIT(7)
#define MCP795_24_BIT BIT(6)
#define MCP795_LP_BIT BIT(5)
#define MCP795_EXTOSC_BIT BIT(3)
#define MCP795_OSCON_BIT BIT(5)
#define MCP795_ALM0_BIT BIT(4)
#define MCP795_ALM1_BIT BIT(5)
#define MCP795_ALM0IF_BIT BIT(3)
#define MCP795_ALM0C0_BIT BIT(4)
#define MCP795_ALM0C1_BIT BIT(5)
#define MCP795_ALM0C2_BIT BIT(6)
#define SEC_PER_DAY (24 * 60 * 60)
static int mcp795_rtcc_read(struct device *dev, u8 addr, u8 *buf, u8 count)
{
struct spi_device *spi = to_spi_device(dev);
int ret;
u8 tx[2];
tx[0] = MCP795_READ;
tx[1] = addr;
ret = spi_write_then_read(spi, tx, sizeof(tx), buf, count);
if (ret)
dev_err(dev, "Failed reading %d bytes from address %x.\n",
count, addr);
return ret;
}
static int mcp795_rtcc_write(struct device *dev, u8 addr, u8 *data, u8 count)
{
struct spi_device *spi = to_spi_device(dev);
int ret;
u8 tx[2 + count];
tx[0] = MCP795_WRITE;
tx[1] = addr;
memcpy(&tx[2], data, count);
ret = spi_write(spi, tx, 2 + count);
if (ret)
dev_err(dev, "Failed to write %d bytes to address %x.\n",
count, addr);
return ret;
}
static int mcp795_rtcc_set_bits(struct device *dev, u8 addr, u8 mask, u8 state)
{
int ret;
u8 tmp;
ret = mcp795_rtcc_read(dev, addr, &tmp, 1);
if (ret)
return ret;
if ((tmp & mask) != state) {
tmp = (tmp & ~mask) | state;
ret = mcp795_rtcc_write(dev, addr, &tmp, 1);
}
return ret;
}
static int mcp795_stop_oscillator(struct device *dev, bool *extosc)
{
int retries = 5;
int ret;
u8 data;
ret = mcp795_rtcc_set_bits(dev, MCP795_REG_SECONDS, MCP795_ST_BIT, 0);
if (ret)
return ret;
ret = mcp795_rtcc_read(dev, MCP795_REG_CONTROL, &data, 1);
if (ret)
return ret;
*extosc = !!(data & MCP795_EXTOSC_BIT);
ret = mcp795_rtcc_set_bits(
dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, 0);
if (ret)
return ret;
/* wait for the OSCON bit to clear */
do {
usleep_range(700, 800);
ret = mcp795_rtcc_read(dev, MCP795_REG_DAY, &data, 1);
if (ret)
break;
if (!(data & MCP795_OSCON_BIT))
break;
} while (--retries);
return !retries ? -EIO : ret;
}
static int mcp795_start_oscillator(struct device *dev, bool *extosc)
{
if (extosc) {
u8 data = *extosc ? MCP795_EXTOSC_BIT : 0;
int ret;
ret = mcp795_rtcc_set_bits(
dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, data);
if (ret)
return ret;
}
return mcp795_rtcc_set_bits(
dev, MCP795_REG_SECONDS, MCP795_ST_BIT, MCP795_ST_BIT);
}
/* Enable or disable Alarm 0 in RTC */
static int mcp795_update_alarm(struct device *dev, bool enable)
{
int ret;
dev_dbg(dev, "%s alarm\n", enable ? "Enable" : "Disable");
if (enable) {
/* clear ALM0IF (Alarm 0 Interrupt Flag) bit */
ret = mcp795_rtcc_set_bits(dev, MCP795_REG_ALM0_DAY,
MCP795_ALM0IF_BIT, 0);
if (ret)
return ret;
/* enable alarm 0 */
ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
MCP795_ALM0_BIT, MCP795_ALM0_BIT);
} else {
/* disable alarm 0 and alarm 1 */
ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
MCP795_ALM0_BIT | MCP795_ALM1_BIT, 0);
}
return ret;
}
static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
{
int ret;
u8 data[7];
bool extosc;
/* Stop RTC and store current value of EXTOSC bit */
ret = mcp795_stop_oscillator(dev, &extosc);
if (ret)
return ret;
/* Read first, so we can leave config bits untouched */
ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
if (ret)
return ret;
data[0] = (data[0] & 0x80) | bin2bcd(tim->tm_sec);
data[1] = (data[1] & 0x80) | bin2bcd(tim->tm_min);
data[2] = bin2bcd(tim->tm_hour);
data[3] = (data[3] & 0xF8) | bin2bcd(tim->tm_wday + 1);
data[4] = bin2bcd(tim->tm_mday);
data[5] = (data[5] & MCP795_LP_BIT) | bin2bcd(tim->tm_mon + 1);
if (tim->tm_year > 100)
tim->tm_year -= 100;
data[6] = bin2bcd(tim->tm_year);
/* Always write the date and month using a separate Write command.
* This is a workaround for a know silicon issue that some combinations
* of date and month values may result in the date being reset to 1.
*/
ret = mcp795_rtcc_write(dev, MCP795_REG_SECONDS, data, 5);
if (ret)
return ret;
ret = mcp795_rtcc_write(dev, MCP795_REG_MONTH, &data[5], 2);
if (ret)
return ret;
/* Start back RTC and restore previous value of EXTOSC bit.
* There is no need to clear EXTOSC bit when the previous value was 0
* because it was already cleared when stopping the RTC oscillator.
*/
ret = mcp795_start_oscillator(dev, extosc ? &extosc : NULL);
if (ret)
return ret;
dev_dbg(dev, "Set mcp795: %04d-%02d-%02d(%d) %02d:%02d:%02d\n",
tim->tm_year + 1900, tim->tm_mon, tim->tm_mday,
tim->tm_wday, tim->tm_hour, tim->tm_min, tim->tm_sec);
return 0;
}
static int mcp795_read_time(struct device *dev, struct rtc_time *tim)
{
int ret;
u8 data[7];
ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
if (ret)
return ret;
tim->tm_sec = bcd2bin(data[0] & 0x7F);
tim->tm_min = bcd2bin(data[1] & 0x7F);
tim->tm_hour = bcd2bin(data[2] & 0x3F);
tim->tm_wday = bcd2bin(data[3] & 0x07) - 1;
tim->tm_mday = bcd2bin(data[4] & 0x3F);
tim->tm_mon = bcd2bin(data[5] & 0x1F) - 1;
tim->tm_year = bcd2bin(data[6]) + 100; /* Assume we are in 20xx */
dev_dbg(dev, "Read from mcp795: %04d-%02d-%02d(%d) %02d:%02d:%02d\n",
tim->tm_year + 1900, tim->tm_mon, tim->tm_mday,
tim->tm_wday, tim->tm_hour, tim->tm_min, tim->tm_sec);
return rtc_valid_tm(tim);
}
static int mcp795_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct rtc_time now_tm;
time64_t now;
time64_t later;
u8 tmp[6];
int ret;
/* Read current time from RTC hardware */
ret = mcp795_read_time(dev, &now_tm);
if (ret)
return ret;
/* Get the number of seconds since 1970 */
now = rtc_tm_to_time64(&now_tm);
later = rtc_tm_to_time64(&alm->time);
if (later <= now)
return -EINVAL;
/* make sure alarm fires within the next one year */
if ((later - now) >=
(SEC_PER_DAY * (365 + is_leap_year(alm->time.tm_year))))
return -EDOM;
/* disable alarm */
ret = mcp795_update_alarm(dev, false);
if (ret)
return ret;
/* Read registers, so we can leave configuration bits untouched */
ret = mcp795_rtcc_read(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
if (ret)
return ret;
alm->time.tm_year = -1;
alm->time.tm_isdst = -1;
alm->time.tm_yday = -1;
tmp[0] = (tmp[0] & 0x80) | bin2bcd(alm->time.tm_sec);
tmp[1] = (tmp[1] & 0x80) | bin2bcd(alm->time.tm_min);
tmp[2] = (tmp[2] & 0xE0) | bin2bcd(alm->time.tm_hour);
tmp[3] = (tmp[3] & 0x80) | bin2bcd(alm->time.tm_wday + 1);
/* set alarm match: seconds, minutes, hour, day, date and month */
tmp[3] |= (MCP795_ALM0C2_BIT | MCP795_ALM0C1_BIT | MCP795_ALM0C0_BIT);
tmp[4] = (tmp[4] & 0xC0) | bin2bcd(alm->time.tm_mday);
tmp[5] = (tmp[5] & 0xE0) | bin2bcd(alm->time.tm_mon + 1);
ret = mcp795_rtcc_write(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
if (ret)
return ret;
/* enable alarm if requested */
if (alm->enabled) {
ret = mcp795_update_alarm(dev, true);
if (ret)
return ret;
dev_dbg(dev, "Alarm IRQ armed\n");
}
dev_dbg(dev, "Set alarm: %02d-%02d(%d) %02d:%02d:%02d\n",
alm->time.tm_mon, alm->time.tm_mday, alm->time.tm_wday,
alm->time.tm_hour, alm->time.tm_min, alm->time.tm_sec);
return 0;
}
static int mcp795_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
u8 data[6];
int ret;
ret = mcp795_rtcc_read(
dev, MCP795_REG_ALM0_SECONDS, data, sizeof(data));
if (ret)
return ret;
alm->time.tm_sec = bcd2bin(data[0] & 0x7F);
alm->time.tm_min = bcd2bin(data[1] & 0x7F);
alm->time.tm_hour = bcd2bin(data[2] & 0x1F);
alm->time.tm_wday = bcd2bin(data[3] & 0x07) - 1;
alm->time.tm_mday = bcd2bin(data[4] & 0x3F);
alm->time.tm_mon = bcd2bin(data[5] & 0x1F) - 1;
alm->time.tm_year = -1;
alm->time.tm_isdst = -1;
alm->time.tm_yday = -1;
dev_dbg(dev, "Read alarm: %02d-%02d(%d) %02d:%02d:%02d\n",
alm->time.tm_mon, alm->time.tm_mday, alm->time.tm_wday,
alm->time.tm_hour, alm->time.tm_min, alm->time.tm_sec);
return 0;
}
static int mcp795_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
return mcp795_update_alarm(dev, !!enabled);
}
static irqreturn_t mcp795_irq(int irq, void *data)
{
struct spi_device *spi = data;
struct rtc_device *rtc = spi_get_drvdata(spi);
struct mutex *lock = &rtc->ops_lock;
int ret;
mutex_lock(lock);
/* Disable alarm.
* There is no need to clear ALM0IF (Alarm 0 Interrupt Flag) bit,
* because it is done every time when alarm is enabled.
*/
ret = mcp795_update_alarm(&spi->dev, false);
if (ret)
dev_err(&spi->dev,
"Failed to disable alarm in IRQ (ret=%d)\n", ret);
rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
mutex_unlock(lock);
return IRQ_HANDLED;
}
static const struct rtc_class_ops mcp795_rtc_ops = {
.read_time = mcp795_read_time,
.set_time = mcp795_set_time,
.read_alarm = mcp795_read_alarm,
.set_alarm = mcp795_set_alarm,
.alarm_irq_enable = mcp795_alarm_irq_enable
};
static int mcp795_probe(struct spi_device *spi)
{
struct rtc_device *rtc;
int ret;
spi->mode = SPI_MODE_0;
spi->bits_per_word = 8;
ret = spi_setup(spi);
if (ret) {
dev_err(&spi->dev, "Unable to setup SPI\n");
return ret;
}
/* Start the oscillator but don't set the value of EXTOSC bit */
mcp795_start_oscillator(&spi->dev, NULL);
/* Clear the 12 hour mode flag*/
mcp795_rtcc_set_bits(&spi->dev, 0x03, MCP795_24_BIT, 0);
rtc = devm_rtc_device_register(&spi->dev, "rtc-mcp795",
&mcp795_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
spi_set_drvdata(spi, rtc);
if (spi->irq > 0) {
dev_dbg(&spi->dev, "Alarm support enabled\n");
/* Clear any pending alarm (ALM0IF bit) before requesting
* the interrupt.
*/
mcp795_rtcc_set_bits(&spi->dev, MCP795_REG_ALM0_DAY,
MCP795_ALM0IF_BIT, 0);
ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
mcp795_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
dev_name(&rtc->dev), spi);
if (ret)
dev_err(&spi->dev, "Failed to request IRQ: %d: %d\n",
spi->irq, ret);
else
device_init_wakeup(&spi->dev, true);
}
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id mcp795_of_match[] = {
{ .compatible = "maxim,mcp795" },
{ }
};
MODULE_DEVICE_TABLE(of, mcp795_of_match);
#endif
static struct spi_driver mcp795_driver = {
.driver = {
.name = "rtc-mcp795",
.of_match_table = of_match_ptr(mcp795_of_match),
},
.probe = mcp795_probe,
};
module_spi_driver(mcp795_driver);
MODULE_DESCRIPTION("MCP795 RTC SPI Driver");
MODULE_AUTHOR("Josef Gajdusek <atx@atx.name>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:mcp795");