alistair23-linux/drivers/dma/tegra210-adma.c
Sameer Pujar f33e7bb3eb dmaengine: tegra210-adma: restore channel status
Status of ADMA channel registers is not saved and restored during system
suspend. During active playback if system enters suspend, this results in
wrong state of channel registers during system resume and playback fails
to resume properly. Fix this by saving following channel registers in
runtime suspend and restore during runtime resume.
 * ADMA_CH_LOWER_SRC_ADDR
 * ADMA_CH_LOWER_TRG_ADDR
 * ADMA_CH_FIFO_CTRL
 * ADMA_CH_CONFIG
 * ADMA_CH_CTRL
 * ADMA_CH_CMD
 * ADMA_CH_TC
Runtime PM calls will be inovked during system resume path if a playback
or capture needs to be resumed. Hence above changes work fine for system
suspend case.

Fixes: f46b195799 ("dmaengine: tegra-adma: Add support for Tegra210 ADMA")
Signed-off-by: Sameer Pujar <spujar@nvidia.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-05-04 16:13:42 +05:30

971 lines
25 KiB
C

/*
* ADMA driver for Nvidia's Tegra210 ADMA controller.
*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "virt-dma.h"
#define ADMA_CH_CMD 0x00
#define ADMA_CH_STATUS 0x0c
#define ADMA_CH_STATUS_XFER_EN BIT(0)
#define ADMA_CH_STATUS_XFER_PAUSED BIT(1)
#define ADMA_CH_INT_STATUS 0x10
#define ADMA_CH_INT_STATUS_XFER_DONE BIT(0)
#define ADMA_CH_INT_CLEAR 0x1c
#define ADMA_CH_CTRL 0x24
#define ADMA_CH_CTRL_DIR(val) (((val) & 0xf) << 12)
#define ADMA_CH_CTRL_DIR_AHUB2MEM 2
#define ADMA_CH_CTRL_DIR_MEM2AHUB 4
#define ADMA_CH_CTRL_MODE_CONTINUOUS (2 << 8)
#define ADMA_CH_CTRL_FLOWCTRL_EN BIT(1)
#define ADMA_CH_CTRL_XFER_PAUSE_SHIFT 0
#define ADMA_CH_CONFIG 0x28
#define ADMA_CH_CONFIG_SRC_BUF(val) (((val) & 0x7) << 28)
#define ADMA_CH_CONFIG_TRG_BUF(val) (((val) & 0x7) << 24)
#define ADMA_CH_CONFIG_BURST_SIZE_SHIFT 20
#define ADMA_CH_CONFIG_MAX_BURST_SIZE 16
#define ADMA_CH_CONFIG_WEIGHT_FOR_WRR(val) ((val) & 0xf)
#define ADMA_CH_CONFIG_MAX_BUFS 8
#define ADMA_CH_FIFO_CTRL 0x2c
#define ADMA_CH_FIFO_CTRL_OVRFW_THRES(val) (((val) & 0xf) << 24)
#define ADMA_CH_FIFO_CTRL_STARV_THRES(val) (((val) & 0xf) << 16)
#define ADMA_CH_FIFO_CTRL_TX_FIFO_SIZE_SHIFT 8
#define ADMA_CH_FIFO_CTRL_RX_FIFO_SIZE_SHIFT 0
#define ADMA_CH_LOWER_SRC_ADDR 0x34
#define ADMA_CH_LOWER_TRG_ADDR 0x3c
#define ADMA_CH_TC 0x44
#define ADMA_CH_TC_COUNT_MASK 0x3ffffffc
#define ADMA_CH_XFER_STATUS 0x54
#define ADMA_CH_XFER_STATUS_COUNT_MASK 0xffff
#define ADMA_GLOBAL_CMD 0x00
#define ADMA_GLOBAL_SOFT_RESET 0x04
#define TEGRA_ADMA_BURST_COMPLETE_TIME 20
#define ADMA_CH_FIFO_CTRL_DEFAULT (ADMA_CH_FIFO_CTRL_OVRFW_THRES(1) | \
ADMA_CH_FIFO_CTRL_STARV_THRES(1))
#define ADMA_CH_REG_FIELD_VAL(val, mask, shift) (((val) & mask) << shift)
struct tegra_adma;
/*
* struct tegra_adma_chip_data - Tegra chip specific data
* @global_reg_offset: Register offset of DMA global register.
* @global_int_clear: Register offset of DMA global interrupt clear.
* @ch_req_tx_shift: Register offset for AHUB transmit channel select.
* @ch_req_rx_shift: Register offset for AHUB receive channel select.
* @ch_base_offset: Reister offset of DMA channel registers.
* @ch_req_mask: Mask for Tx or Rx channel select.
* @ch_req_max: Maximum number of Tx or Rx channels available.
* @ch_reg_size: Size of DMA channel register space.
* @nr_channels: Number of DMA channels available.
*/
struct tegra_adma_chip_data {
unsigned int (*adma_get_burst_config)(unsigned int burst_size);
unsigned int global_reg_offset;
unsigned int global_int_clear;
unsigned int ch_req_tx_shift;
unsigned int ch_req_rx_shift;
unsigned int ch_base_offset;
unsigned int ch_req_mask;
unsigned int ch_req_max;
unsigned int ch_reg_size;
unsigned int nr_channels;
};
/*
* struct tegra_adma_chan_regs - Tegra ADMA channel registers
*/
struct tegra_adma_chan_regs {
unsigned int ctrl;
unsigned int config;
unsigned int src_addr;
unsigned int trg_addr;
unsigned int fifo_ctrl;
unsigned int cmd;
unsigned int tc;
};
/*
* struct tegra_adma_desc - Tegra ADMA descriptor to manage transfer requests.
*/
struct tegra_adma_desc {
struct virt_dma_desc vd;
struct tegra_adma_chan_regs ch_regs;
size_t buf_len;
size_t period_len;
size_t num_periods;
};
/*
* struct tegra_adma_chan - Tegra ADMA channel information
*/
struct tegra_adma_chan {
struct virt_dma_chan vc;
struct tegra_adma_desc *desc;
struct tegra_adma *tdma;
int irq;
void __iomem *chan_addr;
/* Slave channel configuration info */
struct dma_slave_config sconfig;
enum dma_transfer_direction sreq_dir;
unsigned int sreq_index;
bool sreq_reserved;
struct tegra_adma_chan_regs ch_regs;
/* Transfer count and position info */
unsigned int tx_buf_count;
unsigned int tx_buf_pos;
};
/*
* struct tegra_adma - Tegra ADMA controller information
*/
struct tegra_adma {
struct dma_device dma_dev;
struct device *dev;
void __iomem *base_addr;
struct clk *ahub_clk;
unsigned int nr_channels;
unsigned long rx_requests_reserved;
unsigned long tx_requests_reserved;
/* Used to store global command register state when suspending */
unsigned int global_cmd;
const struct tegra_adma_chip_data *cdata;
/* Last member of the structure */
struct tegra_adma_chan channels[0];
};
static inline void tdma_write(struct tegra_adma *tdma, u32 reg, u32 val)
{
writel(val, tdma->base_addr + tdma->cdata->global_reg_offset + reg);
}
static inline u32 tdma_read(struct tegra_adma *tdma, u32 reg)
{
return readl(tdma->base_addr + tdma->cdata->global_reg_offset + reg);
}
static inline void tdma_ch_write(struct tegra_adma_chan *tdc, u32 reg, u32 val)
{
writel(val, tdc->chan_addr + reg);
}
static inline u32 tdma_ch_read(struct tegra_adma_chan *tdc, u32 reg)
{
return readl(tdc->chan_addr + reg);
}
static inline struct tegra_adma_chan *to_tegra_adma_chan(struct dma_chan *dc)
{
return container_of(dc, struct tegra_adma_chan, vc.chan);
}
static inline struct tegra_adma_desc *to_tegra_adma_desc(
struct dma_async_tx_descriptor *td)
{
return container_of(td, struct tegra_adma_desc, vd.tx);
}
static inline struct device *tdc2dev(struct tegra_adma_chan *tdc)
{
return tdc->tdma->dev;
}
static void tegra_adma_desc_free(struct virt_dma_desc *vd)
{
kfree(container_of(vd, struct tegra_adma_desc, vd));
}
static int tegra_adma_slave_config(struct dma_chan *dc,
struct dma_slave_config *sconfig)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
memcpy(&tdc->sconfig, sconfig, sizeof(*sconfig));
return 0;
}
static int tegra_adma_init(struct tegra_adma *tdma)
{
u32 status;
int ret;
/* Clear any interrupts */
tdma_write(tdma, tdma->cdata->global_int_clear, 0x1);
/* Assert soft reset */
tdma_write(tdma, ADMA_GLOBAL_SOFT_RESET, 0x1);
/* Wait for reset to clear */
ret = readx_poll_timeout(readl,
tdma->base_addr +
tdma->cdata->global_reg_offset +
ADMA_GLOBAL_SOFT_RESET,
status, status == 0, 20, 10000);
if (ret)
return ret;
/* Enable global ADMA registers */
tdma_write(tdma, ADMA_GLOBAL_CMD, 1);
return 0;
}
static int tegra_adma_request_alloc(struct tegra_adma_chan *tdc,
enum dma_transfer_direction direction)
{
struct tegra_adma *tdma = tdc->tdma;
unsigned int sreq_index = tdc->sreq_index;
if (tdc->sreq_reserved)
return tdc->sreq_dir == direction ? 0 : -EINVAL;
if (sreq_index > tdma->cdata->ch_req_max) {
dev_err(tdma->dev, "invalid DMA request\n");
return -EINVAL;
}
switch (direction) {
case DMA_MEM_TO_DEV:
if (test_and_set_bit(sreq_index, &tdma->tx_requests_reserved)) {
dev_err(tdma->dev, "DMA request reserved\n");
return -EINVAL;
}
break;
case DMA_DEV_TO_MEM:
if (test_and_set_bit(sreq_index, &tdma->rx_requests_reserved)) {
dev_err(tdma->dev, "DMA request reserved\n");
return -EINVAL;
}
break;
default:
dev_WARN(tdma->dev, "channel %s has invalid transfer type\n",
dma_chan_name(&tdc->vc.chan));
return -EINVAL;
}
tdc->sreq_dir = direction;
tdc->sreq_reserved = true;
return 0;
}
static void tegra_adma_request_free(struct tegra_adma_chan *tdc)
{
struct tegra_adma *tdma = tdc->tdma;
if (!tdc->sreq_reserved)
return;
switch (tdc->sreq_dir) {
case DMA_MEM_TO_DEV:
clear_bit(tdc->sreq_index, &tdma->tx_requests_reserved);
break;
case DMA_DEV_TO_MEM:
clear_bit(tdc->sreq_index, &tdma->rx_requests_reserved);
break;
default:
dev_WARN(tdma->dev, "channel %s has invalid transfer type\n",
dma_chan_name(&tdc->vc.chan));
return;
}
tdc->sreq_reserved = false;
}
static u32 tegra_adma_irq_status(struct tegra_adma_chan *tdc)
{
u32 status = tdma_ch_read(tdc, ADMA_CH_INT_STATUS);
return status & ADMA_CH_INT_STATUS_XFER_DONE;
}
static u32 tegra_adma_irq_clear(struct tegra_adma_chan *tdc)
{
u32 status = tegra_adma_irq_status(tdc);
if (status)
tdma_ch_write(tdc, ADMA_CH_INT_CLEAR, status);
return status;
}
static void tegra_adma_stop(struct tegra_adma_chan *tdc)
{
unsigned int status;
/* Disable ADMA */
tdma_ch_write(tdc, ADMA_CH_CMD, 0);
/* Clear interrupt status */
tegra_adma_irq_clear(tdc);
if (readx_poll_timeout_atomic(readl, tdc->chan_addr + ADMA_CH_STATUS,
status, !(status & ADMA_CH_STATUS_XFER_EN),
20, 10000)) {
dev_err(tdc2dev(tdc), "unable to stop DMA channel\n");
return;
}
kfree(tdc->desc);
tdc->desc = NULL;
}
static void tegra_adma_start(struct tegra_adma_chan *tdc)
{
struct virt_dma_desc *vd = vchan_next_desc(&tdc->vc);
struct tegra_adma_chan_regs *ch_regs;
struct tegra_adma_desc *desc;
if (!vd)
return;
list_del(&vd->node);
desc = to_tegra_adma_desc(&vd->tx);
if (!desc) {
dev_warn(tdc2dev(tdc), "unable to start DMA, no descriptor\n");
return;
}
ch_regs = &desc->ch_regs;
tdc->tx_buf_pos = 0;
tdc->tx_buf_count = 0;
tdma_ch_write(tdc, ADMA_CH_TC, ch_regs->tc);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl);
tdma_ch_write(tdc, ADMA_CH_LOWER_SRC_ADDR, ch_regs->src_addr);
tdma_ch_write(tdc, ADMA_CH_LOWER_TRG_ADDR, ch_regs->trg_addr);
tdma_ch_write(tdc, ADMA_CH_FIFO_CTRL, ch_regs->fifo_ctrl);
tdma_ch_write(tdc, ADMA_CH_CONFIG, ch_regs->config);
/* Start ADMA */
tdma_ch_write(tdc, ADMA_CH_CMD, 1);
tdc->desc = desc;
}
static unsigned int tegra_adma_get_residue(struct tegra_adma_chan *tdc)
{
struct tegra_adma_desc *desc = tdc->desc;
unsigned int max = ADMA_CH_XFER_STATUS_COUNT_MASK + 1;
unsigned int pos = tdma_ch_read(tdc, ADMA_CH_XFER_STATUS);
unsigned int periods_remaining;
/*
* Handle wrap around of buffer count register
*/
if (pos < tdc->tx_buf_pos)
tdc->tx_buf_count += pos + (max - tdc->tx_buf_pos);
else
tdc->tx_buf_count += pos - tdc->tx_buf_pos;
periods_remaining = tdc->tx_buf_count % desc->num_periods;
tdc->tx_buf_pos = pos;
return desc->buf_len - (periods_remaining * desc->period_len);
}
static irqreturn_t tegra_adma_isr(int irq, void *dev_id)
{
struct tegra_adma_chan *tdc = dev_id;
unsigned long status;
unsigned long flags;
spin_lock_irqsave(&tdc->vc.lock, flags);
status = tegra_adma_irq_clear(tdc);
if (status == 0 || !tdc->desc) {
spin_unlock_irqrestore(&tdc->vc.lock, flags);
return IRQ_NONE;
}
vchan_cyclic_callback(&tdc->desc->vd);
spin_unlock_irqrestore(&tdc->vc.lock, flags);
return IRQ_HANDLED;
}
static void tegra_adma_issue_pending(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
unsigned long flags;
spin_lock_irqsave(&tdc->vc.lock, flags);
if (vchan_issue_pending(&tdc->vc)) {
if (!tdc->desc)
tegra_adma_start(tdc);
}
spin_unlock_irqrestore(&tdc->vc.lock, flags);
}
static bool tegra_adma_is_paused(struct tegra_adma_chan *tdc)
{
u32 csts;
csts = tdma_ch_read(tdc, ADMA_CH_STATUS);
csts &= ADMA_CH_STATUS_XFER_PAUSED;
return csts ? true : false;
}
static int tegra_adma_pause(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc = tdc->desc;
struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs;
int dcnt = 10;
ch_regs->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL);
ch_regs->ctrl |= (1 << ADMA_CH_CTRL_XFER_PAUSE_SHIFT);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl);
while (dcnt-- && !tegra_adma_is_paused(tdc))
udelay(TEGRA_ADMA_BURST_COMPLETE_TIME);
if (dcnt < 0) {
dev_err(tdc2dev(tdc), "unable to pause DMA channel\n");
return -EBUSY;
}
return 0;
}
static int tegra_adma_resume(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc = tdc->desc;
struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs;
ch_regs->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL);
ch_regs->ctrl &= ~(1 << ADMA_CH_CTRL_XFER_PAUSE_SHIFT);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl);
return 0;
}
static int tegra_adma_terminate_all(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&tdc->vc.lock, flags);
if (tdc->desc)
tegra_adma_stop(tdc);
tegra_adma_request_free(tdc);
vchan_get_all_descriptors(&tdc->vc, &head);
spin_unlock_irqrestore(&tdc->vc.lock, flags);
vchan_dma_desc_free_list(&tdc->vc, &head);
return 0;
}
static enum dma_status tegra_adma_tx_status(struct dma_chan *dc,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc;
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
unsigned int residual;
ret = dma_cookie_status(dc, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&tdc->vc.lock, flags);
vd = vchan_find_desc(&tdc->vc, cookie);
if (vd) {
desc = to_tegra_adma_desc(&vd->tx);
residual = desc->ch_regs.tc;
} else if (tdc->desc && tdc->desc->vd.tx.cookie == cookie) {
residual = tegra_adma_get_residue(tdc);
} else {
residual = 0;
}
spin_unlock_irqrestore(&tdc->vc.lock, flags);
dma_set_residue(txstate, residual);
return ret;
}
static unsigned int tegra210_adma_get_burst_config(unsigned int burst_size)
{
if (!burst_size || burst_size > ADMA_CH_CONFIG_MAX_BURST_SIZE)
burst_size = ADMA_CH_CONFIG_MAX_BURST_SIZE;
return fls(burst_size) << ADMA_CH_CONFIG_BURST_SIZE_SHIFT;
}
static unsigned int tegra186_adma_get_burst_config(unsigned int burst_size)
{
if (!burst_size || burst_size > ADMA_CH_CONFIG_MAX_BURST_SIZE)
burst_size = ADMA_CH_CONFIG_MAX_BURST_SIZE;
return (burst_size - 1) << ADMA_CH_CONFIG_BURST_SIZE_SHIFT;
}
static int tegra_adma_set_xfer_params(struct tegra_adma_chan *tdc,
struct tegra_adma_desc *desc,
dma_addr_t buf_addr,
enum dma_transfer_direction direction)
{
struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs;
const struct tegra_adma_chip_data *cdata = tdc->tdma->cdata;
unsigned int burst_size, adma_dir;
if (desc->num_periods > ADMA_CH_CONFIG_MAX_BUFS)
return -EINVAL;
switch (direction) {
case DMA_MEM_TO_DEV:
adma_dir = ADMA_CH_CTRL_DIR_MEM2AHUB;
burst_size = tdc->sconfig.dst_maxburst;
ch_regs->config = ADMA_CH_CONFIG_SRC_BUF(desc->num_periods - 1);
ch_regs->ctrl = ADMA_CH_REG_FIELD_VAL(tdc->sreq_index,
cdata->ch_req_mask,
cdata->ch_req_tx_shift);
ch_regs->src_addr = buf_addr;
break;
case DMA_DEV_TO_MEM:
adma_dir = ADMA_CH_CTRL_DIR_AHUB2MEM;
burst_size = tdc->sconfig.src_maxburst;
ch_regs->config = ADMA_CH_CONFIG_TRG_BUF(desc->num_periods - 1);
ch_regs->ctrl = ADMA_CH_REG_FIELD_VAL(tdc->sreq_index,
cdata->ch_req_mask,
cdata->ch_req_rx_shift);
ch_regs->trg_addr = buf_addr;
break;
default:
dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
return -EINVAL;
}
ch_regs->ctrl |= ADMA_CH_CTRL_DIR(adma_dir) |
ADMA_CH_CTRL_MODE_CONTINUOUS |
ADMA_CH_CTRL_FLOWCTRL_EN;
ch_regs->config |= cdata->adma_get_burst_config(burst_size);
ch_regs->config |= ADMA_CH_CONFIG_WEIGHT_FOR_WRR(1);
ch_regs->fifo_ctrl = ADMA_CH_FIFO_CTRL_DEFAULT;
ch_regs->tc = desc->period_len & ADMA_CH_TC_COUNT_MASK;
return tegra_adma_request_alloc(tdc, direction);
}
static struct dma_async_tx_descriptor *tegra_adma_prep_dma_cyclic(
struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc = NULL;
if (!buf_len || !period_len || period_len > ADMA_CH_TC_COUNT_MASK) {
dev_err(tdc2dev(tdc), "invalid buffer/period len\n");
return NULL;
}
if (buf_len % period_len) {
dev_err(tdc2dev(tdc), "buf_len not a multiple of period_len\n");
return NULL;
}
if (!IS_ALIGNED(buf_addr, 4)) {
dev_err(tdc2dev(tdc), "invalid buffer alignment\n");
return NULL;
}
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (!desc)
return NULL;
desc->buf_len = buf_len;
desc->period_len = period_len;
desc->num_periods = buf_len / period_len;
if (tegra_adma_set_xfer_params(tdc, desc, buf_addr, direction)) {
kfree(desc);
return NULL;
}
return vchan_tx_prep(&tdc->vc, &desc->vd, flags);
}
static int tegra_adma_alloc_chan_resources(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
int ret;
ret = request_irq(tdc->irq, tegra_adma_isr, 0, dma_chan_name(dc), tdc);
if (ret) {
dev_err(tdc2dev(tdc), "failed to get interrupt for %s\n",
dma_chan_name(dc));
return ret;
}
ret = pm_runtime_get_sync(tdc2dev(tdc));
if (ret < 0) {
free_irq(tdc->irq, tdc);
return ret;
}
dma_cookie_init(&tdc->vc.chan);
return 0;
}
static void tegra_adma_free_chan_resources(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
tegra_adma_terminate_all(dc);
vchan_free_chan_resources(&tdc->vc);
tasklet_kill(&tdc->vc.task);
free_irq(tdc->irq, tdc);
pm_runtime_put(tdc2dev(tdc));
tdc->sreq_index = 0;
tdc->sreq_dir = DMA_TRANS_NONE;
}
static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct tegra_adma *tdma = ofdma->of_dma_data;
struct tegra_adma_chan *tdc;
struct dma_chan *chan;
unsigned int sreq_index;
if (dma_spec->args_count != 1)
return NULL;
sreq_index = dma_spec->args[0];
if (sreq_index == 0) {
dev_err(tdma->dev, "DMA request must not be 0\n");
return NULL;
}
chan = dma_get_any_slave_channel(&tdma->dma_dev);
if (!chan)
return NULL;
tdc = to_tegra_adma_chan(chan);
tdc->sreq_index = sreq_index;
return chan;
}
static int tegra_adma_runtime_suspend(struct device *dev)
{
struct tegra_adma *tdma = dev_get_drvdata(dev);
struct tegra_adma_chan_regs *ch_reg;
struct tegra_adma_chan *tdc;
int i;
tdma->global_cmd = tdma_read(tdma, ADMA_GLOBAL_CMD);
if (!tdma->global_cmd)
goto clk_disable;
for (i = 0; i < tdma->nr_channels; i++) {
tdc = &tdma->channels[i];
ch_reg = &tdc->ch_regs;
ch_reg->cmd = tdma_ch_read(tdc, ADMA_CH_CMD);
/* skip if channel is not active */
if (!ch_reg->cmd)
continue;
ch_reg->tc = tdma_ch_read(tdc, ADMA_CH_TC);
ch_reg->src_addr = tdma_ch_read(tdc, ADMA_CH_LOWER_SRC_ADDR);
ch_reg->trg_addr = tdma_ch_read(tdc, ADMA_CH_LOWER_TRG_ADDR);
ch_reg->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL);
ch_reg->fifo_ctrl = tdma_ch_read(tdc, ADMA_CH_FIFO_CTRL);
ch_reg->config = tdma_ch_read(tdc, ADMA_CH_CONFIG);
}
clk_disable:
clk_disable_unprepare(tdma->ahub_clk);
return 0;
}
static int tegra_adma_runtime_resume(struct device *dev)
{
struct tegra_adma *tdma = dev_get_drvdata(dev);
struct tegra_adma_chan_regs *ch_reg;
struct tegra_adma_chan *tdc;
int ret, i;
ret = clk_prepare_enable(tdma->ahub_clk);
if (ret) {
dev_err(dev, "ahub clk_enable failed: %d\n", ret);
return ret;
}
tdma_write(tdma, ADMA_GLOBAL_CMD, tdma->global_cmd);
if (!tdma->global_cmd)
return 0;
for (i = 0; i < tdma->nr_channels; i++) {
tdc = &tdma->channels[i];
ch_reg = &tdc->ch_regs;
/* skip if channel was not active earlier */
if (!ch_reg->cmd)
continue;
tdma_ch_write(tdc, ADMA_CH_TC, ch_reg->tc);
tdma_ch_write(tdc, ADMA_CH_LOWER_SRC_ADDR, ch_reg->src_addr);
tdma_ch_write(tdc, ADMA_CH_LOWER_TRG_ADDR, ch_reg->trg_addr);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_reg->ctrl);
tdma_ch_write(tdc, ADMA_CH_FIFO_CTRL, ch_reg->fifo_ctrl);
tdma_ch_write(tdc, ADMA_CH_CONFIG, ch_reg->config);
tdma_ch_write(tdc, ADMA_CH_CMD, ch_reg->cmd);
}
return 0;
}
static const struct tegra_adma_chip_data tegra210_chip_data = {
.adma_get_burst_config = tegra210_adma_get_burst_config,
.global_reg_offset = 0xc00,
.global_int_clear = 0x20,
.ch_req_tx_shift = 28,
.ch_req_rx_shift = 24,
.ch_base_offset = 0,
.ch_req_mask = 0xf,
.ch_req_max = 10,
.ch_reg_size = 0x80,
.nr_channels = 22,
};
static const struct tegra_adma_chip_data tegra186_chip_data = {
.adma_get_burst_config = tegra186_adma_get_burst_config,
.global_reg_offset = 0,
.global_int_clear = 0x402c,
.ch_req_tx_shift = 27,
.ch_req_rx_shift = 22,
.ch_base_offset = 0x10000,
.ch_req_mask = 0x1f,
.ch_req_max = 20,
.ch_reg_size = 0x100,
.nr_channels = 32,
};
static const struct of_device_id tegra_adma_of_match[] = {
{ .compatible = "nvidia,tegra210-adma", .data = &tegra210_chip_data },
{ .compatible = "nvidia,tegra186-adma", .data = &tegra186_chip_data },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_adma_of_match);
static int tegra_adma_probe(struct platform_device *pdev)
{
const struct tegra_adma_chip_data *cdata;
struct tegra_adma *tdma;
struct resource *res;
int ret, i;
cdata = of_device_get_match_data(&pdev->dev);
if (!cdata) {
dev_err(&pdev->dev, "device match data not found\n");
return -ENODEV;
}
tdma = devm_kzalloc(&pdev->dev,
struct_size(tdma, channels, cdata->nr_channels),
GFP_KERNEL);
if (!tdma)
return -ENOMEM;
tdma->dev = &pdev->dev;
tdma->cdata = cdata;
tdma->nr_channels = cdata->nr_channels;
platform_set_drvdata(pdev, tdma);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tdma->base_addr))
return PTR_ERR(tdma->base_addr);
tdma->ahub_clk = devm_clk_get(&pdev->dev, "d_audio");
if (IS_ERR(tdma->ahub_clk)) {
dev_err(&pdev->dev, "Error: Missing ahub controller clock\n");
return PTR_ERR(tdma->ahub_clk);
}
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
goto rpm_disable;
ret = tegra_adma_init(tdma);
if (ret)
goto rpm_put;
INIT_LIST_HEAD(&tdma->dma_dev.channels);
for (i = 0; i < tdma->nr_channels; i++) {
struct tegra_adma_chan *tdc = &tdma->channels[i];
tdc->chan_addr = tdma->base_addr + cdata->ch_base_offset
+ (cdata->ch_reg_size * i);
tdc->irq = of_irq_get(pdev->dev.of_node, i);
if (tdc->irq <= 0) {
ret = tdc->irq ?: -ENXIO;
goto irq_dispose;
}
vchan_init(&tdc->vc, &tdma->dma_dev);
tdc->vc.desc_free = tegra_adma_desc_free;
tdc->tdma = tdma;
}
dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
tdma->dma_dev.dev = &pdev->dev;
tdma->dma_dev.device_alloc_chan_resources =
tegra_adma_alloc_chan_resources;
tdma->dma_dev.device_free_chan_resources =
tegra_adma_free_chan_resources;
tdma->dma_dev.device_issue_pending = tegra_adma_issue_pending;
tdma->dma_dev.device_prep_dma_cyclic = tegra_adma_prep_dma_cyclic;
tdma->dma_dev.device_config = tegra_adma_slave_config;
tdma->dma_dev.device_tx_status = tegra_adma_tx_status;
tdma->dma_dev.device_terminate_all = tegra_adma_terminate_all;
tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
tdma->dma_dev.device_pause = tegra_adma_pause;
tdma->dma_dev.device_resume = tegra_adma_resume;
ret = dma_async_device_register(&tdma->dma_dev);
if (ret < 0) {
dev_err(&pdev->dev, "ADMA registration failed: %d\n", ret);
goto irq_dispose;
}
ret = of_dma_controller_register(pdev->dev.of_node,
tegra_dma_of_xlate, tdma);
if (ret < 0) {
dev_err(&pdev->dev, "ADMA OF registration failed %d\n", ret);
goto dma_remove;
}
pm_runtime_put(&pdev->dev);
dev_info(&pdev->dev, "Tegra210 ADMA driver registered %d channels\n",
tdma->nr_channels);
return 0;
dma_remove:
dma_async_device_unregister(&tdma->dma_dev);
irq_dispose:
while (--i >= 0)
irq_dispose_mapping(tdma->channels[i].irq);
rpm_put:
pm_runtime_put_sync(&pdev->dev);
rpm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int tegra_adma_remove(struct platform_device *pdev)
{
struct tegra_adma *tdma = platform_get_drvdata(pdev);
int i;
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&tdma->dma_dev);
for (i = 0; i < tdma->nr_channels; ++i)
irq_dispose_mapping(tdma->channels[i].irq);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct dev_pm_ops tegra_adma_dev_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_adma_runtime_suspend,
tegra_adma_runtime_resume, NULL)
SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct platform_driver tegra_admac_driver = {
.driver = {
.name = "tegra-adma",
.pm = &tegra_adma_dev_pm_ops,
.of_match_table = tegra_adma_of_match,
},
.probe = tegra_adma_probe,
.remove = tegra_adma_remove,
};
module_platform_driver(tegra_admac_driver);
MODULE_ALIAS("platform:tegra210-adma");
MODULE_DESCRIPTION("NVIDIA Tegra ADMA driver");
MODULE_AUTHOR("Dara Ramesh <dramesh@nvidia.com>");
MODULE_AUTHOR("Jon Hunter <jonathanh@nvidia.com>");
MODULE_LICENSE("GPL v2");