alistair23-linux/arch/x86/kernel/smpboot.c
Linus Torvalds f9300eaaac ACPI and power management updates for 3.13-rc1
- New power capping framework and the the Intel Running Average Power
    Limit (RAPL) driver using it from Srinivas Pandruvada and Jacob Pan.
 
  - Addition of the in-kernel switching feature to the arm_big_little
    cpufreq driver from Viresh Kumar and Nicolas Pitre.
 
  - cpufreq support for iMac G5 from Aaro Koskinen.
 
  - Baytrail processors support for intel_pstate from Dirk Brandewie.
 
  - cpufreq support for Midway/ECX-2000 from Mark Langsdorf.
 
  - ARM vexpress/TC2 cpufreq support from Sudeep KarkadaNagesha.
 
  - ACPI power management support for the I2C and SPI bus types from
    Mika Westerberg and Lv Zheng.
 
  - cpufreq core fixes and cleanups from Viresh Kumar, Srivatsa S Bhat,
    Stratos Karafotis, Xiaoguang Chen, Lan Tianyu.
 
  - cpufreq drivers updates (mostly fixes and cleanups) from Viresh Kumar,
    Aaro Koskinen, Jungseok Lee, Sudeep KarkadaNagesha, Lukasz Majewski,
    Manish Badarkhe, Hans-Christian Egtvedt, Evgeny Kapaev.
 
  - intel_pstate updates from Dirk Brandewie and Adrian Huang.
 
  - ACPICA update to version 20130927 includig fixes and cleanups and
    some reduction of divergences between the ACPICA code in the kernel
    and ACPICA upstream in order to improve the automatic ACPICA patch
    generation process.  From Bob Moore, Lv Zheng, Tomasz Nowicki,
    Naresh Bhat, Bjorn Helgaas, David E Box.
 
  - ACPI IPMI driver fixes and cleanups from Lv Zheng.
 
  - ACPI hotplug fixes and cleanups from Bjorn Helgaas, Toshi Kani,
    Zhang Yanfei, Rafael J Wysocki.
 
  - Conversion of the ACPI AC driver to the platform bus type and
    multiple driver fixes and cleanups related to ACPI from Zhang Rui.
 
  - ACPI processor driver fixes and cleanups from Hanjun Guo, Jiang Liu,
    Bartlomiej Zolnierkiewicz, Mathieu Rhéaume, Rafael J Wysocki.
 
  - Fixes and cleanups and new blacklist entries related to the ACPI
    video support from Aaron Lu, Felipe Contreras, Lennart Poettering,
    Kirill Tkhai.
 
  - cpuidle core cleanups from Viresh Kumar and Lorenzo Pieralisi.
 
  - cpuidle drivers fixes and cleanups from Daniel Lezcano, Jingoo Han,
    Bartlomiej Zolnierkiewicz, Prarit Bhargava.
 
  - devfreq updates from Sachin Kamat, Dan Carpenter, Manish Badarkhe.
 
  - Operation Performance Points (OPP) core updates from Nishanth Menon.
 
  - Runtime power management core fix from Rafael J Wysocki and update
    from Ulf Hansson.
 
  - Hibernation fixes from Aaron Lu and Rafael J Wysocki.
 
  - Device suspend/resume lockup detection mechanism from Benoit Goby.
 
  - Removal of unused proc directories created for various ACPI drivers
    from Lan Tianyu.
 
  - ACPI LPSS driver fix and new device IDs for the ACPI platform scan
    handler from Heikki Krogerus and Jarkko Nikula.
 
  - New ACPI _OSI blacklist entry for Toshiba NB100 from Levente Kurusa.
 
  - Assorted fixes and cleanups related to ACPI from Andy Shevchenko,
    Al Stone, Bartlomiej Zolnierkiewicz, Colin Ian King, Dan Carpenter,
    Felipe Contreras, Jianguo Wu, Lan Tianyu, Yinghai Lu, Mathias Krause,
    Liu Chuansheng.
 
  - Assorted PM fixes and cleanups from Andy Shevchenko, Thierry Reding,
    Jean-Christophe Plagniol-Villard.
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABCAAGBQJSfPKLAAoJEILEb/54YlRxH6YQAJwDKi25RCZziFSIenXuqzC/
 c6JxoH/tSnDHJHhcTgqh7H7Raa+zmatMDf0m2oEv2Wjfx4Lt4BQK4iefhe/zY4lX
 yJ8uXDg+U8DYhDX2XwbwnFpd1M1k/A+s2gIHDTHHGnE0kDngXdd8RAFFktBmooTZ
 l5LBQvOrTlgX/ZfqI/MNmQ6lfY6kbCABGSHV1tUUsDA6Kkvk/LAUTOMSmptv1q22
 hcs6k55vR34qADPkUX5GghjmcYJv+gNtvbDEJUjcmCwVoPWouF415m7R5lJ8w3/M
 49Q8Tbu5HELWLwca64OorS8qh/P7sgUOf1BX5IDzHnJT+TGeDfvcYbMv2Z275/WZ
 /bqhuLuKBpsHQ2wvEeT+lYV3FlifKeTf1FBxER3ApjzI3GfpmVVQ+dpEu8e9hcTh
 ZTPGzziGtoIsHQ0unxb+zQOyt1PmIk+cU4IsKazs5U20zsVDMcKzPrb19Od49vMX
 gCHvRzNyOTqKWpE83Ss4NGOVPAG02AXiXi/BpuYBHKDy6fTH/liKiCw5xlCDEtmt
 lQrEbupKpc/dhCLo5ws6w7MZzjWJs2eSEQcNR4DlR++pxIpYOOeoPTXXrghgZt2X
 mmxZI2qsJ7GAvPzII8OBeF3CRO3fabZ6Nez+M+oEZjGe05ZtpB3ccw410HwieqBn
 dYpJFt/BHK189odhV9CM
 =JCxk
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI and power management updates from Rafael J Wysocki:

 - New power capping framework and the the Intel Running Average Power
   Limit (RAPL) driver using it from Srinivas Pandruvada and Jacob Pan.

 - Addition of the in-kernel switching feature to the arm_big_little
   cpufreq driver from Viresh Kumar and Nicolas Pitre.

 - cpufreq support for iMac G5 from Aaro Koskinen.

 - Baytrail processors support for intel_pstate from Dirk Brandewie.

 - cpufreq support for Midway/ECX-2000 from Mark Langsdorf.

 - ARM vexpress/TC2 cpufreq support from Sudeep KarkadaNagesha.

 - ACPI power management support for the I2C and SPI bus types from Mika
   Westerberg and Lv Zheng.

 - cpufreq core fixes and cleanups from Viresh Kumar, Srivatsa S Bhat,
   Stratos Karafotis, Xiaoguang Chen, Lan Tianyu.

 - cpufreq drivers updates (mostly fixes and cleanups) from Viresh
   Kumar, Aaro Koskinen, Jungseok Lee, Sudeep KarkadaNagesha, Lukasz
   Majewski, Manish Badarkhe, Hans-Christian Egtvedt, Evgeny Kapaev.

 - intel_pstate updates from Dirk Brandewie and Adrian Huang.

 - ACPICA update to version 20130927 includig fixes and cleanups and
   some reduction of divergences between the ACPICA code in the kernel
   and ACPICA upstream in order to improve the automatic ACPICA patch
   generation process.  From Bob Moore, Lv Zheng, Tomasz Nowicki, Naresh
   Bhat, Bjorn Helgaas, David E Box.

 - ACPI IPMI driver fixes and cleanups from Lv Zheng.

 - ACPI hotplug fixes and cleanups from Bjorn Helgaas, Toshi Kani, Zhang
   Yanfei, Rafael J Wysocki.

 - Conversion of the ACPI AC driver to the platform bus type and
   multiple driver fixes and cleanups related to ACPI from Zhang Rui.

 - ACPI processor driver fixes and cleanups from Hanjun Guo, Jiang Liu,
   Bartlomiej Zolnierkiewicz, Mathieu Rhéaume, Rafael J Wysocki.

 - Fixes and cleanups and new blacklist entries related to the ACPI
   video support from Aaron Lu, Felipe Contreras, Lennart Poettering,
   Kirill Tkhai.

 - cpuidle core cleanups from Viresh Kumar and Lorenzo Pieralisi.

 - cpuidle drivers fixes and cleanups from Daniel Lezcano, Jingoo Han,
   Bartlomiej Zolnierkiewicz, Prarit Bhargava.

 - devfreq updates from Sachin Kamat, Dan Carpenter, Manish Badarkhe.

 - Operation Performance Points (OPP) core updates from Nishanth Menon.

 - Runtime power management core fix from Rafael J Wysocki and update
   from Ulf Hansson.

 - Hibernation fixes from Aaron Lu and Rafael J Wysocki.

 - Device suspend/resume lockup detection mechanism from Benoit Goby.

 - Removal of unused proc directories created for various ACPI drivers
   from Lan Tianyu.

 - ACPI LPSS driver fix and new device IDs for the ACPI platform scan
   handler from Heikki Krogerus and Jarkko Nikula.

 - New ACPI _OSI blacklist entry for Toshiba NB100 from Levente Kurusa.

 - Assorted fixes and cleanups related to ACPI from Andy Shevchenko, Al
   Stone, Bartlomiej Zolnierkiewicz, Colin Ian King, Dan Carpenter,
   Felipe Contreras, Jianguo Wu, Lan Tianyu, Yinghai Lu, Mathias Krause,
   Liu Chuansheng.

 - Assorted PM fixes and cleanups from Andy Shevchenko, Thierry Reding,
   Jean-Christophe Plagniol-Villard.

* tag 'pm+acpi-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (386 commits)
  cpufreq: conservative: fix requested_freq reduction issue
  ACPI / hotplug: Consolidate deferred execution of ACPI hotplug routines
  PM / runtime: Use pm_runtime_put_sync() in __device_release_driver()
  ACPI / event: remove unneeded NULL pointer check
  Revert "ACPI / video: Ignore BIOS initial backlight value for HP 250 G1"
  ACPI / video: Quirk initial backlight level 0
  ACPI / video: Fix initial level validity test
  intel_pstate: skip the driver if ACPI has power mgmt option
  PM / hibernate: Avoid overflow in hibernate_preallocate_memory()
  ACPI / hotplug: Do not execute "insert in progress" _OST
  ACPI / hotplug: Carry out PCI root eject directly
  ACPI / hotplug: Merge device hot-removal routines
  ACPI / hotplug: Make acpi_bus_hot_remove_device() internal
  ACPI / hotplug: Simplify device ejection routines
  ACPI / hotplug: Fix handle_root_bridge_removal()
  ACPI / hotplug: Refuse to hot-remove all objects with disabled hotplug
  ACPI / scan: Start matching drivers after trying scan handlers
  ACPI: Remove acpi_pci_slot_init() headers from internal.h
  ACPI / blacklist: fix name of ThinkPad Edge E530
  PowerCap: Fix build error with option -Werror=format-security
  ...

Conflicts:
	arch/arm/mach-omap2/opp.c
	drivers/Kconfig
	drivers/spi/spi.c
2013-11-14 13:41:48 +09:00

1475 lines
35 KiB
C

/*
* x86 SMP booting functions
*
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
* (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
* Copyright 2001 Andi Kleen, SuSE Labs.
*
* Much of the core SMP work is based on previous work by Thomas Radke, to
* whom a great many thanks are extended.
*
* Thanks to Intel for making available several different Pentium,
* Pentium Pro and Pentium-II/Xeon MP machines.
* Original development of Linux SMP code supported by Caldera.
*
* This code is released under the GNU General Public License version 2 or
* later.
*
* Fixes
* Felix Koop : NR_CPUS used properly
* Jose Renau : Handle single CPU case.
* Alan Cox : By repeated request 8) - Total BogoMIPS report.
* Greg Wright : Fix for kernel stacks panic.
* Erich Boleyn : MP v1.4 and additional changes.
* Matthias Sattler : Changes for 2.1 kernel map.
* Michel Lespinasse : Changes for 2.1 kernel map.
* Michael Chastain : Change trampoline.S to gnu as.
* Alan Cox : Dumb bug: 'B' step PPro's are fine
* Ingo Molnar : Added APIC timers, based on code
* from Jose Renau
* Ingo Molnar : various cleanups and rewrites
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
* Andi Kleen : Changed for SMP boot into long mode.
* Martin J. Bligh : Added support for multi-quad systems
* Dave Jones : Report invalid combinations of Athlon CPUs.
* Rusty Russell : Hacked into shape for new "hotplug" boot process.
* Andi Kleen : Converted to new state machine.
* Ashok Raj : CPU hotplug support
* Glauber Costa : i386 and x86_64 integration
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/percpu.h>
#include <linux/bootmem.h>
#include <linux/err.h>
#include <linux/nmi.h>
#include <linux/tboot.h>
#include <linux/stackprotector.h>
#include <linux/gfp.h>
#include <linux/cpuidle.h>
#include <asm/acpi.h>
#include <asm/desc.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/idle.h>
#include <asm/realmode.h>
#include <asm/cpu.h>
#include <asm/numa.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mtrr.h>
#include <asm/mwait.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/i387.h>
#include <asm/fpu-internal.h>
#include <asm/setup.h>
#include <asm/uv/uv.h>
#include <linux/mc146818rtc.h>
#include <asm/smpboot_hooks.h>
#include <asm/i8259.h>
#include <asm/realmode.h>
#include <asm/misc.h>
/* State of each CPU */
DEFINE_PER_CPU(int, cpu_state) = { 0 };
/* Number of siblings per CPU package */
int smp_num_siblings = 1;
EXPORT_SYMBOL(smp_num_siblings);
/* Last level cache ID of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
/* representing HT siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
/* representing HT and core siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
/* Per CPU bogomips and other parameters */
DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
EXPORT_PER_CPU_SYMBOL(cpu_info);
atomic_t init_deasserted;
/*
* Report back to the Boot Processor during boot time or to the caller processor
* during CPU online.
*/
static void smp_callin(void)
{
int cpuid, phys_id;
unsigned long timeout;
/*
* If waken up by an INIT in an 82489DX configuration
* we may get here before an INIT-deassert IPI reaches
* our local APIC. We have to wait for the IPI or we'll
* lock up on an APIC access.
*
* Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
*/
cpuid = smp_processor_id();
if (apic->wait_for_init_deassert && cpuid != 0)
apic->wait_for_init_deassert(&init_deasserted);
/*
* (This works even if the APIC is not enabled.)
*/
phys_id = read_apic_id();
if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
phys_id, cpuid);
}
pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
/*
* STARTUP IPIs are fragile beasts as they might sometimes
* trigger some glue motherboard logic. Complete APIC bus
* silence for 1 second, this overestimates the time the
* boot CPU is spending to send the up to 2 STARTUP IPIs
* by a factor of two. This should be enough.
*/
/*
* Waiting 2s total for startup (udelay is not yet working)
*/
timeout = jiffies + 2*HZ;
while (time_before(jiffies, timeout)) {
/*
* Has the boot CPU finished it's STARTUP sequence?
*/
if (cpumask_test_cpu(cpuid, cpu_callout_mask))
break;
cpu_relax();
}
if (!time_before(jiffies, timeout)) {
panic("%s: CPU%d started up but did not get a callout!\n",
__func__, cpuid);
}
/*
* the boot CPU has finished the init stage and is spinning
* on callin_map until we finish. We are free to set up this
* CPU, first the APIC. (this is probably redundant on most
* boards)
*/
pr_debug("CALLIN, before setup_local_APIC()\n");
if (apic->smp_callin_clear_local_apic)
apic->smp_callin_clear_local_apic();
setup_local_APIC();
end_local_APIC_setup();
/*
* Need to setup vector mappings before we enable interrupts.
*/
setup_vector_irq(smp_processor_id());
/*
* Save our processor parameters. Note: this information
* is needed for clock calibration.
*/
smp_store_cpu_info(cpuid);
/*
* Get our bogomips.
* Update loops_per_jiffy in cpu_data. Previous call to
* smp_store_cpu_info() stored a value that is close but not as
* accurate as the value just calculated.
*/
calibrate_delay();
cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
pr_debug("Stack at about %p\n", &cpuid);
/*
* This must be done before setting cpu_online_mask
* or calling notify_cpu_starting.
*/
set_cpu_sibling_map(raw_smp_processor_id());
wmb();
notify_cpu_starting(cpuid);
/*
* Allow the master to continue.
*/
cpumask_set_cpu(cpuid, cpu_callin_mask);
}
static int cpu0_logical_apicid;
static int enable_start_cpu0;
/*
* Activate a secondary processor.
*/
static void notrace start_secondary(void *unused)
{
/*
* Don't put *anything* before cpu_init(), SMP booting is too
* fragile that we want to limit the things done here to the
* most necessary things.
*/
cpu_init();
x86_cpuinit.early_percpu_clock_init();
preempt_disable();
smp_callin();
enable_start_cpu0 = 0;
#ifdef CONFIG_X86_32
/* switch away from the initial page table */
load_cr3(swapper_pg_dir);
__flush_tlb_all();
#endif
/* otherwise gcc will move up smp_processor_id before the cpu_init */
barrier();
/*
* Check TSC synchronization with the BP:
*/
check_tsc_sync_target();
/*
* We need to hold vector_lock so there the set of online cpus
* does not change while we are assigning vectors to cpus. Holding
* this lock ensures we don't half assign or remove an irq from a cpu.
*/
lock_vector_lock();
set_cpu_online(smp_processor_id(), true);
unlock_vector_lock();
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
x86_platform.nmi_init();
/* enable local interrupts */
local_irq_enable();
/* to prevent fake stack check failure in clock setup */
boot_init_stack_canary();
x86_cpuinit.setup_percpu_clockev();
wmb();
cpu_startup_entry(CPUHP_ONLINE);
}
void __init smp_store_boot_cpu_info(void)
{
int id = 0; /* CPU 0 */
struct cpuinfo_x86 *c = &cpu_data(id);
*c = boot_cpu_data;
c->cpu_index = id;
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
void smp_store_cpu_info(int id)
{
struct cpuinfo_x86 *c = &cpu_data(id);
*c = boot_cpu_data;
c->cpu_index = id;
/*
* During boot time, CPU0 has this setup already. Save the info when
* bringing up AP or offlined CPU0.
*/
identify_secondary_cpu(c);
}
static bool
topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
return !WARN_ONCE(cpu_to_node(cpu1) != cpu_to_node(cpu2),
"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
"[node: %d != %d]. Ignoring dependency.\n",
cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
}
#define link_mask(_m, c1, c2) \
do { \
cpumask_set_cpu((c1), cpu_##_m##_mask(c2)); \
cpumask_set_cpu((c2), cpu_##_m##_mask(c1)); \
} while (0)
static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (cpu_has_topoext) {
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
if (c->phys_proc_id == o->phys_proc_id &&
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
c->compute_unit_id == o->compute_unit_id)
return topology_sane(c, o, "smt");
} else if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_core_id == o->cpu_core_id) {
return topology_sane(c, o, "smt");
}
return false;
}
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
return topology_sane(c, o, "llc");
return false;
}
static bool match_mc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (c->phys_proc_id == o->phys_proc_id) {
if (cpu_has(c, X86_FEATURE_AMD_DCM))
return true;
return topology_sane(c, o, "mc");
}
return false;
}
void set_cpu_sibling_map(int cpu)
{
bool has_smt = smp_num_siblings > 1;
bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct cpuinfo_x86 *o;
int i;
cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
if (!has_mp) {
cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
cpumask_set_cpu(cpu, cpu_core_mask(cpu));
c->booted_cores = 1;
return;
}
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if ((i == cpu) || (has_smt && match_smt(c, o)))
link_mask(sibling, cpu, i);
if ((i == cpu) || (has_mp && match_llc(c, o)))
link_mask(llc_shared, cpu, i);
}
/*
* This needs a separate iteration over the cpus because we rely on all
* cpu_sibling_mask links to be set-up.
*/
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if ((i == cpu) || (has_mp && match_mc(c, o))) {
link_mask(core, cpu, i);
/*
* Does this new cpu bringup a new core?
*/
if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
/*
* for each core in package, increment
* the booted_cores for this new cpu
*/
if (cpumask_first(cpu_sibling_mask(i)) == i)
c->booted_cores++;
/*
* increment the core count for all
* the other cpus in this package
*/
if (i != cpu)
cpu_data(i).booted_cores++;
} else if (i != cpu && !c->booted_cores)
c->booted_cores = cpu_data(i).booted_cores;
}
}
}
/* maps the cpu to the sched domain representing multi-core */
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return cpu_llc_shared_mask(cpu);
}
static void impress_friends(void)
{
int cpu;
unsigned long bogosum = 0;
/*
* Allow the user to impress friends.
*/
pr_debug("Before bogomips\n");
for_each_possible_cpu(cpu)
if (cpumask_test_cpu(cpu, cpu_callout_mask))
bogosum += cpu_data(cpu).loops_per_jiffy;
pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
num_online_cpus(),
bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
pr_debug("Before bogocount - setting activated=1\n");
}
void __inquire_remote_apic(int apicid)
{
unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
const char * const names[] = { "ID", "VERSION", "SPIV" };
int timeout;
u32 status;
pr_info("Inquiring remote APIC 0x%x...\n", apicid);
for (i = 0; i < ARRAY_SIZE(regs); i++) {
pr_info("... APIC 0x%x %s: ", apicid, names[i]);
/*
* Wait for idle.
*/
status = safe_apic_wait_icr_idle();
if (status)
pr_cont("a previous APIC delivery may have failed\n");
apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
timeout = 0;
do {
udelay(100);
status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
switch (status) {
case APIC_ICR_RR_VALID:
status = apic_read(APIC_RRR);
pr_cont("%08x\n", status);
break;
default:
pr_cont("failed\n");
}
}
}
/*
* Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
* INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
* won't ... remember to clear down the APIC, etc later.
*/
int
wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
{
unsigned long send_status, accept_status = 0;
int maxlvt;
/* Target chip */
/* Boot on the stack */
/* Kick the second */
apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
maxlvt = lapic_get_maxlvt();
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
accept_status = (apic_read(APIC_ESR) & 0xEF);
}
pr_debug("NMI sent\n");
if (send_status)
pr_err("APIC never delivered???\n");
if (accept_status)
pr_err("APIC delivery error (%lx)\n", accept_status);
return (send_status | accept_status);
}
static int
wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
{
unsigned long send_status, accept_status = 0;
int maxlvt, num_starts, j;
maxlvt = lapic_get_maxlvt();
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(apic_version[phys_apicid])) {
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
pr_debug("Asserting INIT\n");
/*
* Turn INIT on target chip
*/
/*
* Send IPI
*/
apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
phys_apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
mdelay(10);
pr_debug("Deasserting INIT\n");
/* Target chip */
/* Send IPI */
apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
mb();
atomic_set(&init_deasserted, 1);
/*
* Should we send STARTUP IPIs ?
*
* Determine this based on the APIC version.
* If we don't have an integrated APIC, don't send the STARTUP IPIs.
*/
if (APIC_INTEGRATED(apic_version[phys_apicid]))
num_starts = 2;
else
num_starts = 0;
/*
* Paravirt / VMI wants a startup IPI hook here to set up the
* target processor state.
*/
startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
stack_start);
/*
* Run STARTUP IPI loop.
*/
pr_debug("#startup loops: %d\n", num_starts);
for (j = 1; j <= num_starts; j++) {
pr_debug("Sending STARTUP #%d\n", j);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
pr_debug("After apic_write\n");
/*
* STARTUP IPI
*/
/* Target chip */
/* Boot on the stack */
/* Kick the second */
apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
phys_apicid);
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(300);
pr_debug("Startup point 1\n");
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
accept_status = (apic_read(APIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
pr_debug("After Startup\n");
if (send_status)
pr_err("APIC never delivered???\n");
if (accept_status)
pr_err("APIC delivery error (%lx)\n", accept_status);
return (send_status | accept_status);
}
void smp_announce(void)
{
int num_nodes = num_online_nodes();
printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
}
/* reduce the number of lines printed when booting a large cpu count system */
static void announce_cpu(int cpu, int apicid)
{
static int current_node = -1;
int node = early_cpu_to_node(cpu);
static int width, node_width;
if (!width)
width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
if (!node_width)
node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
if (cpu == 1)
printk(KERN_INFO "x86: Booting SMP configuration:\n");
if (system_state == SYSTEM_BOOTING) {
if (node != current_node) {
if (current_node > (-1))
pr_cont("\n");
current_node = node;
printk(KERN_INFO ".... node %*s#%d, CPUs: ",
node_width - num_digits(node), " ", node);
}
/* Add padding for the BSP */
if (cpu == 1)
pr_cont("%*s", width + 1, " ");
pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
} else
pr_info("Booting Node %d Processor %d APIC 0x%x\n",
node, cpu, apicid);
}
static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
{
int cpu;
cpu = smp_processor_id();
if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
return NMI_HANDLED;
return NMI_DONE;
}
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*
* Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
* boot-strap code which is not a desired behavior for waking up BSP. To
* void the boot-strap code, wake up CPU0 by NMI instead.
*
* This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
* (i.e. physically hot removed and then hot added), NMI won't wake it up.
* We'll change this code in the future to wake up hard offlined CPU0 if
* real platform and request are available.
*/
static int
wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
int *cpu0_nmi_registered)
{
int id;
int boot_error;
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*/
if (cpu)
return wakeup_secondary_cpu_via_init(apicid, start_ip);
/*
* Wake up BSP by nmi.
*
* Register a NMI handler to help wake up CPU0.
*/
boot_error = register_nmi_handler(NMI_LOCAL,
wakeup_cpu0_nmi, 0, "wake_cpu0");
if (!boot_error) {
enable_start_cpu0 = 1;
*cpu0_nmi_registered = 1;
if (apic->dest_logical == APIC_DEST_LOGICAL)
id = cpu0_logical_apicid;
else
id = apicid;
boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
}
return boot_error;
}
/*
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
* Returns zero if CPU booted OK, else error code from
* ->wakeup_secondary_cpu.
*/
static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
{
volatile u32 *trampoline_status =
(volatile u32 *) __va(real_mode_header->trampoline_status);
/* start_ip had better be page-aligned! */
unsigned long start_ip = real_mode_header->trampoline_start;
unsigned long boot_error = 0;
int timeout;
int cpu0_nmi_registered = 0;
/* Just in case we booted with a single CPU. */
alternatives_enable_smp();
idle->thread.sp = (unsigned long) (((struct pt_regs *)
(THREAD_SIZE + task_stack_page(idle))) - 1);
per_cpu(current_task, cpu) = idle;
#ifdef CONFIG_X86_32
/* Stack for startup_32 can be just as for start_secondary onwards */
irq_ctx_init(cpu);
#else
clear_tsk_thread_flag(idle, TIF_FORK);
initial_gs = per_cpu_offset(cpu);
per_cpu(kernel_stack, cpu) =
(unsigned long)task_stack_page(idle) -
KERNEL_STACK_OFFSET + THREAD_SIZE;
#endif
early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
initial_code = (unsigned long)start_secondary;
stack_start = idle->thread.sp;
/* So we see what's up */
announce_cpu(cpu, apicid);
/*
* This grunge runs the startup process for
* the targeted processor.
*/
atomic_set(&init_deasserted, 0);
if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
pr_debug("Setting warm reset code and vector.\n");
smpboot_setup_warm_reset_vector(start_ip);
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
}
/*
* Wake up a CPU in difference cases:
* - Use the method in the APIC driver if it's defined
* Otherwise,
* - Use an INIT boot APIC message for APs or NMI for BSP.
*/
if (apic->wakeup_secondary_cpu)
boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
else
boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
&cpu0_nmi_registered);
if (!boot_error) {
/*
* allow APs to start initializing.
*/
pr_debug("Before Callout %d\n", cpu);
cpumask_set_cpu(cpu, cpu_callout_mask);
pr_debug("After Callout %d\n", cpu);
/*
* Wait 5s total for a response
*/
for (timeout = 0; timeout < 50000; timeout++) {
if (cpumask_test_cpu(cpu, cpu_callin_mask))
break; /* It has booted */
udelay(100);
/*
* Allow other tasks to run while we wait for the
* AP to come online. This also gives a chance
* for the MTRR work(triggered by the AP coming online)
* to be completed in the stop machine context.
*/
schedule();
}
if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
print_cpu_msr(&cpu_data(cpu));
pr_debug("CPU%d: has booted.\n", cpu);
} else {
boot_error = 1;
if (*trampoline_status == 0xA5A5A5A5)
/* trampoline started but...? */
pr_err("CPU%d: Stuck ??\n", cpu);
else
/* trampoline code not run */
pr_err("CPU%d: Not responding\n", cpu);
if (apic->inquire_remote_apic)
apic->inquire_remote_apic(apicid);
}
}
if (boot_error) {
/* Try to put things back the way they were before ... */
numa_remove_cpu(cpu); /* was set by numa_add_cpu */
/* was set by do_boot_cpu() */
cpumask_clear_cpu(cpu, cpu_callout_mask);
/* was set by cpu_init() */
cpumask_clear_cpu(cpu, cpu_initialized_mask);
set_cpu_present(cpu, false);
per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
}
/* mark "stuck" area as not stuck */
*trampoline_status = 0;
if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
/*
* Cleanup possible dangling ends...
*/
smpboot_restore_warm_reset_vector();
}
/*
* Clean up the nmi handler. Do this after the callin and callout sync
* to avoid impact of possible long unregister time.
*/
if (cpu0_nmi_registered)
unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
return boot_error;
}
int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
{
int apicid = apic->cpu_present_to_apicid(cpu);
unsigned long flags;
int err;
WARN_ON(irqs_disabled());
pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
if (apicid == BAD_APICID ||
!physid_isset(apicid, phys_cpu_present_map) ||
!apic->apic_id_valid(apicid)) {
pr_err("%s: bad cpu %d\n", __func__, cpu);
return -EINVAL;
}
/*
* Already booted CPU?
*/
if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
pr_debug("do_boot_cpu %d Already started\n", cpu);
return -ENOSYS;
}
/*
* Save current MTRR state in case it was changed since early boot
* (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
*/
mtrr_save_state();
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
/* the FPU context is blank, nobody can own it */
__cpu_disable_lazy_restore(cpu);
err = do_boot_cpu(apicid, cpu, tidle);
if (err) {
pr_debug("do_boot_cpu failed %d\n", err);
return -EIO;
}
/*
* Check TSC synchronization with the AP (keep irqs disabled
* while doing so):
*/
local_irq_save(flags);
check_tsc_sync_source(cpu);
local_irq_restore(flags);
while (!cpu_online(cpu)) {
cpu_relax();
touch_nmi_watchdog();
}
return 0;
}
/**
* arch_disable_smp_support() - disables SMP support for x86 at runtime
*/
void arch_disable_smp_support(void)
{
disable_ioapic_support();
}
/*
* Fall back to non SMP mode after errors.
*
* RED-PEN audit/test this more. I bet there is more state messed up here.
*/
static __init void disable_smp(void)
{
init_cpu_present(cpumask_of(0));
init_cpu_possible(cpumask_of(0));
smpboot_clear_io_apic_irqs();
if (smp_found_config)
physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
else
physid_set_mask_of_physid(0, &phys_cpu_present_map);
cpumask_set_cpu(0, cpu_sibling_mask(0));
cpumask_set_cpu(0, cpu_core_mask(0));
}
/*
* Various sanity checks.
*/
static int __init smp_sanity_check(unsigned max_cpus)
{
preempt_disable();
#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
if (def_to_bigsmp && nr_cpu_ids > 8) {
unsigned int cpu;
unsigned nr;
pr_warn("More than 8 CPUs detected - skipping them\n"
"Use CONFIG_X86_BIGSMP\n");
nr = 0;
for_each_present_cpu(cpu) {
if (nr >= 8)
set_cpu_present(cpu, false);
nr++;
}
nr = 0;
for_each_possible_cpu(cpu) {
if (nr >= 8)
set_cpu_possible(cpu, false);
nr++;
}
nr_cpu_ids = 8;
}
#endif
if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
hard_smp_processor_id());
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
}
/*
* If we couldn't find an SMP configuration at boot time,
* get out of here now!
*/
if (!smp_found_config && !acpi_lapic) {
preempt_enable();
pr_notice("SMP motherboard not detected\n");
disable_smp();
if (APIC_init_uniprocessor())
pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
return -1;
}
/*
* Should not be necessary because the MP table should list the boot
* CPU too, but we do it for the sake of robustness anyway.
*/
if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
boot_cpu_physical_apicid);
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
}
preempt_enable();
/*
* If we couldn't find a local APIC, then get out of here now!
*/
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
!cpu_has_apic) {
if (!disable_apic) {
pr_err("BIOS bug, local APIC #%d not detected!...\n",
boot_cpu_physical_apicid);
pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
}
smpboot_clear_io_apic();
disable_ioapic_support();
return -1;
}
verify_local_APIC();
/*
* If SMP should be disabled, then really disable it!
*/
if (!max_cpus) {
pr_info("SMP mode deactivated\n");
smpboot_clear_io_apic();
connect_bsp_APIC();
setup_local_APIC();
bsp_end_local_APIC_setup();
return -1;
}
return 0;
}
static void __init smp_cpu_index_default(void)
{
int i;
struct cpuinfo_x86 *c;
for_each_possible_cpu(i) {
c = &cpu_data(i);
/* mark all to hotplug */
c->cpu_index = nr_cpu_ids;
}
}
/*
* Prepare for SMP bootup. The MP table or ACPI has been read
* earlier. Just do some sanity checking here and enable APIC mode.
*/
void __init native_smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int i;
preempt_disable();
smp_cpu_index_default();
/*
* Setup boot CPU information
*/
smp_store_boot_cpu_info(); /* Final full version of the data */
cpumask_copy(cpu_callin_mask, cpumask_of(0));
mb();
current_thread_info()->cpu = 0; /* needed? */
for_each_possible_cpu(i) {
zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
}
set_cpu_sibling_map(0);
if (smp_sanity_check(max_cpus) < 0) {
pr_info("SMP disabled\n");
disable_smp();
goto out;
}
default_setup_apic_routing();
preempt_disable();
if (read_apic_id() != boot_cpu_physical_apicid) {
panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
read_apic_id(), boot_cpu_physical_apicid);
/* Or can we switch back to PIC here? */
}
preempt_enable();
connect_bsp_APIC();
/*
* Switch from PIC to APIC mode.
*/
setup_local_APIC();
if (x2apic_mode)
cpu0_logical_apicid = apic_read(APIC_LDR);
else
cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
/*
* Enable IO APIC before setting up error vector
*/
if (!skip_ioapic_setup && nr_ioapics)
enable_IO_APIC();
bsp_end_local_APIC_setup();
if (apic->setup_portio_remap)
apic->setup_portio_remap();
smpboot_setup_io_apic();
/*
* Set up local APIC timer on boot CPU.
*/
pr_info("CPU%d: ", 0);
print_cpu_info(&cpu_data(0));
x86_init.timers.setup_percpu_clockev();
if (is_uv_system())
uv_system_init();
set_mtrr_aps_delayed_init();
out:
preempt_enable();
}
void arch_enable_nonboot_cpus_begin(void)
{
set_mtrr_aps_delayed_init();
}
void arch_enable_nonboot_cpus_end(void)
{
mtrr_aps_init();
}
/*
* Early setup to make printk work.
*/
void __init native_smp_prepare_boot_cpu(void)
{
int me = smp_processor_id();
switch_to_new_gdt(me);
/* already set me in cpu_online_mask in boot_cpu_init() */
cpumask_set_cpu(me, cpu_callout_mask);
per_cpu(cpu_state, me) = CPU_ONLINE;
}
void __init native_smp_cpus_done(unsigned int max_cpus)
{
pr_debug("Boot done\n");
nmi_selftest();
impress_friends();
#ifdef CONFIG_X86_IO_APIC
setup_ioapic_dest();
#endif
mtrr_aps_init();
}
static int __initdata setup_possible_cpus = -1;
static int __init _setup_possible_cpus(char *str)
{
get_option(&str, &setup_possible_cpus);
return 0;
}
early_param("possible_cpus", _setup_possible_cpus);
/*
* cpu_possible_mask should be static, it cannot change as cpu's
* are onlined, or offlined. The reason is per-cpu data-structures
* are allocated by some modules at init time, and dont expect to
* do this dynamically on cpu arrival/departure.
* cpu_present_mask on the other hand can change dynamically.
* In case when cpu_hotplug is not compiled, then we resort to current
* behaviour, which is cpu_possible == cpu_present.
* - Ashok Raj
*
* Three ways to find out the number of additional hotplug CPUs:
* - If the BIOS specified disabled CPUs in ACPI/mptables use that.
* - The user can overwrite it with possible_cpus=NUM
* - Otherwise don't reserve additional CPUs.
* We do this because additional CPUs waste a lot of memory.
* -AK
*/
__init void prefill_possible_map(void)
{
int i, possible;
/* no processor from mptable or madt */
if (!num_processors)
num_processors = 1;
i = setup_max_cpus ?: 1;
if (setup_possible_cpus == -1) {
possible = num_processors;
#ifdef CONFIG_HOTPLUG_CPU
if (setup_max_cpus)
possible += disabled_cpus;
#else
if (possible > i)
possible = i;
#endif
} else
possible = setup_possible_cpus;
total_cpus = max_t(int, possible, num_processors + disabled_cpus);
/* nr_cpu_ids could be reduced via nr_cpus= */
if (possible > nr_cpu_ids) {
pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
possible, nr_cpu_ids);
possible = nr_cpu_ids;
}
#ifdef CONFIG_HOTPLUG_CPU
if (!setup_max_cpus)
#endif
if (possible > i) {
pr_warn("%d Processors exceeds max_cpus limit of %u\n",
possible, setup_max_cpus);
possible = i;
}
pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
possible, max_t(int, possible - num_processors, 0));
for (i = 0; i < possible; i++)
set_cpu_possible(i, true);
for (; i < NR_CPUS; i++)
set_cpu_possible(i, false);
nr_cpu_ids = possible;
}
#ifdef CONFIG_HOTPLUG_CPU
static void remove_siblinginfo(int cpu)
{
int sibling;
struct cpuinfo_x86 *c = &cpu_data(cpu);
for_each_cpu(sibling, cpu_core_mask(cpu)) {
cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
/*/
* last thread sibling in this cpu core going down
*/
if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
cpu_data(sibling).booted_cores--;
}
for_each_cpu(sibling, cpu_sibling_mask(cpu))
cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
cpumask_clear(cpu_sibling_mask(cpu));
cpumask_clear(cpu_core_mask(cpu));
c->phys_proc_id = 0;
c->cpu_core_id = 0;
cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
}
static void __ref remove_cpu_from_maps(int cpu)
{
set_cpu_online(cpu, false);
cpumask_clear_cpu(cpu, cpu_callout_mask);
cpumask_clear_cpu(cpu, cpu_callin_mask);
/* was set by cpu_init() */
cpumask_clear_cpu(cpu, cpu_initialized_mask);
numa_remove_cpu(cpu);
}
void cpu_disable_common(void)
{
int cpu = smp_processor_id();
remove_siblinginfo(cpu);
/* It's now safe to remove this processor from the online map */
lock_vector_lock();
remove_cpu_from_maps(cpu);
unlock_vector_lock();
fixup_irqs();
}
int native_cpu_disable(void)
{
clear_local_APIC();
cpu_disable_common();
return 0;
}
void native_cpu_die(unsigned int cpu)
{
/* We don't do anything here: idle task is faking death itself. */
unsigned int i;
for (i = 0; i < 10; i++) {
/* They ack this in play_dead by setting CPU_DEAD */
if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
if (system_state == SYSTEM_RUNNING)
pr_info("CPU %u is now offline\n", cpu);
return;
}
msleep(100);
}
pr_err("CPU %u didn't die...\n", cpu);
}
void play_dead_common(void)
{
idle_task_exit();
reset_lazy_tlbstate();
amd_e400_remove_cpu(raw_smp_processor_id());
mb();
/* Ack it */
__this_cpu_write(cpu_state, CPU_DEAD);
/*
* With physical CPU hotplug, we should halt the cpu
*/
local_irq_disable();
}
static bool wakeup_cpu0(void)
{
if (smp_processor_id() == 0 && enable_start_cpu0)
return true;
return false;
}
/*
* We need to flush the caches before going to sleep, lest we have
* dirty data in our caches when we come back up.
*/
static inline void mwait_play_dead(void)
{
unsigned int eax, ebx, ecx, edx;
unsigned int highest_cstate = 0;
unsigned int highest_subcstate = 0;
void *mwait_ptr;
int i;
if (!this_cpu_has(X86_FEATURE_MWAIT))
return;
if (!this_cpu_has(X86_FEATURE_CLFLSH))
return;
if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
return;
eax = CPUID_MWAIT_LEAF;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
/*
* eax will be 0 if EDX enumeration is not valid.
* Initialized below to cstate, sub_cstate value when EDX is valid.
*/
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
eax = 0;
} else {
edx >>= MWAIT_SUBSTATE_SIZE;
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
if (edx & MWAIT_SUBSTATE_MASK) {
highest_cstate = i;
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
}
}
eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
(highest_subcstate - 1);
}
/*
* This should be a memory location in a cache line which is
* unlikely to be touched by other processors. The actual
* content is immaterial as it is not actually modified in any way.
*/
mwait_ptr = &current_thread_info()->flags;
wbinvd();
while (1) {
/*
* The CLFLUSH is a workaround for erratum AAI65 for
* the Xeon 7400 series. It's not clear it is actually
* needed, but it should be harmless in either case.
* The WBINVD is insufficient due to the spurious-wakeup
* case where we return around the loop.
*/
clflush(mwait_ptr);
__monitor(mwait_ptr, 0, 0);
mb();
__mwait(eax, 0);
/*
* If NMI wants to wake up CPU0, start CPU0.
*/
if (wakeup_cpu0())
start_cpu0();
}
}
static inline void hlt_play_dead(void)
{
if (__this_cpu_read(cpu_info.x86) >= 4)
wbinvd();
while (1) {
native_halt();
/*
* If NMI wants to wake up CPU0, start CPU0.
*/
if (wakeup_cpu0())
start_cpu0();
}
}
void native_play_dead(void)
{
play_dead_common();
tboot_shutdown(TB_SHUTDOWN_WFS);
mwait_play_dead(); /* Only returns on failure */
if (cpuidle_play_dead())
hlt_play_dead();
}
#else /* ... !CONFIG_HOTPLUG_CPU */
int native_cpu_disable(void)
{
return -ENOSYS;
}
void native_cpu_die(unsigned int cpu)
{
/* We said "no" in __cpu_disable */
BUG();
}
void native_play_dead(void)
{
BUG();
}
#endif