alistair23-linux/sound/firewire/amdtp.c
Takashi Sakamoto 18f5ed365d ALSA: fireworks/firewire-lib: add support for recent firmware quirk
Fireworks uses TSB43CB43(IceLynx-Micro) as its IEC 61883-1/6 interface.
This chip includes ARM7 core, and loads and runs program. The firmware
is stored in on-board memory and loaded every powering-on from it.

Echo Audio ships several versions of firmwares for each model. These
firmwares have each quirk and the quirk changes a sequence of packets.

As long as I investigated, AudioFire2/AudioFire4/AudioFirePre8 have a
quirk to transfer a first packet with 0x02 in its dbc field. This causes
ALSA Fireworks driver to detect discontinuity. In this case, firmware
version 5.7.0, 5.7.3 and 5.8.0 are used.

Payload  CIP      CIP
quadlets header1  header2
02       00050002 90ffffff <-
42       0005000a 90013000
42       00050012 90014400
42       0005001a 90015800
02       0005001a 90ffffff
42       00050022 90019000
42       0005002a 9001a400
42       00050032 9001b800
02       00050032 90ffffff
42       0005003a 9001d000
42       00050042 9001e400
42       0005004a 9001f800
02       0005004a 90ffffff
(AudioFire2 with firmware version 5.7.)

$ dmesg
snd-fireworks fw1.0: Detect discontinuity of CIP: 00 02

These models, AudioFire8 (since Jul 2009 ) and Gibson Robot Interface
Pack series uses the same ARM binary as their firmware. Thus, this
quirk may be observed among them.

This commit adds a new member for AMDTP structure. This member represents
the value of dbc field in a first AMDTP packet. Drivers can set it with
a preferred value according to model's quirk.

Tested-by: Johannes Oertei <johannes.oertel@uni-due.de>
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-08-05 07:52:39 +02:00

1109 lines
30 KiB
C

/*
* Audio and Music Data Transmission Protocol (IEC 61883-6) streams
* with Common Isochronous Packet (IEC 61883-1) headers
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/rawmidi.h>
#include "amdtp.h"
#define TICKS_PER_CYCLE 3072
#define CYCLES_PER_SECOND 8000
#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
/*
* Nominally 3125 bytes/second, but the MIDI port's clock might be
* 1% too slow, and the bus clock 100 ppm too fast.
*/
#define MIDI_BYTES_PER_SECOND 3093
/*
* Several devices look only at the first eight data blocks.
* In any case, this is more than enough for the MIDI data rate.
*/
#define MAX_MIDI_RX_BLOCKS 8
#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT 16
#define TAG_CIP 1
/* common isochronous packet header parameters */
#define CIP_EOH_SHIFT 31
#define CIP_EOH (1u << CIP_EOH_SHIFT)
#define CIP_EOH_MASK 0x80000000
#define CIP_SID_SHIFT 24
#define CIP_SID_MASK 0x3f000000
#define CIP_DBS_MASK 0x00ff0000
#define CIP_DBS_SHIFT 16
#define CIP_DBC_MASK 0x000000ff
#define CIP_FMT_SHIFT 24
#define CIP_FMT_MASK 0x3f000000
#define CIP_FDF_MASK 0x00ff0000
#define CIP_FDF_SHIFT 16
#define CIP_SYT_MASK 0x0000ffff
#define CIP_SYT_NO_INFO 0xffff
/*
* Audio and Music transfer protocol specific parameters
* only "Clock-based rate control mode" is supported
*/
#define CIP_FMT_AM (0x10 << CIP_FMT_SHIFT)
#define AMDTP_FDF_AM824 (0 << (CIP_FDF_SHIFT + 3))
#define AMDTP_FDF_NO_DATA 0xff
/* TODO: make these configurable */
#define INTERRUPT_INTERVAL 16
#define QUEUE_LENGTH 48
#define IN_PACKET_HEADER_SIZE 4
#define OUT_PACKET_HEADER_SIZE 0
static void pcm_period_tasklet(unsigned long data);
/**
* amdtp_stream_init - initialize an AMDTP stream structure
* @s: the AMDTP stream to initialize
* @unit: the target of the stream
* @dir: the direction of stream
* @flags: the packet transmission method to use
*/
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
enum amdtp_stream_direction dir, enum cip_flags flags)
{
s->unit = unit;
s->direction = dir;
s->flags = flags;
s->context = ERR_PTR(-1);
mutex_init(&s->mutex);
tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
s->packet_index = 0;
init_waitqueue_head(&s->callback_wait);
s->callbacked = false;
s->sync_slave = NULL;
return 0;
}
EXPORT_SYMBOL(amdtp_stream_init);
/**
* amdtp_stream_destroy - free stream resources
* @s: the AMDTP stream to destroy
*/
void amdtp_stream_destroy(struct amdtp_stream *s)
{
WARN_ON(amdtp_stream_running(s));
mutex_destroy(&s->mutex);
}
EXPORT_SYMBOL(amdtp_stream_destroy);
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
[CIP_SFC_32000] = 8,
[CIP_SFC_44100] = 8,
[CIP_SFC_48000] = 8,
[CIP_SFC_88200] = 16,
[CIP_SFC_96000] = 16,
[CIP_SFC_176400] = 32,
[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
[CIP_SFC_32000] = 32000,
[CIP_SFC_44100] = 44100,
[CIP_SFC_48000] = 48000,
[CIP_SFC_88200] = 88200,
[CIP_SFC_96000] = 96000,
[CIP_SFC_176400] = 176400,
[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);
/**
* amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
* @s: the AMDTP stream, which must be initialized.
* @runtime: the PCM substream runtime
*/
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
struct snd_pcm_runtime *runtime)
{
int err;
/* AM824 in IEC 61883-6 can deliver 24bit data */
err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
if (err < 0)
goto end;
/*
* Currently firewire-lib processes 16 packets in one software
* interrupt callback. This equals to 2msec but actually the
* interval of the interrupts has a jitter.
* Additionally, even if adding a constraint to fit period size to
* 2msec, actual calculated frames per period doesn't equal to 2msec,
* depending on sampling rate.
* Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
* Here let us use 5msec for safe period interrupt.
*/
err = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
5000, UINT_MAX);
if (err < 0)
goto end;
/* Non-Blocking stream has no more constraints */
if (!(s->flags & CIP_BLOCKING))
goto end;
/*
* One AMDTP packet can include some frames. In blocking mode, the
* number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
* depending on its sampling rate. For accurate period interrupt, it's
* preferrable to align period/buffer sizes to current SYT_INTERVAL.
*
* TODO: These constraints can be improved with proper rules.
* Currently apply LCM of SYT_INTERVALs.
*/
err = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
if (err < 0)
goto end;
err = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
/**
* amdtp_stream_set_parameters - set stream parameters
* @s: the AMDTP stream to configure
* @rate: the sample rate
* @pcm_channels: the number of PCM samples in each data block, to be encoded
* as AM824 multi-bit linear audio
* @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
*
* The parameters must be set before the stream is started, and must not be
* changed while the stream is running.
*/
void amdtp_stream_set_parameters(struct amdtp_stream *s,
unsigned int rate,
unsigned int pcm_channels,
unsigned int midi_ports)
{
unsigned int i, sfc, midi_channels;
midi_channels = DIV_ROUND_UP(midi_ports, 8);
if (WARN_ON(amdtp_stream_running(s)) |
WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
return;
for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
if (amdtp_rate_table[sfc] == rate)
goto sfc_found;
WARN_ON(1);
return;
sfc_found:
s->pcm_channels = pcm_channels;
s->sfc = sfc;
s->data_block_quadlets = s->pcm_channels + midi_channels;
s->midi_ports = midi_ports;
s->syt_interval = amdtp_syt_intervals[sfc];
/* default buffering in the device */
s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
if (s->flags & CIP_BLOCKING)
/* additional buffering needed to adjust for no-data packets */
s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
/* init the position map for PCM and MIDI channels */
for (i = 0; i < pcm_channels; i++)
s->pcm_positions[i] = i;
s->midi_position = s->pcm_channels;
/*
* We do not know the actual MIDI FIFO size of most devices. Just
* assume two bytes, i.e., one byte can be received over the bus while
* the previous one is transmitted over MIDI.
* (The value here is adjusted for midi_ratelimit_per_packet().)
*/
s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
}
EXPORT_SYMBOL(amdtp_stream_set_parameters);
/**
* amdtp_stream_get_max_payload - get the stream's packet size
* @s: the AMDTP stream
*
* This function must not be called before the stream has been configured
* with amdtp_stream_set_parameters().
*/
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
{
unsigned int multiplier = 1;
if (s->flags & CIP_JUMBO_PAYLOAD)
multiplier = 5;
return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
}
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
static void write_pcm_s16(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void write_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void read_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
/**
* amdtp_stream_set_pcm_format - set the PCM format
* @s: the AMDTP stream to configure
* @format: the format of the ALSA PCM device
*
* The sample format must be set after the other parameters (rate/PCM channels/
* MIDI) and before the stream is started, and must not be changed while the
* stream is running.
*/
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
snd_pcm_format_t format)
{
if (WARN_ON(amdtp_stream_pcm_running(s)))
return;
switch (format) {
default:
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S16:
if (s->direction == AMDTP_OUT_STREAM) {
s->transfer_samples = write_pcm_s16;
break;
}
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S32:
if (s->direction == AMDTP_OUT_STREAM)
s->transfer_samples = write_pcm_s32;
else
s->transfer_samples = read_pcm_s32;
break;
}
}
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
/**
* amdtp_stream_pcm_prepare - prepare PCM device for running
* @s: the AMDTP stream
*
* This function should be called from the PCM device's .prepare callback.
*/
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
{
tasklet_kill(&s->period_tasklet);
s->pcm_buffer_pointer = 0;
s->pcm_period_pointer = 0;
s->pointer_flush = true;
}
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
unsigned int syt)
{
unsigned int phase, data_blocks;
/* Blocking mode. */
if (s->flags & CIP_BLOCKING) {
/* This module generate empty packet for 'no data'. */
if (syt == CIP_SYT_NO_INFO)
data_blocks = 0;
else
data_blocks = s->syt_interval;
/* Non-blocking mode. */
} else {
if (!cip_sfc_is_base_44100(s->sfc)) {
/* Sample_rate / 8000 is an integer, and precomputed. */
data_blocks = s->data_block_state;
} else {
phase = s->data_block_state;
/*
* This calculates the number of data blocks per packet so that
* 1) the overall rate is correct and exactly synchronized to
* the bus clock, and
* 2) packets with a rounded-up number of blocks occur as early
* as possible in the sequence (to prevent underruns of the
* device's buffer).
*/
if (s->sfc == CIP_SFC_44100)
/* 6 6 5 6 5 6 5 ... */
data_blocks = 5 + ((phase & 1) ^
(phase == 0 || phase >= 40));
else
/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
if (++phase >= (80 >> (s->sfc >> 1)))
phase = 0;
s->data_block_state = phase;
}
}
return data_blocks;
}
static unsigned int calculate_syt(struct amdtp_stream *s,
unsigned int cycle)
{
unsigned int syt_offset, phase, index, syt;
if (s->last_syt_offset < TICKS_PER_CYCLE) {
if (!cip_sfc_is_base_44100(s->sfc))
syt_offset = s->last_syt_offset + s->syt_offset_state;
else {
/*
* The time, in ticks, of the n'th SYT_INTERVAL sample is:
* n * SYT_INTERVAL * 24576000 / sample_rate
* Modulo TICKS_PER_CYCLE, the difference between successive
* elements is about 1386.23. Rounding the results of this
* formula to the SYT precision results in a sequence of
* differences that begins with:
* 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
* This code generates _exactly_ the same sequence.
*/
phase = s->syt_offset_state;
index = phase % 13;
syt_offset = s->last_syt_offset;
syt_offset += 1386 + ((index && !(index & 3)) ||
phase == 146);
if (++phase >= 147)
phase = 0;
s->syt_offset_state = phase;
}
} else
syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
s->last_syt_offset = syt_offset;
if (syt_offset < TICKS_PER_CYCLE) {
syt_offset += s->transfer_delay;
syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
syt += syt_offset % TICKS_PER_CYCLE;
return syt & CIP_SYT_MASK;
} else {
return CIP_SYT_NO_INFO;
}
}
static void write_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
const u32 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
buffer[s->pcm_positions[c]] =
cpu_to_be32((*src >> 8) | 0x40000000);
src++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void write_pcm_s16(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
const u16 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
buffer[s->pcm_positions[c]] =
cpu_to_be32((*src << 8) | 0x42000000);
src++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void read_pcm_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
u32 *dst;
channels = s->pcm_channels;
dst = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
dst++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
dst = (void *)runtime->dma_area;
}
}
static void write_pcm_silence(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int i, c;
for (i = 0; i < frames; ++i) {
for (c = 0; c < s->pcm_channels; ++c)
buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
buffer += s->data_block_quadlets;
}
}
/*
* To avoid sending MIDI bytes at too high a rate, assume that the receiving
* device has a FIFO, and track how much it is filled. This values increases
* by one whenever we send one byte in a packet, but the FIFO empties at
* a constant rate independent of our packet rate. One packet has syt_interval
* samples, so the number of bytes that empty out of the FIFO, per packet(!),
* is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate. To avoid storing
* fractional values, the values in midi_fifo_used[] are measured in bytes
* multiplied by the sample rate.
*/
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
int used;
used = s->midi_fifo_used[port];
if (used == 0) /* common shortcut */
return true;
used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
used = max(used, 0);
s->midi_fifo_used[port] = used;
return used < s->midi_fifo_limit;
}
static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}
static void write_midi_messages(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int f, port;
u8 *b;
for (f = 0; f < frames; f++) {
b = (u8 *)&buffer[s->midi_position];
port = (s->data_block_counter + f) % 8;
if (f < MAX_MIDI_RX_BLOCKS &&
midi_ratelimit_per_packet(s, port) &&
s->midi[port] != NULL &&
snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
midi_rate_use_one_byte(s, port);
b[0] = 0x81;
} else {
b[0] = 0x80;
b[1] = 0;
}
b[2] = 0;
b[3] = 0;
buffer += s->data_block_quadlets;
}
}
static void read_midi_messages(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int f, port;
int len;
u8 *b;
for (f = 0; f < frames; f++) {
port = (s->data_block_counter + f) % 8;
b = (u8 *)&buffer[s->midi_position];
len = b[0] - 0x80;
if ((1 <= len) && (len <= 3) && (s->midi[port]))
snd_rawmidi_receive(s->midi[port], b + 1, len);
buffer += s->data_block_quadlets;
}
}
static void update_pcm_pointers(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
unsigned int frames)
{
unsigned int ptr;
/*
* In IEC 61883-6, one data block represents one event. In ALSA, one
* event equals to one PCM frame. But Dice has a quirk to transfer
* two PCM frames in one data block.
*/
if (s->double_pcm_frames)
frames *= 2;
ptr = s->pcm_buffer_pointer + frames;
if (ptr >= pcm->runtime->buffer_size)
ptr -= pcm->runtime->buffer_size;
ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
s->pcm_period_pointer += frames;
if (s->pcm_period_pointer >= pcm->runtime->period_size) {
s->pcm_period_pointer -= pcm->runtime->period_size;
s->pointer_flush = false;
tasklet_hi_schedule(&s->period_tasklet);
}
}
static void pcm_period_tasklet(unsigned long data)
{
struct amdtp_stream *s = (void *)data;
struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
if (pcm)
snd_pcm_period_elapsed(pcm);
}
static int queue_packet(struct amdtp_stream *s,
unsigned int header_length,
unsigned int payload_length, bool skip)
{
struct fw_iso_packet p = {0};
int err = 0;
if (IS_ERR(s->context))
goto end;
p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
p.tag = TAG_CIP;
p.header_length = header_length;
p.payload_length = (!skip) ? payload_length : 0;
p.skip = skip;
err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
s->buffer.packets[s->packet_index].offset);
if (err < 0) {
dev_err(&s->unit->device, "queueing error: %d\n", err);
goto end;
}
if (++s->packet_index >= QUEUE_LENGTH)
s->packet_index = 0;
end:
return err;
}
static inline int queue_out_packet(struct amdtp_stream *s,
unsigned int payload_length, bool skip)
{
return queue_packet(s, OUT_PACKET_HEADER_SIZE,
payload_length, skip);
}
static inline int queue_in_packet(struct amdtp_stream *s)
{
return queue_packet(s, IN_PACKET_HEADER_SIZE,
amdtp_stream_get_max_payload(s), false);
}
static int handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks,
unsigned int syt)
{
__be32 *buffer;
unsigned int payload_length;
struct snd_pcm_substream *pcm;
buffer = s->buffer.packets[s->packet_index].buffer;
buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
(s->data_block_quadlets << CIP_DBS_SHIFT) |
s->data_block_counter);
buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
(s->sfc << CIP_FDF_SHIFT) | syt);
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, data_blocks);
else
write_pcm_silence(s, buffer, data_blocks);
if (s->midi_ports)
write_midi_messages(s, buffer, data_blocks);
s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
if (queue_out_packet(s, payload_length, false) < 0)
return -EIO;
if (pcm)
update_pcm_pointers(s, pcm, data_blocks);
/* No need to return the number of handled data blocks. */
return 0;
}
static int handle_in_packet(struct amdtp_stream *s,
unsigned int payload_quadlets, __be32 *buffer,
unsigned int *data_blocks)
{
u32 cip_header[2];
unsigned int data_block_quadlets, data_block_counter, dbc_interval;
struct snd_pcm_substream *pcm = NULL;
bool lost;
cip_header[0] = be32_to_cpu(buffer[0]);
cip_header[1] = be32_to_cpu(buffer[1]);
/*
* This module supports 'Two-quadlet CIP header with SYT field'.
* For convenience, also check FMT field is AM824 or not.
*/
if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
dev_info_ratelimited(&s->unit->device,
"Invalid CIP header for AMDTP: %08X:%08X\n",
cip_header[0], cip_header[1]);
*data_blocks = 0;
goto end;
}
/* Calculate data blocks */
if (payload_quadlets < 3 ||
((cip_header[1] & CIP_FDF_MASK) ==
(AMDTP_FDF_NO_DATA << CIP_FDF_SHIFT))) {
*data_blocks = 0;
} else {
data_block_quadlets =
(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
/* avoid division by zero */
if (data_block_quadlets == 0) {
dev_err(&s->unit->device,
"Detect invalid value in dbs field: %08X\n",
cip_header[0]);
return -EPROTO;
}
if (s->flags & CIP_WRONG_DBS)
data_block_quadlets = s->data_block_quadlets;
*data_blocks = (payload_quadlets - 2) / data_block_quadlets;
}
/* Check data block counter continuity */
data_block_counter = cip_header[0] & CIP_DBC_MASK;
if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
s->data_block_counter != UINT_MAX)
data_block_counter = s->data_block_counter;
if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
data_block_counter == s->tx_first_dbc) ||
s->data_block_counter == UINT_MAX) {
lost = false;
} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
lost = data_block_counter != s->data_block_counter;
} else {
if ((*data_blocks > 0) && (s->tx_dbc_interval > 0))
dbc_interval = s->tx_dbc_interval;
else
dbc_interval = *data_blocks;
lost = data_block_counter !=
((s->data_block_counter + dbc_interval) & 0xff);
}
if (lost) {
dev_err(&s->unit->device,
"Detect discontinuity of CIP: %02X %02X\n",
s->data_block_counter, data_block_counter);
return -EIO;
}
if (*data_blocks > 0) {
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, *data_blocks);
if (s->midi_ports)
read_midi_messages(s, buffer, *data_blocks);
}
if (s->flags & CIP_DBC_IS_END_EVENT)
s->data_block_counter = data_block_counter;
else
s->data_block_counter =
(data_block_counter + *data_blocks) & 0xff;
end:
if (queue_in_packet(s) < 0)
return -EIO;
if (pcm)
update_pcm_pointers(s, pcm, *data_blocks);
return 0;
}
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
struct amdtp_stream *s = private_data;
unsigned int i, syt, packets = header_length / 4;
unsigned int data_blocks;
if (s->packet_index < 0)
return;
/*
* Compute the cycle of the last queued packet.
* (We need only the four lowest bits for the SYT, so we can ignore
* that bits 0-11 must wrap around at 3072.)
*/
cycle += QUEUE_LENGTH - packets;
for (i = 0; i < packets; ++i) {
syt = calculate_syt(s, ++cycle);
data_blocks = calculate_data_blocks(s, syt);
if (handle_out_packet(s, data_blocks, syt) < 0) {
s->packet_index = -1;
amdtp_stream_pcm_abort(s);
return;
}
}
fw_iso_context_queue_flush(s->context);
}
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
struct amdtp_stream *s = private_data;
unsigned int p, syt, packets;
unsigned int payload_quadlets, max_payload_quadlets;
unsigned int data_blocks;
__be32 *buffer, *headers = header;
if (s->packet_index < 0)
return;
/* The number of packets in buffer */
packets = header_length / IN_PACKET_HEADER_SIZE;
/* For buffer-over-run prevention. */
max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;
for (p = 0; p < packets; p++) {
buffer = s->buffer.packets[s->packet_index].buffer;
/* The number of quadlets in this packet */
payload_quadlets =
(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
if (payload_quadlets > max_payload_quadlets) {
dev_err(&s->unit->device,
"Detect jumbo payload: %02x %02x\n",
payload_quadlets, max_payload_quadlets);
s->packet_index = -1;
break;
}
if (handle_in_packet(s, payload_quadlets, buffer,
&data_blocks) < 0) {
s->packet_index = -1;
break;
}
/* Process sync slave stream */
if (s->sync_slave && s->sync_slave->callbacked) {
syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
if (handle_out_packet(s->sync_slave,
data_blocks, syt) < 0) {
s->packet_index = -1;
break;
}
}
}
/* Queueing error or detecting discontinuity */
if (s->packet_index < 0) {
amdtp_stream_pcm_abort(s);
/* Abort sync slave. */
if (s->sync_slave) {
s->sync_slave->packet_index = -1;
amdtp_stream_pcm_abort(s->sync_slave);
}
return;
}
/* when sync to device, flush the packets for slave stream */
if (s->sync_slave && s->sync_slave->callbacked)
fw_iso_context_queue_flush(s->sync_slave->context);
fw_iso_context_queue_flush(s->context);
}
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
return;
}
/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
u32 cycle, size_t header_length,
void *header, void *private_data)
{
struct amdtp_stream *s = private_data;
/*
* For in-stream, first packet has come.
* For out-stream, prepared to transmit first packet
*/
s->callbacked = true;
wake_up(&s->callback_wait);
if (s->direction == AMDTP_IN_STREAM)
context->callback.sc = in_stream_callback;
else if (s->flags & CIP_SYNC_TO_DEVICE)
context->callback.sc = slave_stream_callback;
else
context->callback.sc = out_stream_callback;
context->callback.sc(context, cycle, header_length, header, s);
}
/**
* amdtp_stream_start - start transferring packets
* @s: the AMDTP stream to start
* @channel: the isochronous channel on the bus
* @speed: firewire speed code
*
* The stream cannot be started until it has been configured with
* amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
* device can be started.
*/
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
{
static const struct {
unsigned int data_block;
unsigned int syt_offset;
} initial_state[] = {
[CIP_SFC_32000] = { 4, 3072 },
[CIP_SFC_48000] = { 6, 1024 },
[CIP_SFC_96000] = { 12, 1024 },
[CIP_SFC_192000] = { 24, 1024 },
[CIP_SFC_44100] = { 0, 67 },
[CIP_SFC_88200] = { 0, 67 },
[CIP_SFC_176400] = { 0, 67 },
};
unsigned int header_size;
enum dma_data_direction dir;
int type, tag, err;
mutex_lock(&s->mutex);
if (WARN_ON(amdtp_stream_running(s) ||
(s->data_block_quadlets < 1))) {
err = -EBADFD;
goto err_unlock;
}
if (s->direction == AMDTP_IN_STREAM &&
s->flags & CIP_SKIP_INIT_DBC_CHECK)
s->data_block_counter = UINT_MAX;
else
s->data_block_counter = 0;
s->data_block_state = initial_state[s->sfc].data_block;
s->syt_offset_state = initial_state[s->sfc].syt_offset;
s->last_syt_offset = TICKS_PER_CYCLE;
/* initialize packet buffer */
if (s->direction == AMDTP_IN_STREAM) {
dir = DMA_FROM_DEVICE;
type = FW_ISO_CONTEXT_RECEIVE;
header_size = IN_PACKET_HEADER_SIZE;
} else {
dir = DMA_TO_DEVICE;
type = FW_ISO_CONTEXT_TRANSMIT;
header_size = OUT_PACKET_HEADER_SIZE;
}
err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
amdtp_stream_get_max_payload(s), dir);
if (err < 0)
goto err_unlock;
s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
type, channel, speed, header_size,
amdtp_stream_first_callback, s);
if (IS_ERR(s->context)) {
err = PTR_ERR(s->context);
if (err == -EBUSY)
dev_err(&s->unit->device,
"no free stream on this controller\n");
goto err_buffer;
}
amdtp_stream_update(s);
s->packet_index = 0;
do {
if (s->direction == AMDTP_IN_STREAM)
err = queue_in_packet(s);
else
err = queue_out_packet(s, 0, true);
if (err < 0)
goto err_context;
} while (s->packet_index > 0);
/* NOTE: TAG1 matches CIP. This just affects in stream. */
tag = FW_ISO_CONTEXT_MATCH_TAG1;
if (s->flags & CIP_EMPTY_WITH_TAG0)
tag |= FW_ISO_CONTEXT_MATCH_TAG0;
s->callbacked = false;
err = fw_iso_context_start(s->context, -1, 0, tag);
if (err < 0)
goto err_context;
mutex_unlock(&s->mutex);
return 0;
err_context:
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
err_buffer:
iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
mutex_unlock(&s->mutex);
return err;
}
EXPORT_SYMBOL(amdtp_stream_start);
/**
* amdtp_stream_pcm_pointer - get the PCM buffer position
* @s: the AMDTP stream that transports the PCM data
*
* Returns the current buffer position, in frames.
*/
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
{
/* this optimization is allowed to be racy */
if (s->pointer_flush && amdtp_stream_running(s))
fw_iso_context_flush_completions(s->context);
else
s->pointer_flush = true;
return ACCESS_ONCE(s->pcm_buffer_pointer);
}
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
/**
* amdtp_stream_update - update the stream after a bus reset
* @s: the AMDTP stream
*/
void amdtp_stream_update(struct amdtp_stream *s)
{
/* Precomputing. */
ACCESS_ONCE(s->source_node_id_field) =
(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) &
CIP_SID_MASK;
}
EXPORT_SYMBOL(amdtp_stream_update);
/**
* amdtp_stream_stop - stop sending packets
* @s: the AMDTP stream to stop
*
* All PCM and MIDI devices of the stream must be stopped before the stream
* itself can be stopped.
*/
void amdtp_stream_stop(struct amdtp_stream *s)
{
mutex_lock(&s->mutex);
if (!amdtp_stream_running(s)) {
mutex_unlock(&s->mutex);
return;
}
tasklet_kill(&s->period_tasklet);
fw_iso_context_stop(s->context);
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
iso_packets_buffer_destroy(&s->buffer, s->unit);
s->callbacked = false;
mutex_unlock(&s->mutex);
}
EXPORT_SYMBOL(amdtp_stream_stop);
/**
* amdtp_stream_pcm_abort - abort the running PCM device
* @s: the AMDTP stream about to be stopped
*
* If the isochronous stream needs to be stopped asynchronously, call this
* function first to stop the PCM device.
*/
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
{
struct snd_pcm_substream *pcm;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
snd_pcm_stop_xrun(pcm);
}
EXPORT_SYMBOL(amdtp_stream_pcm_abort);