alistair23-linux/drivers/staging/rtl8192e/r8192E_phy.c
Larry Finger de7c885a24 staging: rtl8192e: Convert typedef RT_RF_POWER_STATE to enum rt_rf_power_state
Remove typedef from enum.
Rename enum.
Rename uses.

Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
2011-08-24 10:53:04 -05:00

1595 lines
44 KiB
C

/******************************************************************************
* Copyright(c) 2008 - 2010 Realtek Corporation. All rights reserved.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
******************************************************************************/
#include "rtl_core.h"
#include "r8192E_hw.h"
#include "r8192E_phyreg.h"
#include "r8190P_rtl8256.h"
#include "r8192E_phy.h"
#include "rtl_dm.h"
#include "dot11d.h"
#include "r8192E_hwimg.h"
static u32 RF_CHANNEL_TABLE_ZEBRA[] = {
0,
0x085c,
0x08dc,
0x095c,
0x09dc,
0x0a5c,
0x0adc,
0x0b5c,
0x0bdc,
0x0c5c,
0x0cdc,
0x0d5c,
0x0ddc,
0x0e5c,
0x0f72,
};
/*************************Define local function prototype**********************/
static u32 phy_FwRFSerialRead(struct net_device* dev,enum rf90_radio_path eRFPath,u32 Offset);
static void phy_FwRFSerialWrite(struct net_device* dev,enum rf90_radio_path eRFPath,u32 Offset,u32 Data);
u32 rtl8192_CalculateBitShift(u32 dwBitMask)
{
u32 i;
for (i=0; i<=31; i++)
{
if (((dwBitMask>>i)&0x1) == 1)
break;
}
return i;
}
u8 rtl8192_phy_CheckIsLegalRFPath(struct net_device* dev, u32 eRFPath)
{
u8 ret = 1;
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->rf_type == RF_2T4R)
ret = 0;
else if (priv->rf_type == RF_1T2R)
{
if (eRFPath == RF90_PATH_A || eRFPath == RF90_PATH_B)
ret = 1;
else if (eRFPath == RF90_PATH_C || eRFPath == RF90_PATH_D)
ret = 0;
}
return ret;
}
void rtl8192_setBBreg(struct net_device* dev, u32 dwRegAddr, u32 dwBitMask, u32 dwData)
{
u32 OriginalValue, BitShift, NewValue;
if (dwBitMask!= bMaskDWord)
{
OriginalValue = read_nic_dword(dev, dwRegAddr);
BitShift = rtl8192_CalculateBitShift(dwBitMask);
NewValue = (((OriginalValue) & (~dwBitMask)) | (dwData << BitShift));
write_nic_dword(dev, dwRegAddr, NewValue);
}else
write_nic_dword(dev, dwRegAddr, dwData);
return;
}
u32 rtl8192_QueryBBReg(struct net_device* dev, u32 dwRegAddr, u32 dwBitMask)
{
u32 Ret = 0, OriginalValue, BitShift;
OriginalValue = read_nic_dword(dev, dwRegAddr);
BitShift = rtl8192_CalculateBitShift(dwBitMask);
Ret = (OriginalValue & dwBitMask) >> BitShift;
return (Ret);
}
u32 rtl8192_phy_RFSerialRead(struct net_device* dev, enum rf90_radio_path eRFPath, u32 Offset)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 ret = 0;
u32 NewOffset = 0;
struct bb_reg_definition* pPhyReg = &priv->PHYRegDef[eRFPath];
Offset &= 0x3f;
if (priv->rf_chip == RF_8256)
{
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);
if (Offset >= 31)
{
priv->RfReg0Value[eRFPath] |= 0x140;
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16) );
NewOffset = Offset -30;
}
else if (Offset >= 16)
{
priv->RfReg0Value[eRFPath] |= 0x100;
priv->RfReg0Value[eRFPath] &= (~0x40);
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16) );
NewOffset = Offset - 15;
}
else
NewOffset = Offset;
}
else
{
RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need to be 8256\n");
NewOffset = Offset;
}
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress, NewOffset);
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0);
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1);
msleep(1);
ret = rtl8192_QueryBBReg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
if (priv->rf_chip == RF_8256)
{
priv->RfReg0Value[eRFPath] &= 0xebf;
rtl8192_setBBreg(
dev,
pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);
}
return ret;
}
void rtl8192_phy_RFSerialWrite(struct net_device* dev, enum rf90_radio_path eRFPath, u32 Offset, u32 Data)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 DataAndAddr = 0, NewOffset = 0;
struct bb_reg_definition *pPhyReg = &priv->PHYRegDef[eRFPath];
Offset &= 0x3f;
if (priv->rf_chip == RF_8256)
{
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);
if (Offset >= 31)
{
priv->RfReg0Value[eRFPath] |= 0x140;
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16));
NewOffset = Offset - 30;
}
else if (Offset >= 16)
{
priv->RfReg0Value[eRFPath] |= 0x100;
priv->RfReg0Value[eRFPath] &= (~0x40);
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16));
NewOffset = Offset - 15;
}
else
NewOffset = Offset;
}
else
{
RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need to be 8256\n");
NewOffset = Offset;
}
DataAndAddr = (Data<<16) | (NewOffset&0x3f);
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
if (Offset==0x0)
priv->RfReg0Value[eRFPath] = Data;
if (priv->rf_chip == RF_8256)
{
if (Offset != 0)
{
priv->RfReg0Value[eRFPath] &= 0xebf;
rtl8192_setBBreg(
dev,
pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
}
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);
}
return;
}
void rtl8192_phy_SetRFReg(struct net_device* dev, enum rf90_radio_path eRFPath, u32 RegAddr, u32 BitMask, u32 Data)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 Original_Value, BitShift, New_Value;
if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath))
return;
if (priv->rtllib->eRFPowerState != eRfOn && !priv->being_init_adapter)
return;
RT_TRACE(COMP_PHY, "FW RF CTRL is not ready now\n");
if (priv->Rf_Mode == RF_OP_By_FW)
{
if (BitMask != bMask12Bits)
{
Original_Value = phy_FwRFSerialRead(dev, eRFPath, RegAddr);
BitShift = rtl8192_CalculateBitShift(BitMask);
New_Value = (((Original_Value) & (~BitMask)) | (Data<< BitShift));
phy_FwRFSerialWrite(dev, eRFPath, RegAddr, New_Value);
}else
phy_FwRFSerialWrite(dev, eRFPath, RegAddr, Data);
udelay(200);
}
else
{
if (BitMask != bMask12Bits)
{
Original_Value = rtl8192_phy_RFSerialRead(dev, eRFPath, RegAddr);
BitShift = rtl8192_CalculateBitShift(BitMask);
New_Value = (((Original_Value) & (~BitMask)) | (Data<< BitShift));
rtl8192_phy_RFSerialWrite(dev, eRFPath, RegAddr, New_Value);
}else
rtl8192_phy_RFSerialWrite(dev, eRFPath, RegAddr, Data);
}
return;
}
u32 rtl8192_phy_QueryRFReg(struct net_device* dev, enum rf90_radio_path eRFPath, u32 RegAddr, u32 BitMask)
{
u32 Original_Value, Readback_Value, BitShift;
struct r8192_priv *priv = rtllib_priv(dev);
if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath))
return 0;
if (priv->rtllib->eRFPowerState != eRfOn && !priv->being_init_adapter)
return 0;
down(&priv->rf_sem);
if (priv->Rf_Mode == RF_OP_By_FW)
{
Original_Value = phy_FwRFSerialRead(dev, eRFPath, RegAddr);
udelay(200);
}
else
{
Original_Value = rtl8192_phy_RFSerialRead(dev, eRFPath, RegAddr);
}
BitShift = rtl8192_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
up(&priv->rf_sem);
return (Readback_Value);
}
static u32 phy_FwRFSerialRead(
struct net_device* dev,
enum rf90_radio_path eRFPath,
u32 Offset )
{
u32 retValue = 0;
u32 Data = 0;
u8 time = 0;
Data |= ((Offset&0xFF)<<12);
Data |= ((eRFPath&0x3)<<20);
Data |= 0x80000000;
while (read_nic_dword(dev, QPNR)&0x80000000)
{
if (time++ < 100)
{
udelay(10);
}
else
break;
}
write_nic_dword(dev, QPNR, Data);
while (read_nic_dword(dev, QPNR)&0x80000000)
{
if (time++ < 100)
{
udelay(10);
}
else
return (0);
}
retValue = read_nic_dword(dev, RF_DATA);
return (retValue);
} /* phy_FwRFSerialRead */
static void
phy_FwRFSerialWrite(
struct net_device* dev,
enum rf90_radio_path eRFPath,
u32 Offset,
u32 Data )
{
u8 time = 0;
Data |= ((Offset&0xFF)<<12);
Data |= ((eRFPath&0x3)<<20);
Data |= 0x400000;
Data |= 0x80000000;
while (read_nic_dword(dev, QPNR)&0x80000000)
{
if (time++ < 100)
{
udelay(10);
}
else
break;
}
write_nic_dword(dev, QPNR, Data);
} /* phy_FwRFSerialWrite */
void rtl8192_phy_configmac(struct net_device* dev)
{
u32 dwArrayLen = 0, i = 0;
u32* pdwArray = NULL;
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->bTXPowerDataReadFromEEPORM)
{
RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array_PG\n");
dwArrayLen = MACPHY_Array_PGLength;
pdwArray = Rtl819XMACPHY_Array_PG;
}
else
{
RT_TRACE(COMP_PHY,"Read rtl819XMACPHY_Array\n");
dwArrayLen = MACPHY_ArrayLength;
pdwArray = Rtl819XMACPHY_Array;
}
for (i = 0; i<dwArrayLen; i=i+3){
RT_TRACE(COMP_DBG, "The Rtl8190MACPHY_Array[0] is %x Rtl8190MACPHY_Array[1] is %x Rtl8190MACPHY_Array[2] is %x\n",
pdwArray[i], pdwArray[i+1], pdwArray[i+2]);
if (pdwArray[i] == 0x318)
{
pdwArray[i+2] = 0x00000800;
}
rtl8192_setBBreg(dev, pdwArray[i], pdwArray[i+1], pdwArray[i+2]);
}
return;
}
void rtl8192_phyConfigBB(struct net_device* dev, u8 ConfigType)
{
int i;
u32* Rtl819XPHY_REGArray_Table = NULL;
u32* Rtl819XAGCTAB_Array_Table = NULL;
u16 AGCTAB_ArrayLen, PHY_REGArrayLen = 0;
struct r8192_priv *priv = rtllib_priv(dev);
{
AGCTAB_ArrayLen = AGCTAB_ArrayLength;
Rtl819XAGCTAB_Array_Table = Rtl819XAGCTAB_Array;
if (priv->rf_type == RF_2T4R)
{
PHY_REGArrayLen = PHY_REGArrayLength;
Rtl819XPHY_REGArray_Table = Rtl819XPHY_REGArray;
}
else if (priv->rf_type == RF_1T2R)
{
PHY_REGArrayLen = PHY_REG_1T2RArrayLength;
Rtl819XPHY_REGArray_Table = Rtl819XPHY_REG_1T2RArray;
}
}
if (ConfigType == BaseBand_Config_PHY_REG)
{
for (i=0; i<PHY_REGArrayLen; i+=2)
{
rtl8192_setBBreg(dev, Rtl819XPHY_REGArray_Table[i], bMaskDWord, Rtl819XPHY_REGArray_Table[i+1]);
RT_TRACE(COMP_DBG, "i: %x, The Rtl819xUsbPHY_REGArray[0] is %x Rtl819xUsbPHY_REGArray[1] is %x \n",i, Rtl819XPHY_REGArray_Table[i], Rtl819XPHY_REGArray_Table[i+1]);
}
}
else if (ConfigType == BaseBand_Config_AGC_TAB)
{
for (i=0; i<AGCTAB_ArrayLen; i+=2)
{
rtl8192_setBBreg(dev, Rtl819XAGCTAB_Array_Table[i], bMaskDWord, Rtl819XAGCTAB_Array_Table[i+1]);
RT_TRACE(COMP_DBG, "i:%x, The rtl819XAGCTAB_Array[0] is %x rtl819XAGCTAB_Array[1] is %x \n",i, Rtl819XAGCTAB_Array_Table[i], Rtl819XAGCTAB_Array_Table[i+1]);
}
}
return;
}
void rtl8192_InitBBRFRegDef(struct net_device* dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;
priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;
priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE;
priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter;
priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter;
priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter;
priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter;
priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;
priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl;
priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;
priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;
priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;
priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;
priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;
priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;
priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;
priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
}
bool rtl8192_phy_checkBBAndRF(struct net_device* dev, enum hw90_block CheckBlock, enum rf90_radio_path eRFPath)
{
bool ret = true;
u32 i, CheckTimes = 4, dwRegRead = 0;
u32 WriteAddr[4];
u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f};
WriteAddr[HW90_BLOCK_MAC] = 0x100;
WriteAddr[HW90_BLOCK_PHY0] = 0x900;
WriteAddr[HW90_BLOCK_PHY1] = 0x800;
WriteAddr[HW90_BLOCK_RF] = 0x3;
RT_TRACE(COMP_PHY, "=======>%s(), CheckBlock:%d\n", __func__, CheckBlock);
for (i=0 ; i < CheckTimes ; i++)
{
switch (CheckBlock)
{
case HW90_BLOCK_MAC:
RT_TRACE(COMP_ERR, "PHY_CheckBBRFOK(): Never Write 0x100 here!");
break;
case HW90_BLOCK_PHY0:
case HW90_BLOCK_PHY1:
write_nic_dword(dev, WriteAddr[CheckBlock], WriteData[i]);
dwRegRead = read_nic_dword(dev, WriteAddr[CheckBlock]);
break;
case HW90_BLOCK_RF:
WriteData[i] &= 0xfff;
rtl8192_phy_SetRFReg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMask12Bits, WriteData[i]);
mdelay(10);
dwRegRead = rtl8192_phy_QueryRFReg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMaskDWord);
mdelay(10);
break;
default:
ret = false;
break;
}
if (dwRegRead != WriteData[i])
{
RT_TRACE(COMP_ERR, "====>error=====dwRegRead: %x, WriteData: %x \n", dwRegRead, WriteData[i]);
ret = false;
break;
}
}
return ret;
}
bool rtl8192_BB_Config_ParaFile(struct net_device* dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool rtStatus = true;
u8 bRegValue = 0, eCheckItem = 0;
u32 dwRegValue = 0;
/**************************************
**************************************/
bRegValue = read_nic_byte(dev, BB_GLOBAL_RESET);
write_nic_byte(dev, BB_GLOBAL_RESET,(bRegValue|BB_GLOBAL_RESET_BIT));
dwRegValue = read_nic_dword(dev, CPU_GEN);
write_nic_dword(dev, CPU_GEN, (dwRegValue&(~CPU_GEN_BB_RST)));
for (eCheckItem=(enum hw90_block)HW90_BLOCK_PHY0; eCheckItem<=HW90_BLOCK_PHY1; eCheckItem++)
{
rtStatus = rtl8192_phy_checkBBAndRF(dev, (enum hw90_block)eCheckItem, (enum rf90_radio_path)0);
if (rtStatus != true)
{
RT_TRACE((COMP_ERR | COMP_PHY), "PHY_RF8256_Config():Check PHY%d Fail!!\n", eCheckItem-1);
return rtStatus;
}
}
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0);
rtl8192_phyConfigBB(dev, BaseBand_Config_PHY_REG);
dwRegValue = read_nic_dword(dev, CPU_GEN);
write_nic_dword(dev, CPU_GEN, (dwRegValue|CPU_GEN_BB_RST));
rtl8192_phyConfigBB(dev, BaseBand_Config_AGC_TAB);
if (priv->IC_Cut > VERSION_8190_BD)
{
if (priv->rf_type == RF_2T4R)
{
dwRegValue = ( priv->AntennaTxPwDiff[2]<<8 |
priv->AntennaTxPwDiff[1]<<4 |
priv->AntennaTxPwDiff[0]);
}
else
dwRegValue = 0x0;
rtl8192_setBBreg(dev, rFPGA0_TxGainStage,
(bXBTxAGC|bXCTxAGC|bXDTxAGC), dwRegValue);
dwRegValue = priv->CrystalCap;
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, bXtalCap92x, dwRegValue);
}
return rtStatus;
}
bool rtl8192_BBConfig(struct net_device* dev)
{
bool rtStatus = true;
rtl8192_InitBBRFRegDef(dev);
rtStatus = rtl8192_BB_Config_ParaFile(dev);
return rtStatus;
}
void rtl8192_phy_getTxPower(struct net_device* dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
priv->MCSTxPowerLevelOriginalOffset[0] =
read_nic_dword(dev, rTxAGC_Rate18_06);
priv->MCSTxPowerLevelOriginalOffset[1] =
read_nic_dword(dev, rTxAGC_Rate54_24);
priv->MCSTxPowerLevelOriginalOffset[2] =
read_nic_dword(dev, rTxAGC_Mcs03_Mcs00);
priv->MCSTxPowerLevelOriginalOffset[3] =
read_nic_dword(dev, rTxAGC_Mcs07_Mcs04);
priv->MCSTxPowerLevelOriginalOffset[4] =
read_nic_dword(dev, rTxAGC_Mcs11_Mcs08);
priv->MCSTxPowerLevelOriginalOffset[5] =
read_nic_dword(dev, rTxAGC_Mcs15_Mcs12);
priv->DefaultInitialGain[0] = read_nic_byte(dev, rOFDM0_XAAGCCore1);
priv->DefaultInitialGain[1] = read_nic_byte(dev, rOFDM0_XBAGCCore1);
priv->DefaultInitialGain[2] = read_nic_byte(dev, rOFDM0_XCAGCCore1);
priv->DefaultInitialGain[3] = read_nic_byte(dev, rOFDM0_XDAGCCore1);
RT_TRACE(COMP_INIT, "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x) \n",
priv->DefaultInitialGain[0], priv->DefaultInitialGain[1],
priv->DefaultInitialGain[2], priv->DefaultInitialGain[3]);
priv->framesync = read_nic_byte(dev, rOFDM0_RxDetector3);
priv->framesyncC34 = read_nic_dword(dev, rOFDM0_RxDetector2);
RT_TRACE(COMP_INIT, "Default framesync (0x%x) = 0x%x \n",
rOFDM0_RxDetector3, priv->framesync);
priv->SifsTime = read_nic_word(dev, SIFS);
return;
}
void rtl8192_phy_setTxPower(struct net_device* dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 powerlevel = 0,powerlevelOFDM24G = 0;
char ant_pwr_diff;
u32 u4RegValue;
if (priv->epromtype == EEPROM_93C46)
{
powerlevel = priv->TxPowerLevelCCK[channel-1];
powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
}
else if (priv->epromtype == EEPROM_93C56)
{
if (priv->rf_type == RF_1T2R)
{
powerlevel = priv->TxPowerLevelCCK_C[channel-1];
powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_C[channel-1];
}
else if (priv->rf_type == RF_2T4R)
{
powerlevel = priv->TxPowerLevelCCK_A[channel-1];
powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_A[channel-1];
ant_pwr_diff = priv->TxPowerLevelOFDM24G_C[channel-1]
-priv->TxPowerLevelOFDM24G_A[channel-1];
priv->RF_C_TxPwDiff = ant_pwr_diff;
ant_pwr_diff &= 0xf;
priv->AntennaTxPwDiff[2] = 0;
priv->AntennaTxPwDiff[1] = (u8)(ant_pwr_diff);
priv->AntennaTxPwDiff[0] = 0;
u4RegValue = ( priv->AntennaTxPwDiff[2]<<8 |
priv->AntennaTxPwDiff[1]<<4 |
priv->AntennaTxPwDiff[0]);
rtl8192_setBBreg(dev, rFPGA0_TxGainStage,
(bXBTxAGC|bXCTxAGC|bXDTxAGC), u4RegValue);
}
}
switch (priv->rf_chip) {
case RF_8225:
break;
case RF_8256:
PHY_SetRF8256CCKTxPower(dev, powerlevel);
PHY_SetRF8256OFDMTxPower(dev, powerlevelOFDM24G);
break;
case RF_8258:
break;
default:
RT_TRACE(COMP_ERR, "unknown rf chip in funtion %s()\n", __func__);
break;
}
return;
}
bool rtl8192_phy_RFConfig(struct net_device* dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool rtStatus = true;
switch (priv->rf_chip)
{
case RF_8225:
break;
case RF_8256:
rtStatus = PHY_RF8256_Config(dev);
break;
case RF_8258:
break;
case RF_PSEUDO_11N:
break;
default:
RT_TRACE(COMP_ERR, "error chip id\n");
break;
}
return rtStatus;
}
void rtl8192_phy_updateInitGain(struct net_device* dev)
{
return;
}
u8 rtl8192_phy_ConfigRFWithHeaderFile(struct net_device* dev, enum rf90_radio_path eRFPath)
{
int i;
u8 ret = 0;
switch (eRFPath){
case RF90_PATH_A:
for (i = 0;i<RadioA_ArrayLength; i=i+2){
if (Rtl819XRadioA_Array[i] == 0xfe){
msleep(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioA_Array[i], bMask12Bits, Rtl819XRadioA_Array[i+1]);
}
break;
case RF90_PATH_B:
for (i = 0;i<RadioB_ArrayLength; i=i+2){
if (Rtl819XRadioB_Array[i] == 0xfe){
msleep(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioB_Array[i], bMask12Bits, Rtl819XRadioB_Array[i+1]);
}
break;
case RF90_PATH_C:
for (i = 0;i<RadioC_ArrayLength; i=i+2){
if (Rtl819XRadioC_Array[i] == 0xfe){
msleep(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioC_Array[i], bMask12Bits, Rtl819XRadioC_Array[i+1]);
}
break;
case RF90_PATH_D:
for (i = 0;i<RadioD_ArrayLength; i=i+2){
if (Rtl819XRadioD_Array[i] == 0xfe){
msleep(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioD_Array[i], bMask12Bits, Rtl819XRadioD_Array[i+1]);
}
break;
default:
break;
}
return ret;;
}
void rtl8192_SetTxPowerLevel(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 powerlevel = priv->TxPowerLevelCCK[channel-1];
u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
switch (priv->rf_chip)
{
case RF_8225:
break;
case RF_8256:
PHY_SetRF8256CCKTxPower(dev, powerlevel);
PHY_SetRF8256OFDMTxPower(dev, powerlevelOFDM24G);
break;
case RF_8258:
break;
default:
RT_TRACE(COMP_ERR, "unknown rf chip ID in rtl8192_SetTxPowerLevel()\n");
break;
}
return;
}
u8 rtl8192_phy_SetSwChnlCmdArray(
struct sw_chnl_cmd* CmdTable,
u32 CmdTableIdx,
u32 CmdTableSz,
enum sw_chnl_cmd_id CmdID,
u32 Para1,
u32 Para2,
u32 msDelay
)
{
struct sw_chnl_cmd* pCmd;
if (CmdTable == NULL)
{
RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): CmdTable cannot be NULL.\n");
return false;
}
if (CmdTableIdx >= CmdTableSz)
{
RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): Access invalid index, please check size of the table, CmdTableIdx:%d, CmdTableSz:%d\n",
CmdTableIdx, CmdTableSz);
return false;
}
pCmd = CmdTable + CmdTableIdx;
pCmd->CmdID = CmdID;
pCmd->Para1 = Para1;
pCmd->Para2 = Para2;
pCmd->msDelay = msDelay;
return true;
}
u8 rtl8192_phy_SwChnlStepByStep(struct net_device *dev, u8 channel, u8* stage, u8* step, u32* delay)
{
struct r8192_priv *priv = rtllib_priv(dev);
struct sw_chnl_cmd PreCommonCmd[MAX_PRECMD_CNT];
u32 PreCommonCmdCnt;
struct sw_chnl_cmd PostCommonCmd[MAX_POSTCMD_CNT];
u32 PostCommonCmdCnt;
struct sw_chnl_cmd RfDependCmd[MAX_RFDEPENDCMD_CNT];
u32 RfDependCmdCnt;
struct sw_chnl_cmd *CurrentCmd = NULL;
u8 eRFPath;
RT_TRACE(COMP_TRACE, "====>%s()====stage:%d, step:%d, channel:%d\n", __func__, *stage, *step, channel);
if (!IsLegalChannel(priv->rtllib, channel))
{
RT_TRACE(COMP_ERR, "=============>set to illegal channel:%d\n", channel);
return true;
}
{
PreCommonCmdCnt = 0;
rtl8192_phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT,
CmdID_SetTxPowerLevel, 0, 0, 0);
rtl8192_phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT,
CmdID_End, 0, 0, 0);
PostCommonCmdCnt = 0;
rtl8192_phy_SetSwChnlCmdArray(PostCommonCmd, PostCommonCmdCnt++, MAX_POSTCMD_CNT,
CmdID_End, 0, 0, 0);
RfDependCmdCnt = 0;
switch ( priv->rf_chip )
{
case RF_8225:
if (!(channel >= 1 && channel <= 14))
{
RT_TRACE(COMP_ERR, "illegal channel for Zebra 8225: %d\n", channel);
return false;
}
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg, rZebra1_Channel, RF_CHANNEL_TABLE_ZEBRA[channel], 10);
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8256:
if (!(channel >= 1 && channel <= 14))
{
RT_TRACE(COMP_ERR, "illegal channel for Zebra 8256: %d\n", channel);
return false;
}
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg, rZebra1_Channel, channel, 10);
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8258:
break;
default:
RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip);
return false;
break;
}
do{
switch (*stage)
{
case 0:
CurrentCmd=&PreCommonCmd[*step];
break;
case 1:
CurrentCmd=&RfDependCmd[*step];
break;
case 2:
CurrentCmd=&PostCommonCmd[*step];
break;
}
if (CurrentCmd->CmdID==CmdID_End)
{
if ((*stage)==2)
{
return true;
}
else
{
(*stage)++;
(*step)=0;
continue;
}
}
switch (CurrentCmd->CmdID)
{
case CmdID_SetTxPowerLevel:
if (priv->IC_Cut > (u8)VERSION_8190_BD)
rtl8192_SetTxPowerLevel(dev,channel);
break;
case CmdID_WritePortUlong:
write_nic_dword(dev, CurrentCmd->Para1, CurrentCmd->Para2);
break;
case CmdID_WritePortUshort:
write_nic_word(dev, CurrentCmd->Para1, (u16)CurrentCmd->Para2);
break;
case CmdID_WritePortUchar:
write_nic_byte(dev, CurrentCmd->Para1, (u8)CurrentCmd->Para2);
break;
case CmdID_RF_WriteReg:
for (eRFPath = 0; eRFPath <priv->NumTotalRFPath; eRFPath++)
rtl8192_phy_SetRFReg(dev, (enum rf90_radio_path)eRFPath, CurrentCmd->Para1, bMask12Bits, CurrentCmd->Para2<<7);
break;
default:
break;
}
break;
}while(true);
}/*for (Number of RF paths)*/
(*delay)=CurrentCmd->msDelay;
(*step)++;
return false;
}
void rtl8192_phy_FinishSwChnlNow(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 delay = 0;
while(!rtl8192_phy_SwChnlStepByStep(dev,channel,&priv->SwChnlStage,&priv->SwChnlStep,&delay))
{
if (delay>0)
msleep(delay);
if (IS_NIC_DOWN(priv))
break;
}
}
void rtl8192_SwChnl_WorkItem(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
RT_TRACE(COMP_TRACE, "==> SwChnlCallback819xUsbWorkItem()\n");
RT_TRACE(COMP_TRACE, "=====>--%s(), set chan:%d, priv:%p\n", __func__, priv->chan, priv);
rtl8192_phy_FinishSwChnlNow(dev , priv->chan);
RT_TRACE(COMP_TRACE, "<== SwChnlCallback819xUsbWorkItem()\n");
}
u8 rtl8192_phy_SwChnl(struct net_device* dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
RT_TRACE(COMP_PHY, "=====>%s()\n", __func__);
if (IS_NIC_DOWN(priv))
{
RT_TRACE(COMP_ERR, "%s(): ERR !! driver is not up\n",__func__);
return false;
}
if (priv->SwChnlInProgress)
return false;
switch (priv->rtllib->mode)
{
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
if (channel<=14){
RT_TRACE(COMP_ERR, "WIRELESS_MODE_A but channel<=14");
return false;
}
break;
case WIRELESS_MODE_B:
if (channel>14){
RT_TRACE(COMP_ERR, "WIRELESS_MODE_B but channel>14");
return false;
}
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
if (channel>14){
RT_TRACE(COMP_ERR, "WIRELESS_MODE_G but channel>14");
return false;
}
break;
}
priv->SwChnlInProgress = true;
if (channel == 0)
channel = 1;
priv->chan=channel;
priv->SwChnlStage=0;
priv->SwChnlStep=0;
if (!IS_NIC_DOWN(priv)){
rtl8192_SwChnl_WorkItem(dev);
}
priv->SwChnlInProgress = false;
return true;
}
static void CCK_Tx_Power_Track_BW_Switch_TSSI(struct net_device *dev )
{
struct r8192_priv *priv = rtllib_priv(dev);
switch (priv->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
priv->CCKPresentAttentuation =
priv->CCKPresentAttentuation_20Mdefault + priv->CCKPresentAttentuation_difference;
if (priv->CCKPresentAttentuation > (CCKTxBBGainTableLength-1))
priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1;
if (priv->CCKPresentAttentuation < 0)
priv->CCKPresentAttentuation = 0;
RT_TRACE(COMP_POWER_TRACKING, "20M, priv->CCKPresentAttentuation = %d\n", priv->CCKPresentAttentuation);
if (priv->rtllib->current_network.channel== 14 && !priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = true;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = false;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
break;
case HT_CHANNEL_WIDTH_20_40:
priv->CCKPresentAttentuation =
priv->CCKPresentAttentuation_40Mdefault + priv->CCKPresentAttentuation_difference;
RT_TRACE(COMP_POWER_TRACKING, "40M, priv->CCKPresentAttentuation = %d\n", priv->CCKPresentAttentuation);
if (priv->CCKPresentAttentuation > (CCKTxBBGainTableLength-1))
priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1;
if (priv->CCKPresentAttentuation < 0)
priv->CCKPresentAttentuation = 0;
if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = true;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = false;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
break;
}
}
static void CCK_Tx_Power_Track_BW_Switch_ThermalMeter(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14)
priv->bcck_in_ch14 = true;
else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14)
priv->bcck_in_ch14 = false;
switch (priv->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
if (priv->Record_CCK_20Mindex == 0)
priv->Record_CCK_20Mindex = 6;
priv->CCK_index = priv->Record_CCK_20Mindex;
RT_TRACE(COMP_POWER_TRACKING, "20MHz, CCK_Tx_Power_Track_BW_Switch_ThermalMeter(),CCK_index = %d\n", priv->CCK_index);
break;
case HT_CHANNEL_WIDTH_20_40:
priv->CCK_index = priv->Record_CCK_40Mindex;
RT_TRACE(COMP_POWER_TRACKING, "40MHz, CCK_Tx_Power_Track_BW_Switch_ThermalMeter(), CCK_index = %d\n", priv->CCK_index);
break;
}
dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
static void CCK_Tx_Power_Track_BW_Switch(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->IC_Cut >= IC_VersionCut_D)
CCK_Tx_Power_Track_BW_Switch_TSSI(dev);
else
CCK_Tx_Power_Track_BW_Switch_ThermalMeter(dev);
}
void rtl8192_SetBWModeWorkItem(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 regBwOpMode;
RT_TRACE(COMP_SWBW, "==>rtl8192_SetBWModeWorkItem() Switch to %s bandwidth\n", \
priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz")
if (priv->rf_chip== RF_PSEUDO_11N)
{
priv->SetBWModeInProgress= false;
return;
}
if (IS_NIC_DOWN(priv)){
RT_TRACE(COMP_ERR,"%s(): ERR!! driver is not up\n",__func__);
return;
}
regBwOpMode = read_nic_byte(dev, BW_OPMODE);
switch (priv->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
write_nic_byte(dev, BW_OPMODE, regBwOpMode);
break;
case HT_CHANNEL_WIDTH_20_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
write_nic_byte(dev, BW_OPMODE, regBwOpMode);
break;
default:
RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n",priv->CurrentChannelBW);
break;
}
switch (priv->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x0);
rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x0);
if (!priv->btxpower_tracking)
{
write_nic_dword(dev, rCCK0_TxFilter1, 0x1a1b0000);
write_nic_dword(dev, rCCK0_TxFilter2, 0x090e1317);
write_nic_dword(dev, rCCK0_DebugPort, 0x00000204);
}
else
CCK_Tx_Power_Track_BW_Switch(dev);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1);
break;
case HT_CHANNEL_WIDTH_20_40:
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x1);
rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x1);
if (!priv->btxpower_tracking)
{
write_nic_dword(dev, rCCK0_TxFilter1, 0x35360000);
write_nic_dword(dev, rCCK0_TxFilter2, 0x121c252e);
write_nic_dword(dev, rCCK0_DebugPort, 0x00000409);
}
else
CCK_Tx_Power_Track_BW_Switch(dev);
rtl8192_setBBreg(dev, rCCK0_System, bCCKSideBand, (priv->nCur40MhzPrimeSC>>1));
rtl8192_setBBreg(dev, rOFDM1_LSTF, 0xC00, priv->nCur40MhzPrimeSC);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0);
break;
default:
RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n" ,priv->CurrentChannelBW);
break;
}
switch ( priv->rf_chip )
{
case RF_8225:
break;
case RF_8256:
PHY_SetRF8256Bandwidth(dev, priv->CurrentChannelBW);
break;
case RF_8258:
break;
case RF_PSEUDO_11N:
break;
default:
RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip);
break;
}
atomic_dec(&(priv->rtllib->atm_swbw));
priv->SetBWModeInProgress= false;
RT_TRACE(COMP_SWBW, "<==SetBWMode819xUsb()");
}
void rtl8192_SetBWMode(struct net_device *dev, enum ht_channel_width Bandwidth, enum ht_extchnl_offset Offset)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->SetBWModeInProgress)
return;
atomic_inc(&(priv->rtllib->atm_swbw));
priv->SetBWModeInProgress= true;
priv->CurrentChannelBW = Bandwidth;
if (Offset==HT_EXTCHNL_OFFSET_LOWER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (Offset==HT_EXTCHNL_OFFSET_UPPER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
rtl8192_SetBWModeWorkItem(dev);
}
void InitialGain819xPci(struct net_device *dev, u8 Operation)
{
#define SCAN_RX_INITIAL_GAIN 0x17
#define POWER_DETECTION_TH 0x08
struct r8192_priv *priv = rtllib_priv(dev);
u32 BitMask;
u8 initial_gain;
if (!IS_NIC_DOWN(priv)){
switch (Operation)
{
case IG_Backup:
RT_TRACE(COMP_SCAN, "IG_Backup, backup the initial gain.\n");
initial_gain = SCAN_RX_INITIAL_GAIN;
BitMask = bMaskByte0;
if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8);
priv->initgain_backup.xaagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XAAGCCore1, BitMask);
priv->initgain_backup.xbagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XBAGCCore1, BitMask);
priv->initgain_backup.xcagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XCAGCCore1, BitMask);
priv->initgain_backup.xdagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XDAGCCore1, BitMask);
BitMask = bMaskByte2;
priv->initgain_backup.cca = (u8)rtl8192_QueryBBReg(dev, rCCK0_CCA, BitMask);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc50 is %x\n",priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc58 is %x\n",priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc60 is %x\n",priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc68 is %x\n",priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xa0a is %x\n",priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN, "Write scan initial gain = 0x%x \n", initial_gain);
write_nic_byte(dev, rOFDM0_XAAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XBAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XCAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XDAGCCore1, initial_gain);
RT_TRACE(COMP_SCAN, "Write scan 0xa0a = 0x%x \n", POWER_DETECTION_TH);
write_nic_byte(dev, 0xa0a, POWER_DETECTION_TH);
break;
case IG_Restore:
RT_TRACE(COMP_SCAN, "IG_Restore, restore the initial gain.\n");
BitMask = 0x7f;
if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8);
rtl8192_setBBreg(dev, rOFDM0_XAAGCCore1, BitMask, (u32)priv->initgain_backup.xaagccore1);
rtl8192_setBBreg(dev, rOFDM0_XBAGCCore1, BitMask, (u32)priv->initgain_backup.xbagccore1);
rtl8192_setBBreg(dev, rOFDM0_XCAGCCore1, BitMask, (u32)priv->initgain_backup.xcagccore1);
rtl8192_setBBreg(dev, rOFDM0_XDAGCCore1, BitMask, (u32)priv->initgain_backup.xdagccore1);
BitMask = bMaskByte2;
rtl8192_setBBreg(dev, rCCK0_CCA, BitMask, (u32)priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc50 is %x\n",priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc58 is %x\n",priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc60 is %x\n",priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc68 is %x\n",priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xa0a is %x\n",priv->initgain_backup.cca);
rtl8192_phy_setTxPower(dev,priv->rtllib->current_network.channel);
if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x1);
break;
default:
RT_TRACE(COMP_SCAN, "Unknown IG Operation. \n");
break;
}
}
}
extern void
PHY_SetRtl8192eRfOff(struct net_device* dev )
{
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x0);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x0);
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0);
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x4, 0x0);
write_nic_byte(dev, ANAPAR_FOR_8192PciE, 0x07);
}
bool
SetRFPowerState8190(
struct net_device* dev,
enum rt_rf_power_state eRFPowerState
)
{
struct r8192_priv *priv = rtllib_priv(dev);
struct rt_pwr_save_ctrl *pPSC = (struct rt_pwr_save_ctrl *)(&(priv->rtllib->PowerSaveControl));
bool bResult = true;
u8 i = 0, QueueID = 0;
struct rtl8192_tx_ring *ring = NULL;
if (priv->SetRFPowerStateInProgress == true)
return false;
RT_TRACE(COMP_PS, "===========> SetRFPowerState8190()!\n");
priv->SetRFPowerStateInProgress = true;
switch (priv->rf_chip)
{
case RF_8256:
switch ( eRFPowerState )
{
case eRfOn:
RT_TRACE(COMP_PS, "SetRFPowerState8190() eRfOn !\n");
if ((priv->rtllib->eRFPowerState == eRfOff) && RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC))
{
bool rtstatus = true;
u32 InitilizeCount = 3;
do
{
InitilizeCount--;
priv->RegRfOff = false;
rtstatus = NicIFEnableNIC(dev);
}while( (rtstatus != true) &&(InitilizeCount >0) );
if (rtstatus != true)
{
RT_TRACE(COMP_ERR,"%s():Initialize Adapter fail,return\n",__func__);
priv->SetRFPowerStateInProgress = false;
return false;
}
RT_CLEAR_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC);
} else {
write_nic_byte(dev, ANAPAR, 0x37);
mdelay(1);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x4, 0x1);
priv->bHwRfOffAction = 0;
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x3);
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3);
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3);
}
break;
case eRfSleep:
{
if (priv->rtllib->eRFPowerState == eRfOff)
break;
{
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; )
{
ring = &priv->tx_ring[QueueID];
if (skb_queue_len(&ring->queue) == 0) {
QueueID++;
continue;
}
else
{
RT_TRACE((COMP_POWER|COMP_RF), "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n", (i+1), QueueID);
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x)
{
RT_TRACE(COMP_POWER, "\n\n\n TimeOut!! SetRFPowerState8190(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID);
break;
}
}
}
{
PHY_SetRtl8192eRfOff(dev);
}
}
break;
case eRfOff:
RT_TRACE(COMP_PS, "SetRFPowerState8190() eRfOff/Sleep !\n");
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
ring = &priv->tx_ring[QueueID];
if (skb_queue_len(&ring->queue) == 0) {
QueueID++;
continue;
}
else
{
RT_TRACE(COMP_POWER,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n", (i+1), QueueID);
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x)
{
RT_TRACE(COMP_POWER, "\n\n\n SetZebraRFPowerState8185B(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID);
break;
}
}
{
if (pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC && !RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC))
{
NicIFDisableNIC(dev);
RT_SET_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC);
}
else if (!(pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC))
{
PHY_SetRtl8192eRfOff(dev);
}
}
break;
default:
bResult = false;
RT_TRACE(COMP_ERR, "SetRFPowerState8190(): unknow state to set: 0x%X!!!\n", eRFPowerState);
break;
}
break;
default:
RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n");
break;
}
if (bResult) {
priv->rtllib->eRFPowerState = eRFPowerState;
switch (priv->rf_chip) {
case RF_8256:
break;
default:
RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n");
break;
}
}
priv->SetRFPowerStateInProgress = false;
RT_TRACE(COMP_PS, "<=========== SetRFPowerState8190() bResult = %d!\n", bResult);
return bResult;
}
bool
SetRFPowerState(
struct net_device* dev,
enum rt_rf_power_state eRFPowerState
)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool bResult = false;
RT_TRACE(COMP_PS,"---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState);
if (eRFPowerState == priv->rtllib->eRFPowerState && priv->bHwRfOffAction == 0) {
RT_TRACE(COMP_PS, "<--------- SetRFPowerState(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState);
return bResult;
}
bResult = SetRFPowerState8190(dev, eRFPowerState);
RT_TRACE(COMP_PS, "<--------- SetRFPowerState(): bResult(%d)\n", bResult);
return bResult;
}
extern void
PHY_ScanOperationBackup8192(
struct net_device* dev,
u8 Operation
)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->up) {
switch (Operation) {
case SCAN_OPT_BACKUP:
priv->rtllib->InitialGainHandler(dev,IG_Backup);
break;
case SCAN_OPT_RESTORE:
priv->rtllib->InitialGainHandler(dev,IG_Restore);
break;
default:
RT_TRACE(COMP_SCAN, "Unknown Scan Backup Operation. \n");
break;
}
}
}