alistair23-linux/kernel/sched/wait.c
Andrea Arcangeli ac5be6b47e userfaultfd: revert "userfaultfd: waitqueue: add nr wake parameter to __wake_up_locked_key"
This reverts commit 51360155ec and adapts
fs/userfaultfd.c to use the old version of that function.

It didn't look robust to call __wake_up_common with "nr == 1" when we
absolutely require wakeall semantics, but we've full control of what we
insert in the two waitqueue heads of the blocked userfaults.  No
exclusive waitqueue risks to be inserted into those two waitqueue heads
so we can as well stick to "nr == 1" of the old code and we can rely
purely on the fact no waitqueue inserted in one of the two waitqueue
heads we must enforce as wakeall, has wait->flags WQ_FLAG_EXCLUSIVE set.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Thierry Reding <treding@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-22 15:09:53 -07:00

625 lines
18 KiB
C

/*
* Generic waiting primitives.
*
* (C) 2004 Nadia Yvette Chambers, Oracle
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/wait.h>
#include <linux/hash.h>
#include <linux/kthread.h>
void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
{
spin_lock_init(&q->lock);
lockdep_set_class_and_name(&q->lock, key, name);
INIT_LIST_HEAD(&q->task_list);
}
EXPORT_SYMBOL(__init_waitqueue_head);
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue);
void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue_tail(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue_exclusive);
void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__remove_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(remove_wait_queue);
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, int wake_flags, void *key)
{
wait_queue_t *curr, *next;
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
unsigned flags = curr->flags;
if (curr->func(curr, mode, wake_flags, key) &&
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
break;
}
}
/**
* __wake_up - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: is directly passed to the wakeup function
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void __wake_up(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, 0, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);
/*
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
*/
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
{
__wake_up_common(q, mode, nr, 0, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_locked);
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
__wake_up_common(q, mode, 1, 0, key);
}
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
/**
* __wake_up_sync_key - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: opaque value to be passed to wakeup targets
*
* The sync wakeup differs that the waker knows that it will schedule
* away soon, so while the target thread will be woken up, it will not
* be migrated to another CPU - ie. the two threads are 'synchronized'
* with each other. This can prevent needless bouncing between CPUs.
*
* On UP it can prevent extra preemption.
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
{
unsigned long flags;
int wake_flags = 1; /* XXX WF_SYNC */
if (unlikely(!q))
return;
if (unlikely(nr_exclusive != 1))
wake_flags = 0;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync_key);
/*
* __wake_up_sync - see __wake_up_sync_key()
*/
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
/*
* Note: we use "set_current_state()" _after_ the wait-queue add,
* because we need a memory barrier there on SMP, so that any
* wake-function that tests for the wait-queue being active
* will be guaranteed to see waitqueue addition _or_ subsequent
* tests in this thread will see the wakeup having taken place.
*
* The spin_unlock() itself is semi-permeable and only protects
* one way (it only protects stuff inside the critical region and
* stops them from bleeding out - it would still allow subsequent
* loads to move into the critical region).
*/
void
prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))
__add_wait_queue(q, wait);
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait);
void
prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
wait->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))
__add_wait_queue_tail(q, wait);
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait_exclusive);
long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
if (signal_pending_state(state, current))
return -ERESTARTSYS;
wait->private = current;
wait->func = autoremove_wake_function;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list)) {
if (wait->flags & WQ_FLAG_EXCLUSIVE)
__add_wait_queue_tail(q, wait);
else
__add_wait_queue(q, wait);
}
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
return 0;
}
EXPORT_SYMBOL(prepare_to_wait_event);
/**
* finish_wait - clean up after waiting in a queue
* @q: waitqueue waited on
* @wait: wait descriptor
*
* Sets current thread back to running state and removes
* the wait descriptor from the given waitqueue if still
* queued.
*/
void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
__set_current_state(TASK_RUNNING);
/*
* We can check for list emptiness outside the lock
* IFF:
* - we use the "careful" check that verifies both
* the next and prev pointers, so that there cannot
* be any half-pending updates in progress on other
* CPU's that we haven't seen yet (and that might
* still change the stack area.
* and
* - all other users take the lock (ie we can only
* have _one_ other CPU that looks at or modifies
* the list).
*/
if (!list_empty_careful(&wait->task_list)) {
spin_lock_irqsave(&q->lock, flags);
list_del_init(&wait->task_list);
spin_unlock_irqrestore(&q->lock, flags);
}
}
EXPORT_SYMBOL(finish_wait);
/**
* abort_exclusive_wait - abort exclusive waiting in a queue
* @q: waitqueue waited on
* @wait: wait descriptor
* @mode: runstate of the waiter to be woken
* @key: key to identify a wait bit queue or %NULL
*
* Sets current thread back to running state and removes
* the wait descriptor from the given waitqueue if still
* queued.
*
* Wakes up the next waiter if the caller is concurrently
* woken up through the queue.
*
* This prevents waiter starvation where an exclusive waiter
* aborts and is woken up concurrently and no one wakes up
* the next waiter.
*/
void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
unsigned int mode, void *key)
{
unsigned long flags;
__set_current_state(TASK_RUNNING);
spin_lock_irqsave(&q->lock, flags);
if (!list_empty(&wait->task_list))
list_del_init(&wait->task_list);
else if (waitqueue_active(q))
__wake_up_locked_key(q, mode, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(abort_exclusive_wait);
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int ret = default_wake_function(wait, mode, sync, key);
if (ret)
list_del_init(&wait->task_list);
return ret;
}
EXPORT_SYMBOL(autoremove_wake_function);
static inline bool is_kthread_should_stop(void)
{
return (current->flags & PF_KTHREAD) && kthread_should_stop();
}
/*
* DEFINE_WAIT_FUNC(wait, woken_wake_func);
*
* add_wait_queue(&wq, &wait);
* for (;;) {
* if (condition)
* break;
*
* p->state = mode; condition = true;
* smp_mb(); // A smp_wmb(); // C
* if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN;
* schedule() try_to_wake_up();
* p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
* wait->flags &= ~WQ_FLAG_WOKEN; condition = true;
* smp_mb() // B smp_wmb(); // C
* wait->flags |= WQ_FLAG_WOKEN;
* }
* remove_wait_queue(&wq, &wait);
*
*/
long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
{
set_current_state(mode); /* A */
/*
* The above implies an smp_mb(), which matches with the smp_wmb() from
* woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
* also observe all state before the wakeup.
*/
if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
timeout = schedule_timeout(timeout);
__set_current_state(TASK_RUNNING);
/*
* The below implies an smp_mb(), it too pairs with the smp_wmb() from
* woken_wake_function() such that we must either observe the wait
* condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
* an event.
*/
smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
return timeout;
}
EXPORT_SYMBOL(wait_woken);
int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
/*
* Although this function is called under waitqueue lock, LOCK
* doesn't imply write barrier and the users expects write
* barrier semantics on wakeup functions. The following
* smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
* and is paired with smp_store_mb() in wait_woken().
*/
smp_wmb(); /* C */
wait->flags |= WQ_FLAG_WOKEN;
return default_wake_function(wait, mode, sync, key);
}
EXPORT_SYMBOL(woken_wake_function);
int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
{
struct wait_bit_key *key = arg;
struct wait_bit_queue *wait_bit
= container_of(wait, struct wait_bit_queue, wait);
if (wait_bit->key.flags != key->flags ||
wait_bit->key.bit_nr != key->bit_nr ||
test_bit(key->bit_nr, key->flags))
return 0;
else
return autoremove_wake_function(wait, mode, sync, key);
}
EXPORT_SYMBOL(wake_bit_function);
/*
* To allow interruptible waiting and asynchronous (i.e. nonblocking)
* waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
* permitted return codes. Nonzero return codes halt waiting and return.
*/
int __sched
__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
wait_bit_action_f *action, unsigned mode)
{
int ret = 0;
do {
prepare_to_wait(wq, &q->wait, mode);
if (test_bit(q->key.bit_nr, q->key.flags))
ret = (*action)(&q->key);
} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
finish_wait(wq, &q->wait);
return ret;
}
EXPORT_SYMBOL(__wait_on_bit);
int __sched out_of_line_wait_on_bit(void *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
return __wait_on_bit(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit);
int __sched out_of_line_wait_on_bit_timeout(
void *word, int bit, wait_bit_action_f *action,
unsigned mode, unsigned long timeout)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
wait.key.timeout = jiffies + timeout;
return __wait_on_bit(wq, &wait, action, mode);
}
EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
int __sched
__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
wait_bit_action_f *action, unsigned mode)
{
do {
int ret;
prepare_to_wait_exclusive(wq, &q->wait, mode);
if (!test_bit(q->key.bit_nr, q->key.flags))
continue;
ret = action(&q->key);
if (!ret)
continue;
abort_exclusive_wait(wq, &q->wait, mode, &q->key);
return ret;
} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
finish_wait(wq, &q->wait);
return 0;
}
EXPORT_SYMBOL(__wait_on_bit_lock);
int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
return __wait_on_bit_lock(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
{
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
if (waitqueue_active(wq))
__wake_up(wq, TASK_NORMAL, 1, &key);
}
EXPORT_SYMBOL(__wake_up_bit);
/**
* wake_up_bit - wake up a waiter on a bit
* @word: the word being waited on, a kernel virtual address
* @bit: the bit of the word being waited on
*
* There is a standard hashed waitqueue table for generic use. This
* is the part of the hashtable's accessor API that wakes up waiters
* on a bit. For instance, if one were to have waiters on a bitflag,
* one would call wake_up_bit() after clearing the bit.
*
* In order for this to function properly, as it uses waitqueue_active()
* internally, some kind of memory barrier must be done prior to calling
* this. Typically, this will be smp_mb__after_atomic(), but in some
* cases where bitflags are manipulated non-atomically under a lock, one
* may need to use a less regular barrier, such fs/inode.c's smp_mb(),
* because spin_unlock() does not guarantee a memory barrier.
*/
void wake_up_bit(void *word, int bit)
{
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
}
EXPORT_SYMBOL(wake_up_bit);
wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
const struct zone *zone = page_zone(virt_to_page(word));
unsigned long val = (unsigned long)word << shift | bit;
return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
}
EXPORT_SYMBOL(bit_waitqueue);
/*
* Manipulate the atomic_t address to produce a better bit waitqueue table hash
* index (we're keying off bit -1, but that would produce a horrible hash
* value).
*/
static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
{
if (BITS_PER_LONG == 64) {
unsigned long q = (unsigned long)p;
return bit_waitqueue((void *)(q & ~1), q & 1);
}
return bit_waitqueue(p, 0);
}
static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
void *arg)
{
struct wait_bit_key *key = arg;
struct wait_bit_queue *wait_bit
= container_of(wait, struct wait_bit_queue, wait);
atomic_t *val = key->flags;
if (wait_bit->key.flags != key->flags ||
wait_bit->key.bit_nr != key->bit_nr ||
atomic_read(val) != 0)
return 0;
return autoremove_wake_function(wait, mode, sync, key);
}
/*
* To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
* the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
* return codes halt waiting and return.
*/
static __sched
int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
int (*action)(atomic_t *), unsigned mode)
{
atomic_t *val;
int ret = 0;
do {
prepare_to_wait(wq, &q->wait, mode);
val = q->key.flags;
if (atomic_read(val) == 0)
break;
ret = (*action)(val);
} while (!ret && atomic_read(val) != 0);
finish_wait(wq, &q->wait);
return ret;
}
#define DEFINE_WAIT_ATOMIC_T(name, p) \
struct wait_bit_queue name = { \
.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
.wait = { \
.private = current, \
.func = wake_atomic_t_function, \
.task_list = \
LIST_HEAD_INIT((name).wait.task_list), \
}, \
}
__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
unsigned mode)
{
wait_queue_head_t *wq = atomic_t_waitqueue(p);
DEFINE_WAIT_ATOMIC_T(wait, p);
return __wait_on_atomic_t(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
/**
* wake_up_atomic_t - Wake up a waiter on a atomic_t
* @p: The atomic_t being waited on, a kernel virtual address
*
* Wake up anyone waiting for the atomic_t to go to zero.
*
* Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
* check is done by the waiter's wake function, not the by the waker itself).
*/
void wake_up_atomic_t(atomic_t *p)
{
__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
}
EXPORT_SYMBOL(wake_up_atomic_t);
__sched int bit_wait(struct wait_bit_key *word)
{
if (signal_pending_state(current->state, current))
return 1;
schedule();
return 0;
}
EXPORT_SYMBOL(bit_wait);
__sched int bit_wait_io(struct wait_bit_key *word)
{
if (signal_pending_state(current->state, current))
return 1;
io_schedule();
return 0;
}
EXPORT_SYMBOL(bit_wait_io);
__sched int bit_wait_timeout(struct wait_bit_key *word)
{
unsigned long now = READ_ONCE(jiffies);
if (signal_pending_state(current->state, current))
return 1;
if (time_after_eq(now, word->timeout))
return -EAGAIN;
schedule_timeout(word->timeout - now);
return 0;
}
EXPORT_SYMBOL_GPL(bit_wait_timeout);
__sched int bit_wait_io_timeout(struct wait_bit_key *word)
{
unsigned long now = READ_ONCE(jiffies);
if (signal_pending_state(current->state, current))
return 1;
if (time_after_eq(now, word->timeout))
return -EAGAIN;
io_schedule_timeout(word->timeout - now);
return 0;
}
EXPORT_SYMBOL_GPL(bit_wait_io_timeout);