alistair23-linux/arch/arm64/kernel/suspend.c
Lorenzo Pieralisi de818bd452 arm64: kernel: pause/unpause function graph tracer in cpu_suspend()
The function graph tracer adds instrumentation that is required to trace
both entry and exit of a function. In particular the function graph
tracer updates the "return address" of a function in order to insert
a trace callback on function exit.

Kernel power management functions like cpu_suspend() are called
upon power down entry with functions called "finishers" that are in turn
called to trigger the power down sequence but they may not return to the
kernel through the normal return path.

When the core resumes from low-power it returns to the cpu_suspend()
function through the cpu_resume path, which leaves the trace stack frame
set-up by the function tracer in an incosistent state upon return to the
kernel when tracing is enabled.

This patch fixes the issue by pausing/resuming the function graph
tracer on the thread executing cpu_suspend() (ie the function call that
subsequently triggers the "suspend finishers"), so that the function graph
tracer state is kept consistent across functions that enter power down
states and never return by effectively disabling graph tracer while they
are executing.

Fixes: 819e50e25d ("arm64: Add ftrace support")
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 3.16+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-17 17:11:45 +00:00

153 lines
4.4 KiB
C

#include <linux/ftrace.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <asm/debug-monitors.h>
#include <asm/pgtable.h>
#include <asm/memory.h>
#include <asm/mmu_context.h>
#include <asm/smp_plat.h>
#include <asm/suspend.h>
#include <asm/tlbflush.h>
extern int __cpu_suspend_enter(unsigned long arg, int (*fn)(unsigned long));
/*
* This is called by __cpu_suspend_enter() to save the state, and do whatever
* flushing is required to ensure that when the CPU goes to sleep we have
* the necessary data available when the caches are not searched.
*
* ptr: CPU context virtual address
* save_ptr: address of the location where the context physical address
* must be saved
*/
void notrace __cpu_suspend_save(struct cpu_suspend_ctx *ptr,
phys_addr_t *save_ptr)
{
*save_ptr = virt_to_phys(ptr);
cpu_do_suspend(ptr);
/*
* Only flush the context that must be retrieved with the MMU
* off. VA primitives ensure the flush is applied to all
* cache levels so context is pushed to DRAM.
*/
__flush_dcache_area(ptr, sizeof(*ptr));
__flush_dcache_area(save_ptr, sizeof(*save_ptr));
}
/*
* This hook is provided so that cpu_suspend code can restore HW
* breakpoints as early as possible in the resume path, before reenabling
* debug exceptions. Code cannot be run from a CPU PM notifier since by the
* time the notifier runs debug exceptions might have been enabled already,
* with HW breakpoints registers content still in an unknown state.
*/
static void (*hw_breakpoint_restore)(void *);
void __init cpu_suspend_set_dbg_restorer(void (*hw_bp_restore)(void *))
{
/* Prevent multiple restore hook initializations */
if (WARN_ON(hw_breakpoint_restore))
return;
hw_breakpoint_restore = hw_bp_restore;
}
/*
* cpu_suspend
*
* arg: argument to pass to the finisher function
* fn: finisher function pointer
*
*/
int cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
{
struct mm_struct *mm = current->active_mm;
int ret;
unsigned long flags;
/*
* From this point debug exceptions are disabled to prevent
* updates to mdscr register (saved and restored along with
* general purpose registers) from kernel debuggers.
*/
local_dbg_save(flags);
/*
* Function graph tracer state gets incosistent when the kernel
* calls functions that never return (aka suspend finishers) hence
* disable graph tracing during their execution.
*/
pause_graph_tracing();
/*
* mm context saved on the stack, it will be restored when
* the cpu comes out of reset through the identity mapped
* page tables, so that the thread address space is properly
* set-up on function return.
*/
ret = __cpu_suspend_enter(arg, fn);
if (ret == 0) {
/*
* We are resuming from reset with TTBR0_EL1 set to the
* idmap to enable the MMU; set the TTBR0 to the reserved
* page tables to prevent speculative TLB allocations, flush
* the local tlb and set the default tcr_el1.t0sz so that
* the TTBR0 address space set-up is properly restored.
* If the current active_mm != &init_mm we entered cpu_suspend
* with mappings in TTBR0 that must be restored, so we switch
* them back to complete the address space configuration
* restoration before returning.
*/
cpu_set_reserved_ttbr0();
local_flush_tlb_all();
cpu_set_default_tcr_t0sz();
if (mm != &init_mm)
cpu_switch_mm(mm->pgd, mm);
/*
* Restore per-cpu offset before any kernel
* subsystem relying on it has a chance to run.
*/
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
/*
* Restore HW breakpoint registers to sane values
* before debug exceptions are possibly reenabled
* through local_dbg_restore.
*/
if (hw_breakpoint_restore)
hw_breakpoint_restore(NULL);
}
unpause_graph_tracing();
/*
* Restore pstate flags. OS lock and mdscr have been already
* restored, so from this point onwards, debugging is fully
* renabled if it was enabled when core started shutdown.
*/
local_dbg_restore(flags);
return ret;
}
struct sleep_save_sp sleep_save_sp;
static int __init cpu_suspend_init(void)
{
void *ctx_ptr;
/* ctx_ptr is an array of physical addresses */
ctx_ptr = kcalloc(mpidr_hash_size(), sizeof(phys_addr_t), GFP_KERNEL);
if (WARN_ON(!ctx_ptr))
return -ENOMEM;
sleep_save_sp.save_ptr_stash = ctx_ptr;
sleep_save_sp.save_ptr_stash_phys = virt_to_phys(ctx_ptr);
__flush_dcache_area(&sleep_save_sp, sizeof(struct sleep_save_sp));
return 0;
}
early_initcall(cpu_suspend_init);