alistair23-linux/drivers/crypto/nx/nx-sha512.c
Marcelo Cerri 069fa0453f crypto: nx - fix SHA-2 for chunks bigger than block size
Each call to the co-processor, with exception of the last call, needs to
send data that is multiple of block size. As consequence, any remaining
data is kept in the internal NX context.

This patch fixes a bug in the driver that causes it to save incorrect
data into the context when data is bigger than the block size.

Reviewed-by: Joy Latten <jmlatten@linux.vnet.ibm.com>
Signed-off-by: Marcelo Cerri <mhcerri@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-02 20:32:56 +10:00

302 lines
9.1 KiB
C

/**
* SHA-512 routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 only.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <linux/module.h>
#include <asm/vio.h>
#include "nx_csbcpb.h"
#include "nx.h"
static int nx_sha512_init(struct shash_desc *desc)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_sg *out_sg;
nx_ctx_init(nx_ctx, HCOP_FC_SHA);
memset(sctx, 0, sizeof *sctx);
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
SHA512_DIGEST_SIZE, nx_ctx->ap->sglen);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
return 0;
}
static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg;
u64 to_process, leftover, total, spbc_bits;
u32 max_sg_len;
unsigned long irq_flags;
int rc = 0;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* 2 cases for total data len:
* 1: < SHA512_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
*/
total = sctx->count[0] + len;
if (total < SHA512_BLOCK_SIZE) {
memcpy(sctx->buf + sctx->count[0], data, len);
sctx->count[0] += len;
goto out;
}
in_sg = nx_ctx->in_sg;
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
do {
/*
* to_process: the SHA512_BLOCK_SIZE data chunk to process in
* this update. This value is also restricted by the sg list
* limits.
*/
to_process = min_t(u64, total, nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
leftover = total - to_process;
if (sctx->count[0]) {
in_sg = nx_build_sg_list(nx_ctx->in_sg,
(u8 *) sctx->buf,
sctx->count[0], max_sg_len);
}
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
to_process - sctx->count[0],
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha512.input_partial_digest,
csbcpb->cpb.sha512.message_digest,
SHA512_DIGEST_SIZE);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops));
spbc_bits = csbcpb->cpb.sha512.spbc * 8;
csbcpb->cpb.sha512.message_bit_length_lo += spbc_bits;
if (csbcpb->cpb.sha512.message_bit_length_lo < spbc_bits)
csbcpb->cpb.sha512.message_bit_length_hi++;
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process;
data += to_process - sctx->count[0];
sctx->count[0] = 0;
in_sg = nx_ctx->in_sg;
} while (leftover >= SHA512_BLOCK_SIZE);
/* copy the leftover back into the state struct */
if (leftover)
memcpy(sctx->buf, data, leftover);
sctx->count[0] = leftover;
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha512_final(struct shash_desc *desc, u8 *out)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u32 max_sg_len;
u64 count0;
unsigned long irq_flags;
int rc;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen);
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha512.input_partial_digest,
csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
}
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
count0 = sctx->count[0] * 8;
csbcpb->cpb.sha512.message_bit_length_lo += count0;
if (csbcpb->cpb.sha512.message_bit_length_lo < count0)
csbcpb->cpb.sha512.message_bit_length_hi++;
in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, sctx->count[0],
max_sg_len);
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA512_DIGEST_SIZE,
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops));
atomic64_add(csbcpb->cpb.sha512.message_bit_length_lo / 8,
&(nx_ctx->stats->sha512_bytes));
memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha512_export(struct shash_desc *desc, void *out)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct sha512_state *octx = out;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* move message_bit_length (128 bits) into count and convert its value
* to bytes */
octx->count[0] = csbcpb->cpb.sha512.message_bit_length_lo >> 3 |
((csbcpb->cpb.sha512.message_bit_length_hi & 7) << 61);
octx->count[1] = csbcpb->cpb.sha512.message_bit_length_hi >> 3;
octx->count[0] += sctx->count[0];
if (octx->count[0] < sctx->count[0])
octx->count[1]++;
memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
/* if no data has been processed yet, we need to export SHA512's
* initial data, in case this context gets imported into a software
* context */
if (csbcpb->cpb.sha512.message_bit_length_hi ||
csbcpb->cpb.sha512.message_bit_length_lo)
memcpy(octx->state, csbcpb->cpb.sha512.message_digest,
SHA512_DIGEST_SIZE);
else {
octx->state[0] = SHA512_H0;
octx->state[1] = SHA512_H1;
octx->state[2] = SHA512_H2;
octx->state[3] = SHA512_H3;
octx->state[4] = SHA512_H4;
octx->state[5] = SHA512_H5;
octx->state[6] = SHA512_H6;
octx->state[7] = SHA512_H7;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0;
}
static int nx_sha512_import(struct shash_desc *desc, const void *in)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
const struct sha512_state *ictx = in;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
sctx->count[0] = ictx->count[0] & 0x3f;
csbcpb->cpb.sha512.message_bit_length_lo = (ictx->count[0] & ~0x3f)
<< 3;
csbcpb->cpb.sha512.message_bit_length_hi = ictx->count[1] << 3 |
ictx->count[0] >> 61;
if (csbcpb->cpb.sha512.message_bit_length_hi ||
csbcpb->cpb.sha512.message_bit_length_lo) {
memcpy(csbcpb->cpb.sha512.message_digest, ictx->state,
SHA512_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0;
}
struct shash_alg nx_shash_sha512_alg = {
.digestsize = SHA512_DIGEST_SIZE,
.init = nx_sha512_init,
.update = nx_sha512_update,
.final = nx_sha512_final,
.export = nx_sha512_export,
.import = nx_sha512_import,
.descsize = sizeof(struct sha512_state),
.statesize = sizeof(struct sha512_state),
.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-nx",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_sha_init,
.cra_exit = nx_crypto_ctx_exit,
}
};