alistair23-linux/lib/idr.c
John McCutchan 7c657f2f25 [PATCH] Document idr_get_new_above() semantics, update inotify
There is an off by one problem with idr_get_new_above.

The comment and function name suggest that it will return an id >
starting_id, but it actually returned an id >= starting_id, and kernel
callers other than inotify treated it as such.

The patch below fixes the comment, and fixes inotifys usage.  The
function name still doesn't match the behaviour, but it never did.

Signed-off-by: John McCutchan <ttb@tentacle.dhs.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-26 11:32:57 -07:00

409 lines
9.4 KiB
C

/*
* 2002-10-18 written by Jim Houston jim.houston@ccur.com
* Copyright (C) 2002 by Concurrent Computer Corporation
* Distributed under the GNU GPL license version 2.
*
* Modified by George Anzinger to reuse immediately and to use
* find bit instructions. Also removed _irq on spinlocks.
*
* Small id to pointer translation service.
*
* It uses a radix tree like structure as a sparse array indexed
* by the id to obtain the pointer. The bitmap makes allocating
* a new id quick.
*
* You call it to allocate an id (an int) an associate with that id a
* pointer or what ever, we treat it as a (void *). You can pass this
* id to a user for him to pass back at a later time. You then pass
* that id to this code and it returns your pointer.
* You can release ids at any time. When all ids are released, most of
* the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
* don't need to go to the memory "store" during an id allocate, just
* so you don't need to be too concerned about locking and conflicts
* with the slab allocator.
*/
#ifndef TEST // to test in user space...
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#endif
#include <linux/string.h>
#include <linux/idr.h>
static kmem_cache_t *idr_layer_cache;
static struct idr_layer *alloc_layer(struct idr *idp)
{
struct idr_layer *p;
spin_lock(&idp->lock);
if ((p = idp->id_free)) {
idp->id_free = p->ary[0];
idp->id_free_cnt--;
p->ary[0] = NULL;
}
spin_unlock(&idp->lock);
return(p);
}
static void free_layer(struct idr *idp, struct idr_layer *p)
{
/*
* Depends on the return element being zeroed.
*/
spin_lock(&idp->lock);
p->ary[0] = idp->id_free;
idp->id_free = p;
idp->id_free_cnt++;
spin_unlock(&idp->lock);
}
/**
* idr_pre_get - reserver resources for idr allocation
* @idp: idr handle
* @gfp_mask: memory allocation flags
*
* This function should be called prior to locking and calling the
* following function. It preallocates enough memory to satisfy
* the worst possible allocation.
*
* If the system is REALLY out of memory this function returns 0,
* otherwise 1.
*/
int idr_pre_get(struct idr *idp, unsigned gfp_mask)
{
while (idp->id_free_cnt < IDR_FREE_MAX) {
struct idr_layer *new;
new = kmem_cache_alloc(idr_layer_cache, gfp_mask);
if(new == NULL)
return (0);
free_layer(idp, new);
}
return 1;
}
EXPORT_SYMBOL(idr_pre_get);
static int sub_alloc(struct idr *idp, void *ptr, int *starting_id)
{
int n, m, sh;
struct idr_layer *p, *new;
struct idr_layer *pa[MAX_LEVEL];
int l, id;
long bm;
id = *starting_id;
p = idp->top;
l = idp->layers;
pa[l--] = NULL;
while (1) {
/*
* We run around this while until we reach the leaf node...
*/
n = (id >> (IDR_BITS*l)) & IDR_MASK;
bm = ~p->bitmap;
m = find_next_bit(&bm, IDR_SIZE, n);
if (m == IDR_SIZE) {
/* no space available go back to previous layer. */
l++;
id = (id | ((1 << (IDR_BITS*l))-1)) + 1;
if (!(p = pa[l])) {
*starting_id = id;
return -2;
}
continue;
}
if (m != n) {
sh = IDR_BITS*l;
id = ((id >> sh) ^ n ^ m) << sh;
}
if ((id >= MAX_ID_BIT) || (id < 0))
return -3;
if (l == 0)
break;
/*
* Create the layer below if it is missing.
*/
if (!p->ary[m]) {
if (!(new = alloc_layer(idp)))
return -1;
p->ary[m] = new;
p->count++;
}
pa[l--] = p;
p = p->ary[m];
}
/*
* We have reached the leaf node, plant the
* users pointer and return the raw id.
*/
p->ary[m] = (struct idr_layer *)ptr;
__set_bit(m, &p->bitmap);
p->count++;
/*
* If this layer is full mark the bit in the layer above
* to show that this part of the radix tree is full.
* This may complete the layer above and require walking
* up the radix tree.
*/
n = id;
while (p->bitmap == IDR_FULL) {
if (!(p = pa[++l]))
break;
n = n >> IDR_BITS;
__set_bit((n & IDR_MASK), &p->bitmap);
}
return(id);
}
static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
{
struct idr_layer *p, *new;
int layers, v, id;
id = starting_id;
build_up:
p = idp->top;
layers = idp->layers;
if (unlikely(!p)) {
if (!(p = alloc_layer(idp)))
return -1;
layers = 1;
}
/*
* Add a new layer to the top of the tree if the requested
* id is larger than the currently allocated space.
*/
while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
layers++;
if (!p->count)
continue;
if (!(new = alloc_layer(idp))) {
/*
* The allocation failed. If we built part of
* the structure tear it down.
*/
for (new = p; p && p != idp->top; new = p) {
p = p->ary[0];
new->ary[0] = NULL;
new->bitmap = new->count = 0;
free_layer(idp, new);
}
return -1;
}
new->ary[0] = p;
new->count = 1;
if (p->bitmap == IDR_FULL)
__set_bit(0, &new->bitmap);
p = new;
}
idp->top = p;
idp->layers = layers;
v = sub_alloc(idp, ptr, &id);
if (v == -2)
goto build_up;
return(v);
}
/**
* idr_get_new_above - allocate new idr entry above or equal to a start id
* @idp: idr handle
* @ptr: pointer you want associated with the ide
* @start_id: id to start search at
* @id: pointer to the allocated handle
*
* This is the allocate id function. It should be called with any
* required locks.
*
* If memory is required, it will return -EAGAIN, you should unlock
* and go back to the idr_pre_get() call. If the idr is full, it will
* return -ENOSPC.
*
* @id returns a value in the range 0 ... 0x7fffffff
*/
int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
{
int rv;
rv = idr_get_new_above_int(idp, ptr, starting_id);
/*
* This is a cheap hack until the IDR code can be fixed to
* return proper error values.
*/
if (rv < 0) {
if (rv == -1)
return -EAGAIN;
else /* Will be -3 */
return -ENOSPC;
}
*id = rv;
return 0;
}
EXPORT_SYMBOL(idr_get_new_above);
/**
* idr_get_new - allocate new idr entry
* @idp: idr handle
* @ptr: pointer you want associated with the ide
* @id: pointer to the allocated handle
*
* This is the allocate id function. It should be called with any
* required locks.
*
* If memory is required, it will return -EAGAIN, you should unlock
* and go back to the idr_pre_get() call. If the idr is full, it will
* return -ENOSPC.
*
* @id returns a value in the range 0 ... 0x7fffffff
*/
int idr_get_new(struct idr *idp, void *ptr, int *id)
{
int rv;
rv = idr_get_new_above_int(idp, ptr, 0);
/*
* This is a cheap hack until the IDR code can be fixed to
* return proper error values.
*/
if (rv < 0) {
if (rv == -1)
return -EAGAIN;
else /* Will be -3 */
return -ENOSPC;
}
*id = rv;
return 0;
}
EXPORT_SYMBOL(idr_get_new);
static void idr_remove_warning(int id)
{
printk("idr_remove called for id=%d which is not allocated.\n", id);
dump_stack();
}
static void sub_remove(struct idr *idp, int shift, int id)
{
struct idr_layer *p = idp->top;
struct idr_layer **pa[MAX_LEVEL];
struct idr_layer ***paa = &pa[0];
int n;
*paa = NULL;
*++paa = &idp->top;
while ((shift > 0) && p) {
n = (id >> shift) & IDR_MASK;
__clear_bit(n, &p->bitmap);
*++paa = &p->ary[n];
p = p->ary[n];
shift -= IDR_BITS;
}
n = id & IDR_MASK;
if (likely(p != NULL && test_bit(n, &p->bitmap))){
__clear_bit(n, &p->bitmap);
p->ary[n] = NULL;
while(*paa && ! --((**paa)->count)){
free_layer(idp, **paa);
**paa-- = NULL;
}
if ( ! *paa )
idp->layers = 0;
} else {
idr_remove_warning(id);
}
}
/**
* idr_remove - remove the given id and free it's slot
* idp: idr handle
* id: uniqueue key
*/
void idr_remove(struct idr *idp, int id)
{
struct idr_layer *p;
/* Mask off upper bits we don't use for the search. */
id &= MAX_ID_MASK;
sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
if ( idp->top && idp->top->count == 1 &&
(idp->layers > 1) &&
idp->top->ary[0]){ // We can drop a layer
p = idp->top->ary[0];
idp->top->bitmap = idp->top->count = 0;
free_layer(idp, idp->top);
idp->top = p;
--idp->layers;
}
while (idp->id_free_cnt >= IDR_FREE_MAX) {
p = alloc_layer(idp);
kmem_cache_free(idr_layer_cache, p);
return;
}
}
EXPORT_SYMBOL(idr_remove);
/**
* idr_find - return pointer for given id
* @idp: idr handle
* @id: lookup key
*
* Return the pointer given the id it has been registered with. A %NULL
* return indicates that @id is not valid or you passed %NULL in
* idr_get_new().
*
* The caller must serialize idr_find() vs idr_get_new() and idr_remove().
*/
void *idr_find(struct idr *idp, int id)
{
int n;
struct idr_layer *p;
n = idp->layers * IDR_BITS;
p = idp->top;
/* Mask off upper bits we don't use for the search. */
id &= MAX_ID_MASK;
if (id >= (1 << n))
return NULL;
while (n > 0 && p) {
n -= IDR_BITS;
p = p->ary[(id >> n) & IDR_MASK];
}
return((void *)p);
}
EXPORT_SYMBOL(idr_find);
static void idr_cache_ctor(void * idr_layer,
kmem_cache_t *idr_layer_cache, unsigned long flags)
{
memset(idr_layer, 0, sizeof(struct idr_layer));
}
static int init_id_cache(void)
{
if (!idr_layer_cache)
idr_layer_cache = kmem_cache_create("idr_layer_cache",
sizeof(struct idr_layer), 0, 0, idr_cache_ctor, NULL);
return 0;
}
/**
* idr_init - initialize idr handle
* @idp: idr handle
*
* This function is use to set up the handle (@idp) that you will pass
* to the rest of the functions.
*/
void idr_init(struct idr *idp)
{
init_id_cache();
memset(idp, 0, sizeof(struct idr));
spin_lock_init(&idp->lock);
}
EXPORT_SYMBOL(idr_init);