alistair23-linux/mm/kasan/report.c
Andrey Ryabinin c420f167db kasan: enable stack instrumentation
Stack instrumentation allows to detect out of bounds memory accesses for
variables allocated on stack.  Compiler adds redzones around every
variable on stack and poisons redzones in function's prologue.

Such approach significantly increases stack usage, so all in-kernel stacks
size were doubled.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00

248 lines
6.8 KiB
C

/*
* This file contains error reporting code.
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <a.ryabinin@samsung.com>
*
* Some of code borrowed from https://github.com/xairy/linux by
* Andrey Konovalov <adech.fo@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/kasan.h>
#include "kasan.h"
#include "../slab.h"
/* Shadow layout customization. */
#define SHADOW_BYTES_PER_BLOCK 1
#define SHADOW_BLOCKS_PER_ROW 16
#define SHADOW_BYTES_PER_ROW (SHADOW_BLOCKS_PER_ROW * SHADOW_BYTES_PER_BLOCK)
#define SHADOW_ROWS_AROUND_ADDR 2
static const void *find_first_bad_addr(const void *addr, size_t size)
{
u8 shadow_val = *(u8 *)kasan_mem_to_shadow(addr);
const void *first_bad_addr = addr;
while (!shadow_val && first_bad_addr < addr + size) {
first_bad_addr += KASAN_SHADOW_SCALE_SIZE;
shadow_val = *(u8 *)kasan_mem_to_shadow(first_bad_addr);
}
return first_bad_addr;
}
static void print_error_description(struct kasan_access_info *info)
{
const char *bug_type = "unknown crash";
u8 shadow_val;
info->first_bad_addr = find_first_bad_addr(info->access_addr,
info->access_size);
shadow_val = *(u8 *)kasan_mem_to_shadow(info->first_bad_addr);
switch (shadow_val) {
case KASAN_FREE_PAGE:
case KASAN_KMALLOC_FREE:
bug_type = "use after free";
break;
case KASAN_PAGE_REDZONE:
case KASAN_KMALLOC_REDZONE:
case 0 ... KASAN_SHADOW_SCALE_SIZE - 1:
bug_type = "out of bounds access";
break;
case KASAN_STACK_LEFT:
case KASAN_STACK_MID:
case KASAN_STACK_RIGHT:
case KASAN_STACK_PARTIAL:
bug_type = "out of bounds on stack";
break;
}
pr_err("BUG: KASan: %s in %pS at addr %p\n",
bug_type, (void *)info->ip,
info->access_addr);
pr_err("%s of size %zu by task %s/%d\n",
info->is_write ? "Write" : "Read",
info->access_size, current->comm, task_pid_nr(current));
}
static void print_address_description(struct kasan_access_info *info)
{
const void *addr = info->access_addr;
if ((addr >= (void *)PAGE_OFFSET) &&
(addr < high_memory)) {
struct page *page = virt_to_head_page(addr);
if (PageSlab(page)) {
void *object;
struct kmem_cache *cache = page->slab_cache;
void *last_object;
object = virt_to_obj(cache, page_address(page), addr);
last_object = page_address(page) +
page->objects * cache->size;
if (unlikely(object > last_object))
object = last_object; /* we hit into padding */
object_err(cache, page, object,
"kasan: bad access detected");
return;
}
dump_page(page, "kasan: bad access detected");
}
dump_stack();
}
static bool row_is_guilty(const void *row, const void *guilty)
{
return (row <= guilty) && (guilty < row + SHADOW_BYTES_PER_ROW);
}
static int shadow_pointer_offset(const void *row, const void *shadow)
{
/* The length of ">ff00ff00ff00ff00: " is
* 3 + (BITS_PER_LONG/8)*2 chars.
*/
return 3 + (BITS_PER_LONG/8)*2 + (shadow - row)*2 +
(shadow - row) / SHADOW_BYTES_PER_BLOCK + 1;
}
static void print_shadow_for_address(const void *addr)
{
int i;
const void *shadow = kasan_mem_to_shadow(addr);
const void *shadow_row;
shadow_row = (void *)round_down((unsigned long)shadow,
SHADOW_BYTES_PER_ROW)
- SHADOW_ROWS_AROUND_ADDR * SHADOW_BYTES_PER_ROW;
pr_err("Memory state around the buggy address:\n");
for (i = -SHADOW_ROWS_AROUND_ADDR; i <= SHADOW_ROWS_AROUND_ADDR; i++) {
const void *kaddr = kasan_shadow_to_mem(shadow_row);
char buffer[4 + (BITS_PER_LONG/8)*2];
snprintf(buffer, sizeof(buffer),
(i == 0) ? ">%p: " : " %p: ", kaddr);
kasan_disable_current();
print_hex_dump(KERN_ERR, buffer,
DUMP_PREFIX_NONE, SHADOW_BYTES_PER_ROW, 1,
shadow_row, SHADOW_BYTES_PER_ROW, 0);
kasan_enable_current();
if (row_is_guilty(shadow_row, shadow))
pr_err("%*c\n",
shadow_pointer_offset(shadow_row, shadow),
'^');
shadow_row += SHADOW_BYTES_PER_ROW;
}
}
static DEFINE_SPINLOCK(report_lock);
void kasan_report_error(struct kasan_access_info *info)
{
unsigned long flags;
spin_lock_irqsave(&report_lock, flags);
pr_err("================================="
"=================================\n");
print_error_description(info);
print_address_description(info);
print_shadow_for_address(info->first_bad_addr);
pr_err("================================="
"=================================\n");
spin_unlock_irqrestore(&report_lock, flags);
}
void kasan_report_user_access(struct kasan_access_info *info)
{
unsigned long flags;
spin_lock_irqsave(&report_lock, flags);
pr_err("================================="
"=================================\n");
pr_err("BUG: KASan: user-memory-access on address %p\n",
info->access_addr);
pr_err("%s of size %zu by task %s/%d\n",
info->is_write ? "Write" : "Read",
info->access_size, current->comm, task_pid_nr(current));
dump_stack();
pr_err("================================="
"=================================\n");
spin_unlock_irqrestore(&report_lock, flags);
}
void kasan_report(unsigned long addr, size_t size,
bool is_write, unsigned long ip)
{
struct kasan_access_info info;
if (likely(!kasan_enabled()))
return;
info.access_addr = (void *)addr;
info.access_size = size;
info.is_write = is_write;
info.ip = ip;
kasan_report_error(&info);
}
#define DEFINE_ASAN_REPORT_LOAD(size) \
void __asan_report_load##size##_noabort(unsigned long addr) \
{ \
kasan_report(addr, size, false, _RET_IP_); \
} \
EXPORT_SYMBOL(__asan_report_load##size##_noabort)
#define DEFINE_ASAN_REPORT_STORE(size) \
void __asan_report_store##size##_noabort(unsigned long addr) \
{ \
kasan_report(addr, size, true, _RET_IP_); \
} \
EXPORT_SYMBOL(__asan_report_store##size##_noabort)
DEFINE_ASAN_REPORT_LOAD(1);
DEFINE_ASAN_REPORT_LOAD(2);
DEFINE_ASAN_REPORT_LOAD(4);
DEFINE_ASAN_REPORT_LOAD(8);
DEFINE_ASAN_REPORT_LOAD(16);
DEFINE_ASAN_REPORT_STORE(1);
DEFINE_ASAN_REPORT_STORE(2);
DEFINE_ASAN_REPORT_STORE(4);
DEFINE_ASAN_REPORT_STORE(8);
DEFINE_ASAN_REPORT_STORE(16);
void __asan_report_load_n_noabort(unsigned long addr, size_t size)
{
kasan_report(addr, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__asan_report_load_n_noabort);
void __asan_report_store_n_noabort(unsigned long addr, size_t size)
{
kasan_report(addr, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__asan_report_store_n_noabort);