alistair23-linux/drivers/staging/android/persistent_ram.c
Jesper Juhl 474a89885f staging: android: fix mem leaks in __persistent_ram_init()
If, in __persistent_ram_init(), the call to
persistent_ram_buffer_init() fails or the call to
persistent_ram_init_ecc() fails then we fail to free the memory we
allocated to 'prz' with kzalloc() - thus leaking it.

To prevent the leaks I consolidated all error exits from the function
at a 'err:' label at the end and made all error cases jump to that
label where we can then make sure we always free 'prz'. This is safe
since all the situations where the code bails out happen before 'prz'
has been stored anywhere and although we'll do a redundant kfree(NULL)
call in the case of kzalloc() itself failing that's OK since kfree()
deals gracefully with NULL pointers and I felt it was more important
to keep all error exits at a single location than to avoid that one
harmless/redundant kfree() on a error path.

Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Acked-by: Colin Cross <ccross@android.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-04-12 14:34:32 -07:00

474 lines
12 KiB
C

/*
* Copyright (C) 2012 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/rslib.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "persistent_ram.h"
struct persistent_ram_buffer {
uint32_t sig;
atomic_t start;
atomic_t size;
uint8_t data[0];
};
#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
static __initdata LIST_HEAD(persistent_ram_list);
static inline size_t buffer_size(struct persistent_ram_zone *prz)
{
return atomic_read(&prz->buffer->size);
}
static inline size_t buffer_start(struct persistent_ram_zone *prz)
{
return atomic_read(&prz->buffer->start);
}
/* increase and wrap the start pointer, returning the old value */
static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
{
int old;
int new;
do {
old = atomic_read(&prz->buffer->start);
new = old + a;
while (unlikely(new > prz->buffer_size))
new -= prz->buffer_size;
} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
return old;
}
/* increase the size counter until it hits the max size */
static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
{
size_t old;
size_t new;
if (atomic_read(&prz->buffer->size) == prz->buffer_size)
return;
do {
old = atomic_read(&prz->buffer->size);
new = old + a;
if (new > prz->buffer_size)
new = prz->buffer_size;
} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
}
/* increase the size counter, retuning an error if it hits the max size */
static inline ssize_t buffer_size_add_clamp(struct persistent_ram_zone *prz,
size_t a)
{
size_t old;
size_t new;
do {
old = atomic_read(&prz->buffer->size);
new = old + a;
if (new > prz->buffer_size)
return -ENOMEM;
} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
return 0;
}
static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
uint8_t *data, size_t len, uint8_t *ecc)
{
int i;
uint16_t par[prz->ecc_size];
/* Initialize the parity buffer */
memset(par, 0, sizeof(par));
encode_rs8(prz->rs_decoder, data, len, par, 0);
for (i = 0; i < prz->ecc_size; i++)
ecc[i] = par[i];
}
static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
void *data, size_t len, uint8_t *ecc)
{
int i;
uint16_t par[prz->ecc_size];
for (i = 0; i < prz->ecc_size; i++)
par[i] = ecc[i];
return decode_rs8(prz->rs_decoder, data, par, len,
NULL, 0, NULL, 0, NULL);
}
static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
unsigned int start, unsigned int count)
{
struct persistent_ram_buffer *buffer = prz->buffer;
uint8_t *buffer_end = buffer->data + prz->buffer_size;
uint8_t *block;
uint8_t *par;
int ecc_block_size = prz->ecc_block_size;
int ecc_size = prz->ecc_size;
int size = prz->ecc_block_size;
if (!prz->ecc)
return;
block = buffer->data + (start & ~(ecc_block_size - 1));
par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size;
do {
if (block + ecc_block_size > buffer_end)
size = buffer_end - block;
persistent_ram_encode_rs8(prz, block, size, par);
block += ecc_block_size;
par += ecc_size;
} while (block < buffer->data + start + count);
}
static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
{
struct persistent_ram_buffer *buffer = prz->buffer;
if (!prz->ecc)
return;
persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
prz->par_header);
}
static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
{
struct persistent_ram_buffer *buffer = prz->buffer;
uint8_t *block;
uint8_t *par;
if (!prz->ecc)
return;
block = buffer->data;
par = prz->par_buffer;
while (block < buffer->data + buffer_size(prz)) {
int numerr;
int size = prz->ecc_block_size;
if (block + size > buffer->data + prz->buffer_size)
size = buffer->data + prz->buffer_size - block;
numerr = persistent_ram_decode_rs8(prz, block, size, par);
if (numerr > 0) {
pr_devel("persistent_ram: error in block %p, %d\n",
block, numerr);
prz->corrected_bytes += numerr;
} else if (numerr < 0) {
pr_devel("persistent_ram: uncorrectable error in block %p\n",
block);
prz->bad_blocks++;
}
block += prz->ecc_block_size;
par += prz->ecc_size;
}
}
static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
size_t buffer_size)
{
int numerr;
struct persistent_ram_buffer *buffer = prz->buffer;
int ecc_blocks;
if (!prz->ecc)
return 0;
prz->ecc_block_size = 128;
prz->ecc_size = 16;
prz->ecc_symsize = 8;
prz->ecc_poly = 0x11d;
ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size);
prz->buffer_size -= (ecc_blocks + 1) * prz->ecc_size;
if (prz->buffer_size > buffer_size) {
pr_err("persistent_ram: invalid size %zu, non-ecc datasize %zu\n",
buffer_size, prz->buffer_size);
return -EINVAL;
}
prz->par_buffer = buffer->data + prz->buffer_size;
prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size;
/*
* first consecutive root is 0
* primitive element to generate roots = 1
*/
prz->rs_decoder = init_rs(prz->ecc_symsize, prz->ecc_poly, 0, 1,
prz->ecc_size);
if (prz->rs_decoder == NULL) {
pr_info("persistent_ram: init_rs failed\n");
return -EINVAL;
}
prz->corrected_bytes = 0;
prz->bad_blocks = 0;
numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
prz->par_header);
if (numerr > 0) {
pr_info("persistent_ram: error in header, %d\n", numerr);
prz->corrected_bytes += numerr;
} else if (numerr < 0) {
pr_info("persistent_ram: uncorrectable error in header\n");
prz->bad_blocks++;
}
return 0;
}
ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
char *str, size_t len)
{
ssize_t ret;
if (prz->corrected_bytes || prz->bad_blocks)
ret = snprintf(str, len, ""
"\n%d Corrected bytes, %d unrecoverable blocks\n",
prz->corrected_bytes, prz->bad_blocks);
else
ret = snprintf(str, len, "\nNo errors detected\n");
return ret;
}
static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
const void *s, unsigned int start, unsigned int count)
{
struct persistent_ram_buffer *buffer = prz->buffer;
memcpy(buffer->data + start, s, count);
persistent_ram_update_ecc(prz, start, count);
}
static void __init
persistent_ram_save_old(struct persistent_ram_zone *prz)
{
struct persistent_ram_buffer *buffer = prz->buffer;
size_t size = buffer_size(prz);
size_t start = buffer_start(prz);
char *dest;
persistent_ram_ecc_old(prz);
dest = kmalloc(size, GFP_KERNEL);
if (dest == NULL) {
pr_err("persistent_ram: failed to allocate buffer\n");
return;
}
prz->old_log = dest;
prz->old_log_size = size;
memcpy(prz->old_log, &buffer->data[start], size - start);
memcpy(prz->old_log + size - start, &buffer->data[0], start);
}
int notrace persistent_ram_write(struct persistent_ram_zone *prz,
const void *s, unsigned int count)
{
int rem;
int c = count;
size_t start;
if (unlikely(c > prz->buffer_size)) {
s += c - prz->buffer_size;
c = prz->buffer_size;
}
buffer_size_add_clamp(prz, c);
start = buffer_start_add(prz, c);
rem = prz->buffer_size - start;
if (unlikely(rem < c)) {
persistent_ram_update(prz, s, start, rem);
s += rem;
c -= rem;
start = 0;
}
persistent_ram_update(prz, s, start, c);
persistent_ram_update_header_ecc(prz);
return count;
}
size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
{
return prz->old_log_size;
}
void *persistent_ram_old(struct persistent_ram_zone *prz)
{
return prz->old_log;
}
void persistent_ram_free_old(struct persistent_ram_zone *prz)
{
kfree(prz->old_log);
prz->old_log = NULL;
prz->old_log_size = 0;
}
static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
struct persistent_ram_zone *prz)
{
struct page **pages;
phys_addr_t page_start;
unsigned int page_count;
pgprot_t prot;
unsigned int i;
page_start = start - offset_in_page(start);
page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
prot = pgprot_noncached(PAGE_KERNEL);
pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
if (!pages) {
pr_err("%s: Failed to allocate array for %u pages\n", __func__,
page_count);
return -ENOMEM;
}
for (i = 0; i < page_count; i++) {
phys_addr_t addr = page_start + i * PAGE_SIZE;
pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
}
prz->vaddr = vmap(pages, page_count, VM_MAP, prot);
kfree(pages);
if (!prz->vaddr) {
pr_err("%s: Failed to map %u pages\n", __func__, page_count);
return -ENOMEM;
}
prz->buffer = prz->vaddr + offset_in_page(start);
prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
return 0;
}
static int __init persistent_ram_buffer_init(const char *name,
struct persistent_ram_zone *prz)
{
int i;
struct persistent_ram *ram;
struct persistent_ram_descriptor *desc;
phys_addr_t start;
list_for_each_entry(ram, &persistent_ram_list, node) {
start = ram->start;
for (i = 0; i < ram->num_descs; i++) {
desc = &ram->descs[i];
if (!strcmp(desc->name, name))
return persistent_ram_buffer_map(start,
desc->size, prz);
start += desc->size;
}
}
return -EINVAL;
}
static __init
struct persistent_ram_zone *__persistent_ram_init(struct device *dev, bool ecc)
{
struct persistent_ram_zone *prz;
int ret = -ENOMEM;
prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
if (!prz) {
pr_err("persistent_ram: failed to allocate persistent ram zone\n");
goto err;
}
INIT_LIST_HEAD(&prz->node);
ret = persistent_ram_buffer_init(dev_name(dev), prz);
if (ret) {
pr_err("persistent_ram: failed to initialize buffer\n");
goto err;
}
prz->ecc = ecc;
ret = persistent_ram_init_ecc(prz, prz->buffer_size);
if (ret)
goto err;
if (prz->buffer->sig == PERSISTENT_RAM_SIG) {
if (buffer_size(prz) > prz->buffer_size ||
buffer_start(prz) > buffer_size(prz))
pr_info("persistent_ram: found existing invalid buffer,"
" size %ld, start %ld\n",
buffer_size(prz), buffer_start(prz));
else {
pr_info("persistent_ram: found existing buffer,"
" size %ld, start %ld\n",
buffer_size(prz), buffer_start(prz));
persistent_ram_save_old(prz);
}
} else {
pr_info("persistent_ram: no valid data in buffer"
" (sig = 0x%08x)\n", prz->buffer->sig);
}
prz->buffer->sig = PERSISTENT_RAM_SIG;
atomic_set(&prz->buffer->start, 0);
atomic_set(&prz->buffer->size, 0);
return prz;
err:
kfree(prz);
return ERR_PTR(ret);
}
struct persistent_ram_zone * __init
persistent_ram_init_ringbuffer(struct device *dev, bool ecc)
{
return __persistent_ram_init(dev, ecc);
}
int __init persistent_ram_early_init(struct persistent_ram *ram)
{
int ret;
ret = memblock_reserve(ram->start, ram->size);
if (ret) {
pr_err("Failed to reserve persistent memory from %08lx-%08lx\n",
(long)ram->start, (long)(ram->start + ram->size - 1));
return ret;
}
list_add_tail(&ram->node, &persistent_ram_list);
pr_info("Initialized persistent memory from %08lx-%08lx\n",
(long)ram->start, (long)(ram->start + ram->size - 1));
return 0;
}