alistair23-linux/drivers/scsi/eata_generic.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

402 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/********************************************************
* Header file for eata_dma.c and eata_pio.c *
* Linux EATA SCSI drivers *
* (c) 1993-96 Michael Neuffer *
* mike@i-Connect.Net *
* neuffer@mail.uni-mainz.de *
*********************************************************
* last change: 96/08/14 *
********************************************************/
#ifndef _EATA_GENERIC_H
#define _EATA_GENERIC_H
/*********************************************
* Misc. definitions *
*********************************************/
#define R_LIMIT 0x20000
#define MAXISA 4
#define MAXEISA 16
#define MAXPCI 16
#define MAXIRQ 16
#define MAXTARGET 16
#define MAXCHANNEL 3
#define IS_ISA 'I'
#define IS_EISA 'E'
#define IS_PCI 'P'
#define BROKEN_INQUIRY 1
#define BUSMASTER 0xff
#define PIO 0xfe
#define EATA_SIGNATURE 0x45415441 /* BIG ENDIAN coded "EATA" sig. */
#define DPT_ID1 0x12
#define DPT_ID2 0x14
#define ATT_ID1 0x06
#define ATT_ID2 0x94
#define ATT_ID3 0x0
#define NEC_ID1 0x38
#define NEC_ID2 0xa3
#define NEC_ID3 0x82
#define EATA_CP_SIZE 44
#define MAX_PCI_DEVICES 32 /* Maximum # Of Devices Per Bus */
#define MAX_METHOD_2 16 /* Max Devices For Method 2 */
#define MAX_PCI_BUS 16 /* Maximum # Of Busses Allowed */
#define SG_SIZE 64
#define SG_SIZE_BIG 252 /* max. 8096 elements, 64k */
#define UPPER_DEVICE_QUEUE_LIMIT 64 /* The limit we have to set for the
* device queue to keep the broken
* midlevel SCSI code from producing
* bogus timeouts
*/
#define TYPE_DISK_QUEUE 16
#define TYPE_TAPE_QUEUE 4
#define TYPE_ROM_QUEUE 4
#define TYPE_OTHER_QUEUE 2
#define FREE 0
#define OK 0
#define NO_TIMEOUT 0
#define USED 1
#define TIMEOUT 2
#define RESET 4
#define LOCKED 8
#define ABORTED 16
#define READ 0
#define WRITE 1
#define OTHER 2
#define HD(cmd) ((hostdata *)&(cmd->device->host->hostdata))
#define CD(cmd) ((struct eata_ccb *)(cmd->host_scribble))
#define SD(host) ((hostdata *)&(host->hostdata))
/***********************************************
* EATA Command & Register definitions *
***********************************************/
#define PCI_REG_DPTconfig 0x40
#define PCI_REG_PumpModeAddress 0x44
#define PCI_REG_PumpModeData 0x48
#define PCI_REG_ConfigParam1 0x50
#define PCI_REG_ConfigParam2 0x54
#define EATA_CMD_PIO_SETUPTEST 0xc6
#define EATA_CMD_PIO_READ_CONFIG 0xf0
#define EATA_CMD_PIO_SET_CONFIG 0xf1
#define EATA_CMD_PIO_SEND_CP 0xf2
#define EATA_CMD_PIO_RECEIVE_SP 0xf3
#define EATA_CMD_PIO_TRUNC 0xf4
#define EATA_CMD_RESET 0xf9
#define EATA_CMD_IMMEDIATE 0xfa
#define EATA_CMD_DMA_READ_CONFIG 0xfd
#define EATA_CMD_DMA_SET_CONFIG 0xfe
#define EATA_CMD_DMA_SEND_CP 0xff
#define ECS_EMULATE_SENSE 0xd4
#define EATA_GENERIC_ABORT 0x00
#define EATA_SPECIFIC_RESET 0x01
#define EATA_BUS_RESET 0x02
#define EATA_SPECIFIC_ABORT 0x03
#define EATA_QUIET_INTR 0x04
#define EATA_COLD_BOOT_HBA 0x06 /* Only as a last resort */
#define EATA_FORCE_IO 0x07
#define HA_CTRLREG 0x206 /* control register for HBA */
#define HA_CTRL_DISINT 0x02 /* CTRLREG: disable interrupts */
#define HA_CTRL_RESCPU 0x04 /* CTRLREG: reset processor */
#define HA_CTRL_8HEADS 0x08 /* CTRLREG: set for drives with*
* >=8 heads (WD1003 rudimentary :-) */
#define HA_WCOMMAND 0x07 /* command register offset */
#define HA_WIFC 0x06 /* immediate command offset */
#define HA_WCODE 0x05
#define HA_WCODE2 0x04
#define HA_WDMAADDR 0x02 /* DMA address LSB offset */
#define HA_RAUXSTAT 0x08 /* aux status register offset*/
#define HA_RSTATUS 0x07 /* status register offset */
#define HA_RDATA 0x00 /* data register (16bit) */
#define HA_WDATA 0x00 /* data register (16bit) */
#define HA_ABUSY 0x01 /* aux busy bit */
#define HA_AIRQ 0x02 /* aux IRQ pending bit */
#define HA_SERROR 0x01 /* pr. command ended in error*/
#define HA_SMORE 0x02 /* more data soon to come */
#define HA_SCORR 0x04 /* data corrected */
#define HA_SDRQ 0x08 /* data request active */
#define HA_SSC 0x10 /* seek complete */
#define HA_SFAULT 0x20 /* write fault */
#define HA_SREADY 0x40 /* drive ready */
#define HA_SBUSY 0x80 /* drive busy */
#define HA_SDRDY HA_SSC+HA_SREADY+HA_SDRQ
/**********************************************
* Message definitions *
**********************************************/
#define HA_NO_ERROR 0x00 /* No Error */
#define HA_ERR_SEL_TO 0x01 /* Selection Timeout */
#define HA_ERR_CMD_TO 0x02 /* Command Timeout */
#define HA_BUS_RESET 0x03 /* SCSI Bus Reset Received */
#define HA_INIT_POWERUP 0x04 /* Initial Controller Power-up */
#define HA_UNX_BUSPHASE 0x05 /* Unexpected Bus Phase */
#define HA_UNX_BUS_FREE 0x06 /* Unexpected Bus Free */
#define HA_BUS_PARITY 0x07 /* Bus Parity Error */
#define HA_SCSI_HUNG 0x08 /* SCSI Hung */
#define HA_UNX_MSGRJCT 0x09 /* Unexpected Message Rejected */
#define HA_RESET_STUCK 0x0a /* SCSI Bus Reset Stuck */
#define HA_RSENSE_FAIL 0x0b /* Auto Request-Sense Failed */
#define HA_PARITY_ERR 0x0c /* Controller Ram Parity Error */
#define HA_CP_ABORT_NA 0x0d /* Abort Message sent to non-active cmd */
#define HA_CP_ABORTED 0x0e /* Abort Message sent to active cmd */
#define HA_CP_RESET_NA 0x0f /* Reset Message sent to non-active cmd */
#define HA_CP_RESET 0x10 /* Reset Message sent to active cmd */
#define HA_ECC_ERR 0x11 /* Controller Ram ECC Error */
#define HA_PCI_PARITY 0x12 /* PCI Parity Error */
#define HA_PCI_MABORT 0x13 /* PCI Master Abort */
#define HA_PCI_TABORT 0x14 /* PCI Target Abort */
#define HA_PCI_STABORT 0x15 /* PCI Signaled Target Abort */
/**********************************************
* Other definitions *
**********************************************/
struct reg_bit { /* reading this one will clear the interrupt */
__u8 error:1; /* previous command ended in an error */
__u8 more:1; /* more DATA coming soon, poll BSY & DRQ (PIO) */
__u8 corr:1; /* data read was successfully corrected with ECC*/
__u8 drq:1; /* data request active */
__u8 sc:1; /* seek complete */
__u8 fault:1; /* write fault */
__u8 ready:1; /* drive ready */
__u8 busy:1; /* controller busy */
};
struct reg_abit { /* reading this won't clear the interrupt */
__u8 abusy:1; /* auxiliary busy */
__u8 irq:1; /* set when drive interrupt is asserted */
__u8 dummy:6;
};
struct eata_register { /* EATA register set */
__u8 data_reg[2]; /* R, couldn't figure this one out */
__u8 cp_addr[4]; /* W, CP address register */
union {
__u8 command; /* W, command code: [read|set] conf, send CP*/
struct reg_bit status; /* R, see register_bit1 */
__u8 statusbyte;
} ovr;
struct reg_abit aux_stat; /* R, see register_bit2 */
};
struct get_conf { /* Read Configuration Array */
__u32 len; /* Should return 0x22, 0x24, etc */
__u32 signature; /* Signature MUST be "EATA" */
__u8 version2:4,
version:4; /* EATA Version level */
__u8 OCS_enabled:1, /* Overlap Command Support enabled */
TAR_support:1, /* SCSI Target Mode supported */
TRNXFR:1, /* Truncate Transfer Cmd not necessary *
* Only used in PIO Mode */
MORE_support:1, /* MORE supported (only PIO Mode) */
DMA_support:1, /* DMA supported Driver uses only *
* this mode */
DMA_valid:1, /* DRQ value in Byte 30 is valid */
ATA:1, /* ATA device connected (not supported) */
HAA_valid:1; /* Hostadapter Address is valid */
__u16 cppadlen; /* Number of pad bytes send after CD data *
* set to zero for DMA commands */
__u8 scsi_id[4]; /* SCSI ID of controller 2-0 Byte 0 res. *
* if not, zero is returned */
__u32 cplen; /* CP length: number of valid cp bytes */
__u32 splen; /* Number of bytes returned after *
* Receive SP command */
__u16 queuesiz; /* max number of queueable CPs */
__u16 dummy;
__u16 SGsiz; /* max number of SG table entries */
__u8 IRQ:4, /* IRQ used this HA */
IRQ_TR:1, /* IRQ Trigger: 0=edge, 1=level */
SECOND:1, /* This is a secondary controller */
DMA_channel:2; /* DRQ index, DRQ is 2comp of DRQX */
__u8 sync; /* device at ID 7 tru 0 is running in *
* synchronous mode, this will disappear */
__u8 DSBLE:1, /* ISA i/o addressing is disabled */
FORCADR:1, /* i/o address has been forced */
SG_64K:1,
SG_UAE:1,
:4;
__u8 MAX_ID:5, /* Max number of SCSI target IDs */
MAX_CHAN:3; /* Number of SCSI busses on HBA */
__u8 MAX_LUN; /* Max number of LUNs */
__u8 :3,
AUTOTRM:1,
M1_inst:1,
ID_qest:1, /* Raidnum ID is questionable */
is_PCI:1, /* HBA is PCI */
is_EISA:1; /* HBA is EISA */
__u8 RAIDNUM; /* unique HBA identifier */
__u8 unused[474];
};
struct eata_sg_list
{
__u32 data;
__u32 len;
};
struct eata_ccb { /* Send Command Packet structure */
__u8 SCSI_Reset:1, /* Cause a SCSI Bus reset on the cmd */
HBA_Init:1, /* Cause Controller to reinitialize */
Auto_Req_Sen:1, /* Do Auto Request Sense on errors */
scatter:1, /* Data Ptr points to a SG Packet */
Resrvd:1, /* RFU */
Interpret:1, /* Interpret the SCSI cdb of own use */
DataOut:1, /* Data Out phase with command */
DataIn:1; /* Data In phase with command */
__u8 reqlen; /* Request Sense Length *
* Valid if Auto_Req_Sen=1 */
__u8 unused[3];
__u8 FWNEST:1, /* send cmd to phys RAID component */
unused2:7;
__u8 Phsunit:1, /* physical unit on mirrored pair */
I_AT:1, /* inhibit address translation */
I_HBA_C:1, /* HBA inhibit caching */
unused3:5;
__u8 cp_id:5, /* SCSI Device ID of target */
cp_channel:3; /* SCSI Channel # of HBA */
__u8 cp_lun:3,
:2,
cp_luntar:1, /* CP is for target ROUTINE */
cp_dispri:1, /* Grant disconnect privilege */
cp_identify:1; /* Always TRUE */
__u8 cp_msg1; /* Message bytes 0-3 */
__u8 cp_msg2;
__u8 cp_msg3;
__u8 cp_cdb[12]; /* Command Descriptor Block */
__u32 cp_datalen; /* Data Transfer Length *
* If scatter=1 len of sg package */
void *cp_viraddr; /* address of this ccb */
__u32 cp_dataDMA; /* Data Address, if scatter=1 *
* address of scatter packet */
__u32 cp_statDMA; /* address for Status Packet */
__u32 cp_reqDMA; /* Request Sense Address, used if *
* CP command ends with error */
/* Additional CP info begins here */
__u32 timestamp; /* Needed to measure command latency */
__u32 timeout;
__u8 sizeindex;
__u8 rw_latency;
__u8 retries;
__u8 status; /* status of this queueslot */
struct scsi_cmnd *cmd; /* address of cmd */
struct eata_sg_list *sg_list;
};
struct eata_sp {
__u8 hba_stat:7, /* HBA status */
EOC:1; /* True if command finished */
__u8 scsi_stat; /* Target SCSI status */
__u8 reserved[2];
__u32 residue_len; /* Number of bytes not transferred */
struct eata_ccb *ccb; /* Address set in COMMAND PACKET */
__u8 msg[12];
};
typedef struct hstd {
__u8 vendor[9];
__u8 name[18];
__u8 revision[6];
__u8 EATA_revision;
__u32 firmware_revision;
__u8 HBA_number;
__u8 bustype; /* bustype of HBA */
__u8 channel; /* # of avail. scsi channels */
__u8 state; /* state of HBA */
__u8 primary; /* true if primary */
__u8 more_support:1, /* HBA supports MORE flag */
immediate_support:1, /* HBA supports IMMEDIATE CMDs*/
broken_INQUIRY:1; /* This is an EISA HBA with *
* broken INQUIRY */
__u8 do_latency; /* Latency measurement flag */
__u32 reads[13];
__u32 writes[13];
__u32 reads_lat[12][4];
__u32 writes_lat[12][4];
__u32 all_lat[4];
__u8 resetlevel[MAXCHANNEL];
__u32 last_ccb; /* Last used ccb */
__u32 cplen; /* size of CP in words */
__u16 cppadlen; /* pad length of cp in words */
__u16 queuesize;
__u16 sgsize; /* # of entries in the SG list*/
__u16 devflags; /* bits set for detected devices */
__u8 hostid; /* SCSI ID of HBA */
__u8 moresupport; /* HBA supports MORE flag */
struct Scsi_Host *next;
struct Scsi_Host *prev;
struct pci_dev *pdev; /* PCI device or NULL for non PCI */
struct eata_sp sp; /* status packet */
struct eata_ccb ccb[0]; /* ccb array begins here */
}hostdata;
/* structure for max. 2 emulated drives */
struct drive_geom_emul {
__u8 trans; /* translation flag 1=transl */
__u8 channel; /* SCSI channel number */
__u8 HBA; /* HBA number (prim/sec) */
__u8 id; /* drive id */
__u8 lun; /* drive lun */
__u32 heads; /* number of heads */
__u32 sectors; /* number of sectors */
__u32 cylinder; /* number of cylinders */
};
struct geom_emul {
__u8 bios_drives; /* number of emulated drives */
struct drive_geom_emul drv[2]; /* drive structures */
};
#endif /* _EATA_GENERIC_H */
/*
* Overrides for Emacs so that we almost follow Linus's tabbing style.
* Emacs will notice this stuff at the end of the file and automatically
* adjust the settings for this buffer only. This must remain at the end
* of the file.
* ---------------------------------------------------------------------------
* Local variables:
* c-indent-level: 4
* c-brace-imaginary-offset: 0
* c-brace-offset: -4
* c-argdecl-indent: 4
* c-label-offset: -4
* c-continued-statement-offset: 4
* c-continued-brace-offset: 0
* tab-width: 8
* End:
*/