alistair23-linux/include/linux/ssb/ssb.h
Rafał Miłecki ea2db495f9 ssb: Look for SPROM at different offset on higher rev CC
Our offset handling becomes even a little more hackish now. For some reason I
do not understand all offsets as inrelative. It assumes base offset is 0x1000
but it will work for now as we make offsets relative anyway by removing base
0x1000. Should be cleaner however.

Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-04-26 13:51:08 -04:00

688 lines
20 KiB
C

#ifndef LINUX_SSB_H_
#define LINUX_SSB_H_
#include <linux/device.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/mod_devicetable.h>
#include <linux/dma-mapping.h>
#include <linux/ssb/ssb_regs.h>
struct pcmcia_device;
struct ssb_bus;
struct ssb_driver;
struct ssb_sprom {
u8 revision;
u8 il0mac[6]; /* MAC address for 802.11b/g */
u8 et0mac[6]; /* MAC address for Ethernet */
u8 et1mac[6]; /* MAC address for 802.11a */
u8 et0phyaddr; /* MII address for enet0 */
u8 et1phyaddr; /* MII address for enet1 */
u8 et0mdcport; /* MDIO for enet0 */
u8 et1mdcport; /* MDIO for enet1 */
u8 board_rev; /* Board revision number from SPROM. */
u8 country_code; /* Country Code */
u8 ant_available_a; /* 2GHz antenna available bits (up to 4) */
u8 ant_available_bg; /* 5GHz antenna available bits (up to 4) */
u16 pa0b0;
u16 pa0b1;
u16 pa0b2;
u16 pa1b0;
u16 pa1b1;
u16 pa1b2;
u16 pa1lob0;
u16 pa1lob1;
u16 pa1lob2;
u16 pa1hib0;
u16 pa1hib1;
u16 pa1hib2;
u8 gpio0; /* GPIO pin 0 */
u8 gpio1; /* GPIO pin 1 */
u8 gpio2; /* GPIO pin 2 */
u8 gpio3; /* GPIO pin 3 */
u16 maxpwr_bg; /* 2.4GHz Amplifier Max Power (in dBm Q5.2) */
u16 maxpwr_al; /* 5.2GHz Amplifier Max Power (in dBm Q5.2) */
u16 maxpwr_a; /* 5.3GHz Amplifier Max Power (in dBm Q5.2) */
u16 maxpwr_ah; /* 5.8GHz Amplifier Max Power (in dBm Q5.2) */
u8 itssi_a; /* Idle TSSI Target for A-PHY */
u8 itssi_bg; /* Idle TSSI Target for B/G-PHY */
u8 tri2g; /* 2.4GHz TX isolation */
u8 tri5gl; /* 5.2GHz TX isolation */
u8 tri5g; /* 5.3GHz TX isolation */
u8 tri5gh; /* 5.8GHz TX isolation */
u8 rxpo2g; /* 2GHz RX power offset */
u8 rxpo5g; /* 5GHz RX power offset */
u8 rssisav2g; /* 2GHz RSSI params */
u8 rssismc2g;
u8 rssismf2g;
u8 bxa2g; /* 2GHz BX arch */
u8 rssisav5g; /* 5GHz RSSI params */
u8 rssismc5g;
u8 rssismf5g;
u8 bxa5g; /* 5GHz BX arch */
u16 cck2gpo; /* CCK power offset */
u32 ofdm2gpo; /* 2.4GHz OFDM power offset */
u32 ofdm5glpo; /* 5.2GHz OFDM power offset */
u32 ofdm5gpo; /* 5.3GHz OFDM power offset */
u32 ofdm5ghpo; /* 5.8GHz OFDM power offset */
u16 boardflags_lo; /* Board flags (bits 0-15) */
u16 boardflags_hi; /* Board flags (bits 16-31) */
u16 boardflags2_lo; /* Board flags (bits 32-47) */
u16 boardflags2_hi; /* Board flags (bits 48-63) */
/* TODO store board flags in a single u64 */
/* Antenna gain values for up to 4 antennas
* on each band. Values in dBm/4 (Q5.2). Negative gain means the
* loss in the connectors is bigger than the gain. */
struct {
struct {
s8 a0, a1, a2, a3;
} ghz24; /* 2.4GHz band */
struct {
s8 a0, a1, a2, a3;
} ghz5; /* 5GHz band */
} antenna_gain;
/* TODO - add any parameters needed from rev 2, 3, 4, 5 or 8 SPROMs */
};
/* Information about the PCB the circuitry is soldered on. */
struct ssb_boardinfo {
u16 vendor;
u16 type;
u16 rev;
};
struct ssb_device;
/* Lowlevel read/write operations on the device MMIO.
* Internal, don't use that outside of ssb. */
struct ssb_bus_ops {
u8 (*read8)(struct ssb_device *dev, u16 offset);
u16 (*read16)(struct ssb_device *dev, u16 offset);
u32 (*read32)(struct ssb_device *dev, u16 offset);
void (*write8)(struct ssb_device *dev, u16 offset, u8 value);
void (*write16)(struct ssb_device *dev, u16 offset, u16 value);
void (*write32)(struct ssb_device *dev, u16 offset, u32 value);
#ifdef CONFIG_SSB_BLOCKIO
void (*block_read)(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width);
void (*block_write)(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width);
#endif
};
/* Core-ID values. */
#define SSB_DEV_CHIPCOMMON 0x800
#define SSB_DEV_ILINE20 0x801
#define SSB_DEV_SDRAM 0x803
#define SSB_DEV_PCI 0x804
#define SSB_DEV_MIPS 0x805
#define SSB_DEV_ETHERNET 0x806
#define SSB_DEV_V90 0x807
#define SSB_DEV_USB11_HOSTDEV 0x808
#define SSB_DEV_ADSL 0x809
#define SSB_DEV_ILINE100 0x80A
#define SSB_DEV_IPSEC 0x80B
#define SSB_DEV_PCMCIA 0x80D
#define SSB_DEV_INTERNAL_MEM 0x80E
#define SSB_DEV_MEMC_SDRAM 0x80F
#define SSB_DEV_EXTIF 0x811
#define SSB_DEV_80211 0x812
#define SSB_DEV_MIPS_3302 0x816
#define SSB_DEV_USB11_HOST 0x817
#define SSB_DEV_USB11_DEV 0x818
#define SSB_DEV_USB20_HOST 0x819
#define SSB_DEV_USB20_DEV 0x81A
#define SSB_DEV_SDIO_HOST 0x81B
#define SSB_DEV_ROBOSWITCH 0x81C
#define SSB_DEV_PARA_ATA 0x81D
#define SSB_DEV_SATA_XORDMA 0x81E
#define SSB_DEV_ETHERNET_GBIT 0x81F
#define SSB_DEV_PCIE 0x820
#define SSB_DEV_MIMO_PHY 0x821
#define SSB_DEV_SRAM_CTRLR 0x822
#define SSB_DEV_MINI_MACPHY 0x823
#define SSB_DEV_ARM_1176 0x824
#define SSB_DEV_ARM_7TDMI 0x825
/* Vendor-ID values */
#define SSB_VENDOR_BROADCOM 0x4243
/* Some kernel subsystems poke with dev->drvdata, so we must use the
* following ugly workaround to get from struct device to struct ssb_device */
struct __ssb_dev_wrapper {
struct device dev;
struct ssb_device *sdev;
};
struct ssb_device {
/* Having a copy of the ops pointer in each dev struct
* is an optimization. */
const struct ssb_bus_ops *ops;
struct device *dev;
struct ssb_bus *bus;
struct ssb_device_id id;
u8 core_index;
unsigned int irq;
/* Internal-only stuff follows. */
void *drvdata; /* Per-device data */
void *devtypedata; /* Per-devicetype (eg 802.11) data */
};
/* Go from struct device to struct ssb_device. */
static inline
struct ssb_device * dev_to_ssb_dev(struct device *dev)
{
struct __ssb_dev_wrapper *wrap;
wrap = container_of(dev, struct __ssb_dev_wrapper, dev);
return wrap->sdev;
}
/* Device specific user data */
static inline
void ssb_set_drvdata(struct ssb_device *dev, void *data)
{
dev->drvdata = data;
}
static inline
void * ssb_get_drvdata(struct ssb_device *dev)
{
return dev->drvdata;
}
/* Devicetype specific user data. This is per device-type (not per device) */
void ssb_set_devtypedata(struct ssb_device *dev, void *data);
static inline
void * ssb_get_devtypedata(struct ssb_device *dev)
{
return dev->devtypedata;
}
struct ssb_driver {
const char *name;
const struct ssb_device_id *id_table;
int (*probe)(struct ssb_device *dev, const struct ssb_device_id *id);
void (*remove)(struct ssb_device *dev);
int (*suspend)(struct ssb_device *dev, pm_message_t state);
int (*resume)(struct ssb_device *dev);
void (*shutdown)(struct ssb_device *dev);
struct device_driver drv;
};
#define drv_to_ssb_drv(_drv) container_of(_drv, struct ssb_driver, drv)
extern int __ssb_driver_register(struct ssb_driver *drv, struct module *owner);
static inline int ssb_driver_register(struct ssb_driver *drv)
{
return __ssb_driver_register(drv, THIS_MODULE);
}
extern void ssb_driver_unregister(struct ssb_driver *drv);
enum ssb_bustype {
SSB_BUSTYPE_SSB, /* This SSB bus is the system bus */
SSB_BUSTYPE_PCI, /* SSB is connected to PCI bus */
SSB_BUSTYPE_PCMCIA, /* SSB is connected to PCMCIA bus */
SSB_BUSTYPE_SDIO, /* SSB is connected to SDIO bus */
};
/* board_vendor */
#define SSB_BOARDVENDOR_BCM 0x14E4 /* Broadcom */
#define SSB_BOARDVENDOR_DELL 0x1028 /* Dell */
#define SSB_BOARDVENDOR_HP 0x0E11 /* HP */
/* board_type */
#define SSB_BOARD_BCM94306MP 0x0418
#define SSB_BOARD_BCM4309G 0x0421
#define SSB_BOARD_BCM4306CB 0x0417
#define SSB_BOARD_BCM4309MP 0x040C
#define SSB_BOARD_MP4318 0x044A
#define SSB_BOARD_BU4306 0x0416
#define SSB_BOARD_BU4309 0x040A
/* chip_package */
#define SSB_CHIPPACK_BCM4712S 1 /* Small 200pin 4712 */
#define SSB_CHIPPACK_BCM4712M 2 /* Medium 225pin 4712 */
#define SSB_CHIPPACK_BCM4712L 0 /* Large 340pin 4712 */
#include <linux/ssb/ssb_driver_chipcommon.h>
#include <linux/ssb/ssb_driver_mips.h>
#include <linux/ssb/ssb_driver_extif.h>
#include <linux/ssb/ssb_driver_pci.h>
struct ssb_bus {
/* The MMIO area. */
void __iomem *mmio;
const struct ssb_bus_ops *ops;
/* The core currently mapped into the MMIO window.
* Not valid on all host-buses. So don't use outside of SSB. */
struct ssb_device *mapped_device;
union {
/* Currently mapped PCMCIA segment. (bustype == SSB_BUSTYPE_PCMCIA only) */
u8 mapped_pcmcia_seg;
/* Current SSB base address window for SDIO. */
u32 sdio_sbaddr;
};
/* Lock for core and segment switching.
* On PCMCIA-host busses this is used to protect the whole MMIO access. */
spinlock_t bar_lock;
/* The host-bus this backplane is running on. */
enum ssb_bustype bustype;
/* Pointers to the host-bus. Check bustype before using any of these pointers. */
union {
/* Pointer to the PCI bus (only valid if bustype == SSB_BUSTYPE_PCI). */
struct pci_dev *host_pci;
/* Pointer to the PCMCIA device (only if bustype == SSB_BUSTYPE_PCMCIA). */
struct pcmcia_device *host_pcmcia;
/* Pointer to the SDIO device (only if bustype == SSB_BUSTYPE_SDIO). */
struct sdio_func *host_sdio;
};
/* See enum ssb_quirks */
unsigned int quirks;
#ifdef CONFIG_SSB_SPROM
/* Mutex to protect the SPROM writing. */
struct mutex sprom_mutex;
#endif
/* ID information about the Chip. */
u16 chip_id;
u16 chip_rev;
u16 sprom_offset;
u16 sprom_size; /* number of words in sprom */
u8 chip_package;
/* List of devices (cores) on the backplane. */
struct ssb_device devices[SSB_MAX_NR_CORES];
u8 nr_devices;
/* Software ID number for this bus. */
unsigned int busnumber;
/* The ChipCommon device (if available). */
struct ssb_chipcommon chipco;
/* The PCI-core device (if available). */
struct ssb_pcicore pcicore;
/* The MIPS-core device (if available). */
struct ssb_mipscore mipscore;
/* The EXTif-core device (if available). */
struct ssb_extif extif;
/* The following structure elements are not available in early
* SSB initialization. Though, they are available for regular
* registered drivers at any stage. So be careful when
* using them in the ssb core code. */
/* ID information about the PCB. */
struct ssb_boardinfo boardinfo;
/* Contents of the SPROM. */
struct ssb_sprom sprom;
/* If the board has a cardbus slot, this is set to true. */
bool has_cardbus_slot;
#ifdef CONFIG_SSB_EMBEDDED
/* Lock for GPIO register access. */
spinlock_t gpio_lock;
#endif /* EMBEDDED */
/* Internal-only stuff follows. Do not touch. */
struct list_head list;
#ifdef CONFIG_SSB_DEBUG
/* Is the bus already powered up? */
bool powered_up;
int power_warn_count;
#endif /* DEBUG */
};
enum ssb_quirks {
/* SDIO connected card requires performing a read after writing a 32-bit value */
SSB_QUIRK_SDIO_READ_AFTER_WRITE32 = (1 << 0),
};
/* The initialization-invariants. */
struct ssb_init_invariants {
/* Versioning information about the PCB. */
struct ssb_boardinfo boardinfo;
/* The SPROM information. That's either stored in an
* EEPROM or NVRAM on the board. */
struct ssb_sprom sprom;
/* If the board has a cardbus slot, this is set to true. */
bool has_cardbus_slot;
};
/* Type of function to fetch the invariants. */
typedef int (*ssb_invariants_func_t)(struct ssb_bus *bus,
struct ssb_init_invariants *iv);
/* Register a SSB system bus. get_invariants() is called after the
* basic system devices are initialized.
* The invariants are usually fetched from some NVRAM.
* Put the invariants into the struct pointed to by iv. */
extern int ssb_bus_ssbbus_register(struct ssb_bus *bus,
unsigned long baseaddr,
ssb_invariants_func_t get_invariants);
#ifdef CONFIG_SSB_PCIHOST
extern int ssb_bus_pcibus_register(struct ssb_bus *bus,
struct pci_dev *host_pci);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
extern int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr);
#endif /* CONFIG_SSB_PCMCIAHOST */
#ifdef CONFIG_SSB_SDIOHOST
extern int ssb_bus_sdiobus_register(struct ssb_bus *bus,
struct sdio_func *sdio_func,
unsigned int quirks);
#endif /* CONFIG_SSB_SDIOHOST */
extern void ssb_bus_unregister(struct ssb_bus *bus);
/* Does the device have an SPROM? */
extern bool ssb_is_sprom_available(struct ssb_bus *bus);
/* Set a fallback SPROM.
* See kdoc at the function definition for complete documentation. */
extern int ssb_arch_set_fallback_sprom(const struct ssb_sprom *sprom);
/* Suspend a SSB bus.
* Call this from the parent bus suspend routine. */
extern int ssb_bus_suspend(struct ssb_bus *bus);
/* Resume a SSB bus.
* Call this from the parent bus resume routine. */
extern int ssb_bus_resume(struct ssb_bus *bus);
extern u32 ssb_clockspeed(struct ssb_bus *bus);
/* Is the device enabled in hardware? */
int ssb_device_is_enabled(struct ssb_device *dev);
/* Enable a device and pass device-specific SSB_TMSLOW flags.
* If no device-specific flags are available, use 0. */
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags);
/* Disable a device in hardware and pass SSB_TMSLOW flags (if any). */
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags);
/* Device MMIO register read/write functions. */
static inline u8 ssb_read8(struct ssb_device *dev, u16 offset)
{
return dev->ops->read8(dev, offset);
}
static inline u16 ssb_read16(struct ssb_device *dev, u16 offset)
{
return dev->ops->read16(dev, offset);
}
static inline u32 ssb_read32(struct ssb_device *dev, u16 offset)
{
return dev->ops->read32(dev, offset);
}
static inline void ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
{
dev->ops->write8(dev, offset, value);
}
static inline void ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
dev->ops->write16(dev, offset, value);
}
static inline void ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
dev->ops->write32(dev, offset, value);
}
#ifdef CONFIG_SSB_BLOCKIO
static inline void ssb_block_read(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width)
{
dev->ops->block_read(dev, buffer, count, offset, reg_width);
}
static inline void ssb_block_write(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width)
{
dev->ops->block_write(dev, buffer, count, offset, reg_width);
}
#endif /* CONFIG_SSB_BLOCKIO */
/* The SSB DMA API. Use this API for any DMA operation on the device.
* This API basically is a wrapper that calls the correct DMA API for
* the host device type the SSB device is attached to. */
/* Translation (routing) bits that need to be ORed to DMA
* addresses before they are given to a device. */
extern u32 ssb_dma_translation(struct ssb_device *dev);
#define SSB_DMA_TRANSLATION_MASK 0xC0000000
#define SSB_DMA_TRANSLATION_SHIFT 30
extern int ssb_dma_set_mask(struct ssb_device *dev, u64 mask);
extern void * ssb_dma_alloc_consistent(struct ssb_device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp_flags);
extern void ssb_dma_free_consistent(struct ssb_device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
gfp_t gfp_flags);
static inline void __cold __ssb_dma_not_implemented(struct ssb_device *dev)
{
#ifdef CONFIG_SSB_DEBUG
printk(KERN_ERR "SSB: BUG! Calling DMA API for "
"unsupported bustype %d\n", dev->bus->bustype);
#endif /* DEBUG */
}
static inline int ssb_dma_mapping_error(struct ssb_device *dev, dma_addr_t addr)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
return pci_dma_mapping_error(dev->bus->host_pci, addr);
#endif
break;
case SSB_BUSTYPE_SSB:
return dma_mapping_error(dev->dev, addr);
default:
break;
}
__ssb_dma_not_implemented(dev);
return -ENOSYS;
}
static inline dma_addr_t ssb_dma_map_single(struct ssb_device *dev, void *p,
size_t size, enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
return pci_map_single(dev->bus->host_pci, p, size, dir);
#endif
break;
case SSB_BUSTYPE_SSB:
return dma_map_single(dev->dev, p, size, dir);
default:
break;
}
__ssb_dma_not_implemented(dev);
return 0;
}
static inline void ssb_dma_unmap_single(struct ssb_device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_unmap_single(dev->bus->host_pci, dma_addr, size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_unmap_single(dev->dev, dma_addr, size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_for_cpu(struct ssb_device *dev,
dma_addr_t dma_addr,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_dma_sync_single_for_cpu(dev->bus->host_pci, dma_addr,
size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_for_cpu(dev->dev, dma_addr, size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_for_device(struct ssb_device *dev,
dma_addr_t dma_addr,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_dma_sync_single_for_device(dev->bus->host_pci, dma_addr,
size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_for_device(dev->dev, dma_addr, size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_range_for_cpu(struct ssb_device *dev,
dma_addr_t dma_addr,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
/* Just sync everything. That's all the PCI API can do. */
pci_dma_sync_single_for_cpu(dev->bus->host_pci, dma_addr,
offset + size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_range_for_cpu(dev->dev, dma_addr, offset,
size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_range_for_device(struct ssb_device *dev,
dma_addr_t dma_addr,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
/* Just sync everything. That's all the PCI API can do. */
pci_dma_sync_single_for_device(dev->bus->host_pci, dma_addr,
offset + size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_range_for_device(dev->dev, dma_addr, offset,
size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
#ifdef CONFIG_SSB_PCIHOST
/* PCI-host wrapper driver */
extern int ssb_pcihost_register(struct pci_driver *driver);
static inline void ssb_pcihost_unregister(struct pci_driver *driver)
{
pci_unregister_driver(driver);
}
static inline
void ssb_pcihost_set_power_state(struct ssb_device *sdev, pci_power_t state)
{
if (sdev->bus->bustype == SSB_BUSTYPE_PCI)
pci_set_power_state(sdev->bus->host_pci, state);
}
#else
static inline void ssb_pcihost_unregister(struct pci_driver *driver)
{
}
static inline
void ssb_pcihost_set_power_state(struct ssb_device *sdev, pci_power_t state)
{
}
#endif /* CONFIG_SSB_PCIHOST */
/* If a driver is shutdown or suspended, call this to signal
* that the bus may be completely powered down. SSB will decide,
* if it's really time to power down the bus, based on if there
* are other devices that want to run. */
extern int ssb_bus_may_powerdown(struct ssb_bus *bus);
/* Before initializing and enabling a device, call this to power-up the bus.
* If you want to allow use of dynamic-power-control, pass the flag.
* Otherwise static always-on powercontrol will be used. */
extern int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl);
/* Various helper functions */
extern u32 ssb_admatch_base(u32 adm);
extern u32 ssb_admatch_size(u32 adm);
/* PCI device mapping and fixup routines.
* Called from the architecture pcibios init code.
* These are only available on SSB_EMBEDDED configurations. */
#ifdef CONFIG_SSB_EMBEDDED
int ssb_pcibios_plat_dev_init(struct pci_dev *dev);
int ssb_pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin);
#endif /* CONFIG_SSB_EMBEDDED */
#endif /* LINUX_SSB_H_ */