alistair23-linux/drivers/iio/temperature/mlx90614.c
Peter Rosin 3f3a89e1d7 i2c: remove i2c_lock_adapter and use i2c_lock_bus directly
The i2c_lock_adapter name is ambiguous since it is unclear if it
refers to the root adapter or the adapter you name in the argument.
The natural interpretation is the adapter you name in the argument,
but there are historical reasons for that not being the case; it
in fact locks the root adapter. Just remove the function and force
users to spell out the I2C_LOCK_ROOT_ADAPTER name to indicate what
is really going on. Also remove i2c_unlock_adapter, of course.

This patch was generated with

git grep -l 'i2c_\(un\)\?lock_adapter' \
| xargs sed -i 's/i2c_\(un\)\?lock_adapter(\([^)]*\))/'\
'i2c_\1lock_bus(\2, I2C_LOCK_ROOT_ADAPTER)/g'

followed by white-space touch-up.

Signed-off-by: Peter Rosin <peda@axentia.se>
Acked-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Tested-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2018-07-13 00:09:37 +02:00

666 lines
18 KiB
C

/*
* mlx90614.c - Support for Melexis MLX90614 contactless IR temperature sensor
*
* Copyright (c) 2014 Peter Meerwald <pmeerw@pmeerw.net>
* Copyright (c) 2015 Essensium NV
* Copyright (c) 2015 Melexis
*
* This file is subject to the terms and conditions of version 2 of
* the GNU General Public License. See the file COPYING in the main
* directory of this archive for more details.
*
* Driver for the Melexis MLX90614 I2C 16-bit IR thermopile sensor
*
* (7-bit I2C slave address 0x5a, 100KHz bus speed only!)
*
* To wake up from sleep mode, the SDA line must be held low while SCL is high
* for at least 33ms. This is achieved with an extra GPIO that can be connected
* directly to the SDA line. In normal operation, the GPIO is set as input and
* will not interfere in I2C communication. While the GPIO is driven low, the
* i2c adapter is locked since it cannot be used by other clients. The SCL line
* always has a pull-up so we do not need an extra GPIO to drive it high. If
* the "wakeup" GPIO is not given, power management will be disabled.
*
*/
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/gpio/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define MLX90614_OP_RAM 0x00
#define MLX90614_OP_EEPROM 0x20
#define MLX90614_OP_SLEEP 0xff
/* RAM offsets with 16-bit data, MSB first */
#define MLX90614_RAW1 (MLX90614_OP_RAM | 0x04) /* raw data IR channel 1 */
#define MLX90614_RAW2 (MLX90614_OP_RAM | 0x05) /* raw data IR channel 2 */
#define MLX90614_TA (MLX90614_OP_RAM | 0x06) /* ambient temperature */
#define MLX90614_TOBJ1 (MLX90614_OP_RAM | 0x07) /* object 1 temperature */
#define MLX90614_TOBJ2 (MLX90614_OP_RAM | 0x08) /* object 2 temperature */
/* EEPROM offsets with 16-bit data, MSB first */
#define MLX90614_EMISSIVITY (MLX90614_OP_EEPROM | 0x04) /* emissivity correction coefficient */
#define MLX90614_CONFIG (MLX90614_OP_EEPROM | 0x05) /* configuration register */
/* Control bits in configuration register */
#define MLX90614_CONFIG_IIR_SHIFT 0 /* IIR coefficient */
#define MLX90614_CONFIG_IIR_MASK (0x7 << MLX90614_CONFIG_IIR_SHIFT)
#define MLX90614_CONFIG_DUAL_SHIFT 6 /* single (0) or dual (1) IR sensor */
#define MLX90614_CONFIG_DUAL_MASK (1 << MLX90614_CONFIG_DUAL_SHIFT)
#define MLX90614_CONFIG_FIR_SHIFT 8 /* FIR coefficient */
#define MLX90614_CONFIG_FIR_MASK (0x7 << MLX90614_CONFIG_FIR_SHIFT)
#define MLX90614_CONFIG_GAIN_SHIFT 11 /* gain */
#define MLX90614_CONFIG_GAIN_MASK (0x7 << MLX90614_CONFIG_GAIN_SHIFT)
/* Timings (in ms) */
#define MLX90614_TIMING_EEPROM 20 /* time for EEPROM write/erase to complete */
#define MLX90614_TIMING_WAKEUP 34 /* time to hold SDA low for wake-up */
#define MLX90614_TIMING_STARTUP 250 /* time before first data after wake-up */
#define MLX90614_AUTOSLEEP_DELAY 5000 /* default autosleep delay */
/* Magic constants */
#define MLX90614_CONST_OFFSET_DEC -13657 /* decimal part of the Kelvin offset */
#define MLX90614_CONST_OFFSET_REM 500000 /* remainder of offset (273.15*50) */
#define MLX90614_CONST_SCALE 20 /* Scale in milliKelvin (0.02 * 1000) */
#define MLX90614_CONST_RAW_EMISSIVITY_MAX 65535 /* max value for emissivity */
#define MLX90614_CONST_EMISSIVITY_RESOLUTION 15259 /* 1/65535 ~ 0.000015259 */
#define MLX90614_CONST_FIR 0x7 /* Fixed value for FIR part of low pass filter */
struct mlx90614_data {
struct i2c_client *client;
struct mutex lock; /* for EEPROM access only */
struct gpio_desc *wakeup_gpio; /* NULL to disable sleep/wake-up */
unsigned long ready_timestamp; /* in jiffies */
};
/* Bandwidth values for IIR filtering */
static const int mlx90614_iir_values[] = {77, 31, 20, 15, 723, 153, 110, 86};
static IIO_CONST_ATTR(in_temp_object_filter_low_pass_3db_frequency_available,
"0.15 0.20 0.31 0.77 0.86 1.10 1.53 7.23");
static struct attribute *mlx90614_attributes[] = {
&iio_const_attr_in_temp_object_filter_low_pass_3db_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group mlx90614_attr_group = {
.attrs = mlx90614_attributes,
};
/*
* Erase an address and write word.
* The mutex must be locked before calling.
*/
static s32 mlx90614_write_word(const struct i2c_client *client, u8 command,
u16 value)
{
/*
* Note: The mlx90614 requires a PEC on writing but does not send us a
* valid PEC on reading. Hence, we cannot set I2C_CLIENT_PEC in
* i2c_client.flags. As a workaround, we use i2c_smbus_xfer here.
*/
union i2c_smbus_data data;
s32 ret;
dev_dbg(&client->dev, "Writing 0x%x to address 0x%x", value, command);
data.word = 0x0000; /* erase command */
ret = i2c_smbus_xfer(client->adapter, client->addr,
client->flags | I2C_CLIENT_PEC,
I2C_SMBUS_WRITE, command,
I2C_SMBUS_WORD_DATA, &data);
if (ret < 0)
return ret;
msleep(MLX90614_TIMING_EEPROM);
data.word = value; /* actual write */
ret = i2c_smbus_xfer(client->adapter, client->addr,
client->flags | I2C_CLIENT_PEC,
I2C_SMBUS_WRITE, command,
I2C_SMBUS_WORD_DATA, &data);
msleep(MLX90614_TIMING_EEPROM);
return ret;
}
/*
* Find the IIR value inside mlx90614_iir_values array and return its position
* which is equivalent to the bit value in sensor register
*/
static inline s32 mlx90614_iir_search(const struct i2c_client *client,
int value)
{
int i;
s32 ret;
for (i = 0; i < ARRAY_SIZE(mlx90614_iir_values); ++i) {
if (value == mlx90614_iir_values[i])
break;
}
if (i == ARRAY_SIZE(mlx90614_iir_values))
return -EINVAL;
/*
* CONFIG register values must not be changed so
* we must read them before we actually write
* changes
*/
ret = i2c_smbus_read_word_data(client, MLX90614_CONFIG);
if (ret < 0)
return ret;
ret &= ~MLX90614_CONFIG_FIR_MASK;
ret |= MLX90614_CONST_FIR << MLX90614_CONFIG_FIR_SHIFT;
ret &= ~MLX90614_CONFIG_IIR_MASK;
ret |= i << MLX90614_CONFIG_IIR_SHIFT;
/* Write changed values */
ret = mlx90614_write_word(client, MLX90614_CONFIG, ret);
return ret;
}
#ifdef CONFIG_PM
/*
* If @startup is true, make sure MLX90614_TIMING_STARTUP ms have elapsed since
* the last wake-up. This is normally only needed to get a valid temperature
* reading. EEPROM access does not need such delay.
* Return 0 on success, <0 on error.
*/
static int mlx90614_power_get(struct mlx90614_data *data, bool startup)
{
unsigned long now;
if (!data->wakeup_gpio)
return 0;
pm_runtime_get_sync(&data->client->dev);
if (startup) {
now = jiffies;
if (time_before(now, data->ready_timestamp) &&
msleep_interruptible(jiffies_to_msecs(
data->ready_timestamp - now)) != 0) {
pm_runtime_put_autosuspend(&data->client->dev);
return -EINTR;
}
}
return 0;
}
static void mlx90614_power_put(struct mlx90614_data *data)
{
if (!data->wakeup_gpio)
return;
pm_runtime_mark_last_busy(&data->client->dev);
pm_runtime_put_autosuspend(&data->client->dev);
}
#else
static inline int mlx90614_power_get(struct mlx90614_data *data, bool startup)
{
return 0;
}
static inline void mlx90614_power_put(struct mlx90614_data *data)
{
}
#endif
static int mlx90614_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int *val,
int *val2, long mask)
{
struct mlx90614_data *data = iio_priv(indio_dev);
u8 cmd;
s32 ret;
switch (mask) {
case IIO_CHAN_INFO_RAW: /* 0.02K / LSB */
switch (channel->channel2) {
case IIO_MOD_TEMP_AMBIENT:
cmd = MLX90614_TA;
break;
case IIO_MOD_TEMP_OBJECT:
switch (channel->channel) {
case 0:
cmd = MLX90614_TOBJ1;
break;
case 1:
cmd = MLX90614_TOBJ2;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
ret = mlx90614_power_get(data, true);
if (ret < 0)
return ret;
ret = i2c_smbus_read_word_data(data->client, cmd);
mlx90614_power_put(data);
if (ret < 0)
return ret;
/* MSB is an error flag */
if (ret & 0x8000)
return -EIO;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OFFSET:
*val = MLX90614_CONST_OFFSET_DEC;
*val2 = MLX90614_CONST_OFFSET_REM;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SCALE:
*val = MLX90614_CONST_SCALE;
return IIO_VAL_INT;
case IIO_CHAN_INFO_CALIBEMISSIVITY: /* 1/65535 / LSB */
mlx90614_power_get(data, false);
mutex_lock(&data->lock);
ret = i2c_smbus_read_word_data(data->client,
MLX90614_EMISSIVITY);
mutex_unlock(&data->lock);
mlx90614_power_put(data);
if (ret < 0)
return ret;
if (ret == MLX90614_CONST_RAW_EMISSIVITY_MAX) {
*val = 1;
*val2 = 0;
} else {
*val = 0;
*val2 = ret * MLX90614_CONST_EMISSIVITY_RESOLUTION;
}
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: /* IIR setting with
FIR = 1024 */
mlx90614_power_get(data, false);
mutex_lock(&data->lock);
ret = i2c_smbus_read_word_data(data->client, MLX90614_CONFIG);
mutex_unlock(&data->lock);
mlx90614_power_put(data);
if (ret < 0)
return ret;
*val = mlx90614_iir_values[ret & MLX90614_CONFIG_IIR_MASK] / 100;
*val2 = (mlx90614_iir_values[ret & MLX90614_CONFIG_IIR_MASK] % 100) *
10000;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int mlx90614_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int val,
int val2, long mask)
{
struct mlx90614_data *data = iio_priv(indio_dev);
s32 ret;
switch (mask) {
case IIO_CHAN_INFO_CALIBEMISSIVITY: /* 1/65535 / LSB */
if (val < 0 || val2 < 0 || val > 1 || (val == 1 && val2 != 0))
return -EINVAL;
val = val * MLX90614_CONST_RAW_EMISSIVITY_MAX +
val2 / MLX90614_CONST_EMISSIVITY_RESOLUTION;
mlx90614_power_get(data, false);
mutex_lock(&data->lock);
ret = mlx90614_write_word(data->client, MLX90614_EMISSIVITY,
val);
mutex_unlock(&data->lock);
mlx90614_power_put(data);
return ret;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: /* IIR Filter setting */
if (val < 0 || val2 < 0)
return -EINVAL;
mlx90614_power_get(data, false);
mutex_lock(&data->lock);
ret = mlx90614_iir_search(data->client,
val * 100 + val2 / 10000);
mutex_unlock(&data->lock);
mlx90614_power_put(data);
return ret;
default:
return -EINVAL;
}
}
static int mlx90614_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_CALIBEMISSIVITY:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static const struct iio_chan_spec mlx90614_channels[] = {
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_AMBIENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_OBJECT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) |
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
.type = IIO_TEMP,
.indexed = 1,
.modified = 1,
.channel = 1,
.channel2 = IIO_MOD_TEMP_OBJECT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) |
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE),
},
};
static const struct iio_info mlx90614_info = {
.read_raw = mlx90614_read_raw,
.write_raw = mlx90614_write_raw,
.write_raw_get_fmt = mlx90614_write_raw_get_fmt,
.attrs = &mlx90614_attr_group,
};
#ifdef CONFIG_PM
static int mlx90614_sleep(struct mlx90614_data *data)
{
s32 ret;
if (!data->wakeup_gpio) {
dev_dbg(&data->client->dev, "Sleep disabled");
return -ENOSYS;
}
dev_dbg(&data->client->dev, "Requesting sleep");
mutex_lock(&data->lock);
ret = i2c_smbus_xfer(data->client->adapter, data->client->addr,
data->client->flags | I2C_CLIENT_PEC,
I2C_SMBUS_WRITE, MLX90614_OP_SLEEP,
I2C_SMBUS_BYTE, NULL);
mutex_unlock(&data->lock);
return ret;
}
static int mlx90614_wakeup(struct mlx90614_data *data)
{
if (!data->wakeup_gpio) {
dev_dbg(&data->client->dev, "Wake-up disabled");
return -ENOSYS;
}
dev_dbg(&data->client->dev, "Requesting wake-up");
i2c_lock_bus(data->client->adapter, I2C_LOCK_ROOT_ADAPTER);
gpiod_direction_output(data->wakeup_gpio, 0);
msleep(MLX90614_TIMING_WAKEUP);
gpiod_direction_input(data->wakeup_gpio);
i2c_unlock_bus(data->client->adapter, I2C_LOCK_ROOT_ADAPTER);
data->ready_timestamp = jiffies +
msecs_to_jiffies(MLX90614_TIMING_STARTUP);
/*
* Quirk: the i2c controller may get confused right after the
* wake-up signal has been sent. As a workaround, do a dummy read.
* If the read fails, the controller will probably be reset so that
* further reads will work.
*/
i2c_smbus_read_word_data(data->client, MLX90614_CONFIG);
return 0;
}
/* Return wake-up GPIO or NULL if sleep functionality should be disabled. */
static struct gpio_desc *mlx90614_probe_wakeup(struct i2c_client *client)
{
struct gpio_desc *gpio;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_BYTE)) {
dev_info(&client->dev,
"i2c adapter does not support SMBUS_WRITE_BYTE, sleep disabled");
return NULL;
}
gpio = devm_gpiod_get_optional(&client->dev, "wakeup", GPIOD_IN);
if (IS_ERR(gpio)) {
dev_warn(&client->dev,
"gpio acquisition failed with error %ld, sleep disabled",
PTR_ERR(gpio));
return NULL;
} else if (!gpio) {
dev_info(&client->dev,
"wakeup-gpio not found, sleep disabled");
}
return gpio;
}
#else
static inline int mlx90614_sleep(struct mlx90614_data *data)
{
return -ENOSYS;
}
static inline int mlx90614_wakeup(struct mlx90614_data *data)
{
return -ENOSYS;
}
static inline struct gpio_desc *mlx90614_probe_wakeup(struct i2c_client *client)
{
return NULL;
}
#endif
/* Return 0 for single sensor, 1 for dual sensor, <0 on error. */
static int mlx90614_probe_num_ir_sensors(struct i2c_client *client)
{
s32 ret;
ret = i2c_smbus_read_word_data(client, MLX90614_CONFIG);
if (ret < 0)
return ret;
return (ret & MLX90614_CONFIG_DUAL_MASK) ? 1 : 0;
}
static int mlx90614_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct iio_dev *indio_dev;
struct mlx90614_data *data;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA))
return -EOPNOTSUPP;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
mutex_init(&data->lock);
data->wakeup_gpio = mlx90614_probe_wakeup(client);
mlx90614_wakeup(data);
indio_dev->dev.parent = &client->dev;
indio_dev->name = id->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &mlx90614_info;
ret = mlx90614_probe_num_ir_sensors(client);
switch (ret) {
case 0:
dev_dbg(&client->dev, "Found single sensor");
indio_dev->channels = mlx90614_channels;
indio_dev->num_channels = 2;
break;
case 1:
dev_dbg(&client->dev, "Found dual sensor");
indio_dev->channels = mlx90614_channels;
indio_dev->num_channels = 3;
break;
default:
return ret;
}
if (data->wakeup_gpio) {
pm_runtime_set_autosuspend_delay(&client->dev,
MLX90614_AUTOSLEEP_DELAY);
pm_runtime_use_autosuspend(&client->dev);
pm_runtime_set_active(&client->dev);
pm_runtime_enable(&client->dev);
}
return iio_device_register(indio_dev);
}
static int mlx90614_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct mlx90614_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
if (data->wakeup_gpio) {
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
mlx90614_sleep(data);
pm_runtime_set_suspended(&client->dev);
}
return 0;
}
static const struct i2c_device_id mlx90614_id[] = {
{ "mlx90614", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mlx90614_id);
static const struct of_device_id mlx90614_of_match[] = {
{ .compatible = "melexis,mlx90614" },
{ }
};
MODULE_DEVICE_TABLE(of, mlx90614_of_match);
#ifdef CONFIG_PM_SLEEP
static int mlx90614_pm_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct mlx90614_data *data = iio_priv(indio_dev);
if (data->wakeup_gpio && pm_runtime_active(dev))
return mlx90614_sleep(data);
return 0;
}
static int mlx90614_pm_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct mlx90614_data *data = iio_priv(indio_dev);
int err;
if (data->wakeup_gpio) {
err = mlx90614_wakeup(data);
if (err < 0)
return err;
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
}
return 0;
}
#endif
#ifdef CONFIG_PM
static int mlx90614_pm_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct mlx90614_data *data = iio_priv(indio_dev);
return mlx90614_sleep(data);
}
static int mlx90614_pm_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct mlx90614_data *data = iio_priv(indio_dev);
return mlx90614_wakeup(data);
}
#endif
static const struct dev_pm_ops mlx90614_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(mlx90614_pm_suspend, mlx90614_pm_resume)
SET_RUNTIME_PM_OPS(mlx90614_pm_runtime_suspend,
mlx90614_pm_runtime_resume, NULL)
};
static struct i2c_driver mlx90614_driver = {
.driver = {
.name = "mlx90614",
.of_match_table = mlx90614_of_match,
.pm = &mlx90614_pm_ops,
},
.probe = mlx90614_probe,
.remove = mlx90614_remove,
.id_table = mlx90614_id,
};
module_i2c_driver(mlx90614_driver);
MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
MODULE_AUTHOR("Vianney le Clément de Saint-Marcq <vianney.leclement@essensium.com>");
MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
MODULE_DESCRIPTION("Melexis MLX90614 contactless IR temperature sensor driver");
MODULE_LICENSE("GPL");