alistair23-linux/drivers/gpu/drm/i915/intel_color.c
Maarten Lankhorst 0c3767b281 drm/i915: Use crtc_state_is_legacy_gamma in intel_color_check
crtc_state_is_legacy_gamma also checks for CTM, which was missing from
intel_color_check. By using the same condition for commit and check
we reduce the chance of mismatches.

This was spotted by KASAN while trying to rework kms_color igt test.

[   72.008660] ==================================================================
[   72.009326] BUG: KASAN: slab-out-of-bounds in bdw_load_gamma_lut.isra.3+0x15c/0x360 [i915]
[   72.009519] Read of size 2 at addr ffff880220216e50 by task kms_color/1158
[   72.009900] CPU: 2 PID: 1158 Comm: kms_color Tainted: G     U  W 4.14.0-rc3-patser+ #5281
[   72.009921] Hardware name: GIGABYTE GB-BKi3A-7100/MFLP3AP-00, BIOS F1 07/27/2016
[   72.009941] Call Trace:
[   72.009968]  dump_stack+0xc5/0x151
[   72.009996]  ? _atomic_dec_and_lock+0x10f/0x10f
[   72.010024]  ? show_regs_print_info+0x3c/0x3c
[   72.010072]  print_address_description+0x7f/0x240
[   72.010108]  kasan_report+0x216/0x370
[   72.010308]  ? bdw_load_gamma_lut.isra.3+0x15c/0x360 [i915]
[   72.010349]  __asan_load2+0x74/0x80
[   72.010552]  bdw_load_gamma_lut.isra.3+0x15c/0x360 [i915]
[   72.010772]  broadwell_load_luts+0x1f0/0x300 [i915]
[   72.010997]  intel_color_load_luts+0x36/0x40 [i915]
[   72.011205]  intel_begin_crtc_commit+0xa1/0x310 [i915]
[   72.011283]  drm_atomic_helper_commit_planes_on_crtc+0xa6/0x320 [drm_kms_helper]
[   72.011316]  ? wait_for_completion_io+0x460/0x460
[   72.011524]  intel_update_crtc+0xe3/0x100 [i915]
[   72.011720]  skl_update_crtcs+0x360/0x3f0 [i915]
[   72.011945]  ? intel_update_crtcs+0xf0/0xf0 [i915]
[   72.012010]  ? drm_atomic_helper_wait_for_dependencies+0x3d9/0x400 [drm_kms_helper]
[   72.012231]  intel_atomic_commit_tail+0x8db/0x1500 [i915]
[   72.012273]  ? __lock_is_held+0x9c/0xc0
[   72.012494]  ? skl_update_crtcs+0x3f0/0x3f0 [i915]
[   72.012518]  ? find_next_bit+0xb/0x10
[   72.012544]  ? cpumask_next+0x1a/0x20
[   72.012745]  ? i915_sw_fence_complete+0x9d/0xe0 [i915]
[   72.012938]  ? __i915_sw_fence_complete+0x5d0/0x5d0 [i915]
[   72.013176]  intel_atomic_commit+0x528/0x570 [i915]
[   72.013280]  ? drm_atomic_get_property+0xc00/0xc00 [drm]
[   72.013466]  ? intel_atomic_commit_tail+0x1500/0x1500 [i915]
[   72.013496]  ? kmem_cache_alloc_trace+0x266/0x280
[   72.013714]  ? intel_atomic_commit_tail+0x1500/0x1500 [i915]
[   72.013812]  drm_atomic_commit+0x77/0x80 [drm]
[   72.013911]  set_property_atomic+0x14a/0x210 [drm]
[   72.014015]  ? drm_object_property_get_value+0x70/0x70 [drm]
[   72.014080]  ? mutex_unlock+0xd/0x10
[   72.014292]  ? intel_atomic_commit_tail+0x1500/0x1500 [i915]
[   72.014379]  drm_mode_obj_set_property_ioctl+0x1cf/0x310 [drm]
[   72.014481]  ? drm_mode_obj_find_prop_id+0xa0/0xa0 [drm]
[   72.014510]  ? lock_release+0x6c0/0x6c0
[   72.014602]  ? drm_is_current_master+0x46/0x60 [drm]
[   72.014706]  drm_ioctl_kernel+0x148/0x1d0 [drm]
[   72.014799]  ? drm_mode_obj_find_prop_id+0xa0/0xa0 [drm]
[   72.014898]  ? drm_ioctl_permit+0x100/0x100 [drm]
[   72.014936]  ? kasan_check_write+0x14/0x20
[   72.015039]  drm_ioctl+0x441/0x660 [drm]
[   72.015129]  ? drm_mode_obj_find_prop_id+0xa0/0xa0 [drm]
[   72.015235]  ? drm_getstats+0x20/0x20 [drm]
[   72.015287]  ? ___might_sleep+0x159/0x340
[   72.015311]  ? find_held_lock+0xcf/0xf0
[   72.015341]  ? __schedule_bug+0x110/0x110
[   72.015405]  do_vfs_ioctl+0xa88/0xb10
[   72.015449]  ? ioctl_preallocate+0x1a0/0x1a0
[   72.015487]  ? selinux_capable+0x20/0x20
[   72.015525]  ? rcu_dynticks_momentary_idle+0x40/0x40
[   72.015607]  SyS_ioctl+0x4e/0x80
[   72.015647]  entry_SYSCALL_64_fastpath+0x18/0xad
[   72.015670] RIP: 0033:0x7ff74a3d04d7
[   72.015691] RSP: 002b:00007ffc594bec08 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[   72.015734] RAX: ffffffffffffffda RBX: ffffffff8718f54a RCX: 00007ff74a3d04d7
[   72.015756] RDX: 00007ffc594bec40 RSI: 00000000c01864ba RDI: 0000000000000003
[   72.015777] RBP: ffff880211c0ff98 R08: 0000000000000086 R09: 0000000000000000
[   72.015799] R10: 00007ff74a691b58 R11: 0000000000000246 R12: 0000000000000355
[   72.015821] R13: 00000000ff00eb00 R14: 0000000000000a00 R15: 00007ff746082000
[   72.015857]  ? trace_hardirqs_off_caller+0xfa/0x110

Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20171005141520.23990-1-maarten.lankhorst@linux.intel.com
[mlankhorst: s/crtc_state_is_legacy/&_gamma/ (danvet)]
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Fixes: 82cf435b31 ("drm/i915: Implement color management on bdw/skl/bxt/kbl")
Cc: <stable@vger.kernel.org> # v4.7+
2017-10-06 10:42:59 +02:00

675 lines
20 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
#include "intel_drv.h"
#define CTM_COEFF_SIGN (1ULL << 63)
#define CTM_COEFF_1_0 (1ULL << 32)
#define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1)
#define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1)
#define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1)
#define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1)
#define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1)
#define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1)
#define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
#define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0)
#define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1))
#define LEGACY_LUT_LENGTH (sizeof(struct drm_color_lut) * 256)
/* Post offset values for RGB->YCBCR conversion */
#define POSTOFF_RGB_TO_YUV_HI 0x800
#define POSTOFF_RGB_TO_YUV_ME 0x100
#define POSTOFF_RGB_TO_YUV_LO 0x800
/*
* These values are direct register values specified in the Bspec,
* for RGB->YUV conversion matrix (colorspace BT709)
*/
#define CSC_RGB_TO_YUV_RU_GU 0x2ba809d8
#define CSC_RGB_TO_YUV_BU 0x37e80000
#define CSC_RGB_TO_YUV_RY_GY 0x1e089cc0
#define CSC_RGB_TO_YUV_BY 0xb5280000
#define CSC_RGB_TO_YUV_RV_GV 0xbce89ad8
#define CSC_RGB_TO_YUV_BV 0x1e080000
/*
* Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
* format). This macro takes the coefficient we want transformed and the
* number of fractional bits.
*
* We only have a 9 bits precision window which slides depending on the value
* of the CTM coefficient and we write the value from bit 3. We also round the
* value.
*/
#define I9XX_CSC_COEFF_FP(coeff, fbits) \
(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
#define I9XX_CSC_COEFF_LIMITED_RANGE \
I9XX_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9)
#define I9XX_CSC_COEFF_1_0 \
((7 << 12) | I9XX_CSC_COEFF_FP(CTM_COEFF_1_0, 8))
static bool crtc_state_is_legacy_gamma(struct drm_crtc_state *state)
{
return !state->degamma_lut &&
!state->ctm &&
state->gamma_lut &&
state->gamma_lut->length == LEGACY_LUT_LENGTH;
}
/*
* When using limited range, multiply the matrix given by userspace by
* the matrix that we would use for the limited range. We do the
* multiplication in U2.30 format.
*/
static void ctm_mult_by_limited(uint64_t *result, int64_t *input)
{
int i;
for (i = 0; i < 9; i++)
result[i] = 0;
for (i = 0; i < 3; i++) {
int64_t user_coeff = input[i * 3 + i];
uint64_t limited_coeff = CTM_COEFF_LIMITED_RANGE >> 2;
uint64_t abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff),
0,
CTM_COEFF_4_0 - 1) >> 2;
result[i * 3 + i] = (limited_coeff * abs_coeff) >> 27;
if (CTM_COEFF_NEGATIVE(user_coeff))
result[i * 3 + i] |= CTM_COEFF_SIGN;
}
}
static void i9xx_load_ycbcr_conversion_matrix(struct intel_crtc *intel_crtc)
{
int pipe = intel_crtc->pipe;
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), CSC_RGB_TO_YUV_RU_GU);
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), CSC_RGB_TO_YUV_BU);
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), CSC_RGB_TO_YUV_RY_GY);
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), CSC_RGB_TO_YUV_BY);
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), CSC_RGB_TO_YUV_RV_GV);
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), CSC_RGB_TO_YUV_BV);
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), POSTOFF_RGB_TO_YUV_HI);
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), POSTOFF_RGB_TO_YUV_ME);
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), POSTOFF_RGB_TO_YUV_LO);
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
}
/* Set up the pipe CSC unit. */
static void i9xx_load_csc_matrix(struct drm_crtc_state *crtc_state)
{
struct drm_crtc *crtc = crtc_state->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int i, pipe = intel_crtc->pipe;
uint16_t coeffs[9] = { 0, };
struct intel_crtc_state *intel_crtc_state = to_intel_crtc_state(crtc_state);
if (intel_crtc_state->ycbcr420) {
i9xx_load_ycbcr_conversion_matrix(intel_crtc);
return;
} else if (crtc_state->ctm) {
struct drm_color_ctm *ctm =
(struct drm_color_ctm *)crtc_state->ctm->data;
uint64_t input[9] = { 0, };
if (intel_crtc_state->limited_color_range) {
ctm_mult_by_limited(input, ctm->matrix);
} else {
for (i = 0; i < ARRAY_SIZE(input); i++)
input[i] = ctm->matrix[i];
}
/*
* Convert fixed point S31.32 input to format supported by the
* hardware.
*/
for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i];
/*
* Clamp input value to min/max supported by
* hardware.
*/
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
/* sign bit */
if (CTM_COEFF_NEGATIVE(input[i]))
coeffs[i] |= 1 << 15;
if (abs_coeff < CTM_COEFF_0_125)
coeffs[i] |= (3 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 12);
else if (abs_coeff < CTM_COEFF_0_25)
coeffs[i] |= (2 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 11);
else if (abs_coeff < CTM_COEFF_0_5)
coeffs[i] |= (1 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 10);
else if (abs_coeff < CTM_COEFF_1_0)
coeffs[i] |= I9XX_CSC_COEFF_FP(abs_coeff, 9);
else if (abs_coeff < CTM_COEFF_2_0)
coeffs[i] |= (7 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 8);
else
coeffs[i] |= (6 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 7);
}
} else {
/*
* Load an identity matrix if no coefficients are provided.
*
* TODO: Check what kind of values actually come out of the
* pipe with these coeff/postoff values and adjust to get the
* best accuracy. Perhaps we even need to take the bpc value
* into consideration.
*/
for (i = 0; i < 3; i++) {
if (intel_crtc_state->limited_color_range)
coeffs[i * 3 + i] =
I9XX_CSC_COEFF_LIMITED_RANGE;
else
coeffs[i * 3 + i] = I9XX_CSC_COEFF_1_0;
}
}
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]);
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16);
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]);
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16);
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]);
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16);
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
if (INTEL_GEN(dev_priv) > 6) {
uint16_t postoff = 0;
if (intel_crtc_state->limited_color_range)
postoff = (16 * (1 << 12) / 255) & 0x1fff;
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
} else {
uint32_t mode = CSC_MODE_YUV_TO_RGB;
if (intel_crtc_state->limited_color_range)
mode |= CSC_BLACK_SCREEN_OFFSET;
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
}
}
/*
* Set up the pipe CSC unit on CherryView.
*/
static void cherryview_load_csc_matrix(struct drm_crtc_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = to_intel_crtc(crtc)->pipe;
uint32_t mode;
if (state->ctm) {
struct drm_color_ctm *ctm =
(struct drm_color_ctm *) state->ctm->data;
uint16_t coeffs[9] = { 0, };
int i;
for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
uint64_t abs_coeff =
((1ULL << 63) - 1) & ctm->matrix[i];
/* Round coefficient. */
abs_coeff += 1 << (32 - 13);
/* Clamp to hardware limits. */
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
/* Write coefficients in S3.12 format. */
if (ctm->matrix[i] & (1ULL << 63))
coeffs[i] = 1 << 15;
coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
coeffs[i] |= (abs_coeff >> 20) & 0xfff;
}
I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe),
coeffs[1] << 16 | coeffs[0]);
I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe),
coeffs[3] << 16 | coeffs[2]);
I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe),
coeffs[5] << 16 | coeffs[4]);
I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe),
coeffs[7] << 16 | coeffs[6]);
I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]);
}
mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0);
if (!crtc_state_is_legacy_gamma(state)) {
mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0);
}
I915_WRITE(CGM_PIPE_MODE(pipe), mode);
}
void intel_color_set_csc(struct drm_crtc_state *crtc_state)
{
struct drm_device *dev = crtc_state->crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (dev_priv->display.load_csc_matrix)
dev_priv->display.load_csc_matrix(crtc_state);
}
/* Loads the legacy palette/gamma unit for the CRTC. */
static void i9xx_load_luts_internal(struct drm_crtc *crtc,
struct drm_property_blob *blob,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
int i;
if (HAS_GMCH_DISPLAY(dev_priv)) {
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
}
if (blob) {
struct drm_color_lut *lut = (struct drm_color_lut *) blob->data;
for (i = 0; i < 256; i++) {
uint32_t word =
(drm_color_lut_extract(lut[i].red, 8) << 16) |
(drm_color_lut_extract(lut[i].green, 8) << 8) |
drm_color_lut_extract(lut[i].blue, 8);
if (HAS_GMCH_DISPLAY(dev_priv))
I915_WRITE(PALETTE(pipe, i), word);
else
I915_WRITE(LGC_PALETTE(pipe, i), word);
}
} else {
for (i = 0; i < 256; i++) {
uint32_t word = (i << 16) | (i << 8) | i;
if (HAS_GMCH_DISPLAY(dev_priv))
I915_WRITE(PALETTE(pipe, i), word);
else
I915_WRITE(LGC_PALETTE(pipe, i), word);
}
}
}
static void i9xx_load_luts(struct drm_crtc_state *crtc_state)
{
i9xx_load_luts_internal(crtc_state->crtc, crtc_state->gamma_lut,
to_intel_crtc_state(crtc_state));
}
/* Loads the legacy palette/gamma unit for the CRTC on Haswell. */
static void haswell_load_luts(struct drm_crtc_state *crtc_state)
{
struct drm_crtc *crtc = crtc_state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *intel_crtc_state =
to_intel_crtc_state(crtc_state);
bool reenable_ips = false;
/*
* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*/
if (IS_HASWELL(dev_priv) && intel_crtc_state->ips_enabled &&
(intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) {
hsw_disable_ips(intel_crtc);
reenable_ips = true;
}
intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
i9xx_load_luts(crtc_state);
if (reenable_ips)
hsw_enable_ips(intel_crtc);
}
static void bdw_load_degamma_lut(struct drm_crtc_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
I915_WRITE(PREC_PAL_INDEX(pipe),
PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT);
if (state->degamma_lut) {
struct drm_color_lut *lut =
(struct drm_color_lut *) state->degamma_lut->data;
for (i = 0; i < lut_size; i++) {
uint32_t word =
drm_color_lut_extract(lut[i].red, 10) << 20 |
drm_color_lut_extract(lut[i].green, 10) << 10 |
drm_color_lut_extract(lut[i].blue, 10);
I915_WRITE(PREC_PAL_DATA(pipe), word);
}
} else {
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
I915_WRITE(PREC_PAL_DATA(pipe),
(v << 20) | (v << 10) | v);
}
}
}
static void bdw_load_gamma_lut(struct drm_crtc_state *state, u32 offset)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
WARN_ON(offset & ~PAL_PREC_INDEX_VALUE_MASK);
I915_WRITE(PREC_PAL_INDEX(pipe),
(offset ? PAL_PREC_SPLIT_MODE : 0) |
PAL_PREC_AUTO_INCREMENT |
offset);
if (state->gamma_lut) {
struct drm_color_lut *lut =
(struct drm_color_lut *) state->gamma_lut->data;
for (i = 0; i < lut_size; i++) {
uint32_t word =
(drm_color_lut_extract(lut[i].red, 10) << 20) |
(drm_color_lut_extract(lut[i].green, 10) << 10) |
drm_color_lut_extract(lut[i].blue, 10);
I915_WRITE(PREC_PAL_DATA(pipe), word);
}
/* Program the max register to clamp values > 1.0. */
i = lut_size - 1;
I915_WRITE(PREC_PAL_GC_MAX(pipe, 0),
drm_color_lut_extract(lut[i].red, 16));
I915_WRITE(PREC_PAL_GC_MAX(pipe, 1),
drm_color_lut_extract(lut[i].green, 16));
I915_WRITE(PREC_PAL_GC_MAX(pipe, 2),
drm_color_lut_extract(lut[i].blue, 16));
} else {
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
I915_WRITE(PREC_PAL_DATA(pipe),
(v << 20) | (v << 10) | v);
}
I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1);
I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1);
I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1);
}
}
/* Loads the palette/gamma unit for the CRTC on Broadwell+. */
static void broadwell_load_luts(struct drm_crtc_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
if (crtc_state_is_legacy_gamma(state)) {
haswell_load_luts(state);
return;
}
bdw_load_degamma_lut(state);
bdw_load_gamma_lut(state,
INTEL_INFO(dev_priv)->color.degamma_lut_size);
intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT;
I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT);
POSTING_READ(GAMMA_MODE(pipe));
/*
* Reset the index, otherwise it prevents the legacy palette to be
* written properly.
*/
I915_WRITE(PREC_PAL_INDEX(pipe), 0);
}
static void glk_load_degamma_lut(struct drm_crtc_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
const uint32_t lut_size = 33;
uint32_t i;
/*
* When setting the auto-increment bit, the hardware seems to
* ignore the index bits, so we need to reset it to index 0
* separately.
*/
I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), 0);
I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT);
/*
* FIXME: The pipe degamma table in geminilake doesn't support
* different values per channel, so this just loads a linear table.
*/
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * (1 << 16)) / (lut_size - 1);
I915_WRITE(PRE_CSC_GAMC_DATA(pipe), v);
}
/* Clamp values > 1.0. */
while (i++ < 35)
I915_WRITE(PRE_CSC_GAMC_DATA(pipe), (1 << 16));
}
static void glk_load_luts(struct drm_crtc_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
glk_load_degamma_lut(state);
if (crtc_state_is_legacy_gamma(state)) {
haswell_load_luts(state);
return;
}
bdw_load_gamma_lut(state, 0);
intel_state->gamma_mode = GAMMA_MODE_MODE_10BIT;
I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_10BIT);
POSTING_READ(GAMMA_MODE(pipe));
}
/* Loads the palette/gamma unit for the CRTC on CherryView. */
static void cherryview_load_luts(struct drm_crtc_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_color_lut *lut;
uint32_t i, lut_size;
uint32_t word0, word1;
if (crtc_state_is_legacy_gamma(state)) {
/* Turn off degamma/gamma on CGM block. */
I915_WRITE(CGM_PIPE_MODE(pipe),
(state->ctm ? CGM_PIPE_MODE_CSC : 0));
i9xx_load_luts_internal(crtc, state->gamma_lut,
to_intel_crtc_state(state));
return;
}
if (state->degamma_lut) {
lut = (struct drm_color_lut *) state->degamma_lut->data;
lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
for (i = 0; i < lut_size; i++) {
/* Write LUT in U0.14 format. */
word0 =
(drm_color_lut_extract(lut[i].green, 14) << 16) |
drm_color_lut_extract(lut[i].blue, 14);
word1 = drm_color_lut_extract(lut[i].red, 14);
I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0);
I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1);
}
}
if (state->gamma_lut) {
lut = (struct drm_color_lut *) state->gamma_lut->data;
lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
for (i = 0; i < lut_size; i++) {
/* Write LUT in U0.10 format. */
word0 =
(drm_color_lut_extract(lut[i].green, 10) << 16) |
drm_color_lut_extract(lut[i].blue, 10);
word1 = drm_color_lut_extract(lut[i].red, 10);
I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0);
I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1);
}
}
I915_WRITE(CGM_PIPE_MODE(pipe),
(state->ctm ? CGM_PIPE_MODE_CSC : 0) |
(state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0));
/*
* Also program a linear LUT in the legacy block (behind the
* CGM block).
*/
i9xx_load_luts_internal(crtc, NULL, to_intel_crtc_state(state));
}
void intel_color_load_luts(struct drm_crtc_state *crtc_state)
{
struct drm_device *dev = crtc_state->crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
dev_priv->display.load_luts(crtc_state);
}
int intel_color_check(struct drm_crtc *crtc,
struct drm_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
size_t gamma_length, degamma_length;
degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size *
sizeof(struct drm_color_lut);
gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size *
sizeof(struct drm_color_lut);
/*
* We allow both degamma & gamma luts at the right size or
* NULL.
*/
if ((!crtc_state->degamma_lut ||
crtc_state->degamma_lut->length == degamma_length) &&
(!crtc_state->gamma_lut ||
crtc_state->gamma_lut->length == gamma_length))
return 0;
/*
* We also allow no degamma lut/ctm and a gamma lut at the legacy
* size (256 entries).
*/
if (crtc_state_is_legacy_gamma(crtc_state))
return 0;
return -EINVAL;
}
void intel_color_init(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
drm_mode_crtc_set_gamma_size(crtc, 256);
if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix;
dev_priv->display.load_luts = cherryview_load_luts;
} else if (IS_HASWELL(dev_priv)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = haswell_load_luts;
} else if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv) ||
IS_BROXTON(dev_priv)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = broadwell_load_luts;
} else if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = glk_load_luts;
} else {
dev_priv->display.load_luts = i9xx_load_luts;
}
/* Enable color management support when we have degamma & gamma LUTs. */
if (INTEL_INFO(dev_priv)->color.degamma_lut_size != 0 &&
INTEL_INFO(dev_priv)->color.gamma_lut_size != 0)
drm_crtc_enable_color_mgmt(crtc,
INTEL_INFO(dev_priv)->color.degamma_lut_size,
true,
INTEL_INFO(dev_priv)->color.gamma_lut_size);
}