1
0
Fork 0
alistair23-linux/arch/microblaze/mm/consistent.c

210 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Microblaze support for cache consistent memory.
* Copyright (C) 2010 Michal Simek <monstr@monstr.eu>
* Copyright (C) 2010 PetaLogix
* Copyright (C) 2005 John Williams <jwilliams@itee.uq.edu.au>
*
* Based on PowerPC version derived from arch/arm/mm/consistent.c
* Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
* Copyright (C) 2000 Russell King
*/
#include <linux/export.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/memblock.h>
#include <linux/highmem.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/dma-noncoherent.h>
#include <asm/pgalloc.h>
#include <linux/io.h>
#include <linux/hardirq.h>
#include <linux/mmu_context.h>
#include <asm/mmu.h>
#include <linux/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cpuinfo.h>
#include <asm/tlbflush.h>
void arch_dma_prep_coherent(struct page *page, size_t size)
{
phys_addr_t paddr = page_to_phys(page);
flush_dcache_range(paddr, paddr + size);
}
#ifndef CONFIG_MMU
/*
* Consistent memory allocators. Used for DMA devices that want to share
* uncached memory with the processor core. My crufty no-MMU approach is
* simple. In the HW platform we can optionally mirror the DDR up above the
* processor cacheable region. So, memory accessed in this mirror region will
* not be cached. It's alloced from the same pool as normal memory, but the
* handle we return is shifted up into the uncached region. This will no doubt
* cause big problems if memory allocated here is not also freed properly. -- JW
*
* I have to use dcache values because I can't relate on ram size:
*/
#ifdef CONFIG_XILINX_UNCACHED_SHADOW
#define UNCACHED_SHADOW_MASK (cpuinfo.dcache_high - cpuinfo.dcache_base + 1)
#else
#define UNCACHED_SHADOW_MASK 0
#endif /* CONFIG_XILINX_UNCACHED_SHADOW */
void *uncached_kernel_address(void *ptr)
{
unsigned long addr = (unsigned long)ptr;
addr |= UNCACHED_SHADOW_MASK;
if (addr > cpuinfo.dcache_base && addr < cpuinfo.dcache_high)
pr_warn("ERROR: Your cache coherent area is CACHED!!!\n");
return (void *)addr;
}
void *cached_kernel_address(void *ptr)
{
unsigned long addr = (unsigned long)ptr;
return (void *)(addr & ~UNCACHED_SHADOW_MASK);
}
#else /* CONFIG_MMU */
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
unsigned long order, vaddr;
void *ret;
unsigned int i, err = 0;
struct page *page, *end;
phys_addr_t pa;
struct vm_struct *area;
unsigned long va;
if (in_interrupt())
BUG();
/* Only allocate page size areas. */
size = PAGE_ALIGN(size);
order = get_order(size);
vaddr = __get_free_pages(gfp | __GFP_ZERO, order);
if (!vaddr)
return NULL;
/*
* we need to ensure that there are no cachelines in use,
* or worse dirty in this area.
*/
arch_dma_prep_coherent(virt_to_page((unsigned long)vaddr), size);
/* Allocate some common virtual space to map the new pages. */
area = get_vm_area(size, VM_ALLOC);
if (!area) {
free_pages(vaddr, order);
return NULL;
}
va = (unsigned long) area->addr;
ret = (void *)va;
/* This gives us the real physical address of the first page. */
*dma_handle = pa = __virt_to_phys(vaddr);
/*
* free wasted pages. We skip the first page since we know
* that it will have count = 1 and won't require freeing.
* We also mark the pages in use as reserved so that
* remap_page_range works.
*/
page = virt_to_page(vaddr);
end = page + (1 << order);
split_page(page, order);
for (i = 0; i < size && err == 0; i += PAGE_SIZE) {
/* MS: This is the whole magic - use cache inhibit pages */
err = map_page(va + i, pa + i, _PAGE_KERNEL | _PAGE_NO_CACHE);
SetPageReserved(page);
page++;
}
/* Free the otherwise unused pages. */
while (page < end) {
__free_page(page);
page++;
}
if (err) {
free_pages(vaddr, order);
return NULL;
}
return ret;
}
static pte_t *consistent_virt_to_pte(void *vaddr)
{
unsigned long addr = (unsigned long)vaddr;
return pte_offset_kernel(pmd_offset(pgd_offset_k(addr), addr), addr);
}
long arch_dma_coherent_to_pfn(struct device *dev, void *vaddr,
dma_addr_t dma_addr)
{
pte_t *ptep = consistent_virt_to_pte(vaddr);
if (pte_none(*ptep) || !pte_present(*ptep))
return 0;
return pte_pfn(*ptep);
}
/*
* free page(s) as defined by the above mapping.
*/
void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_addr, unsigned long attrs)
{
struct page *page;
if (in_interrupt())
BUG();
size = PAGE_ALIGN(size);
do {
pte_t *ptep = consistent_virt_to_pte(vaddr);
unsigned long pfn;
if (!pte_none(*ptep) && pte_present(*ptep)) {
pfn = pte_pfn(*ptep);
pte_clear(&init_mm, (unsigned int)vaddr, ptep);
if (pfn_valid(pfn)) {
page = pfn_to_page(pfn);
__free_reserved_page(page);
}
}
vaddr += PAGE_SIZE;
} while (size -= PAGE_SIZE);
/* flush tlb */
flush_tlb_all();
}
#endif /* CONFIG_MMU */