alistair23-linux/drivers/scsi/aic94xx/aic94xx_scb.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

937 lines
27 KiB
C

/*
* Aic94xx SAS/SATA driver SCB management.
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*
* This file is licensed under GPLv2.
*
* This file is part of the aic94xx driver.
*
* The aic94xx driver is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of the
* License.
*
* The aic94xx driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the aic94xx driver; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/gfp.h>
#include <scsi/scsi_host.h>
#include "aic94xx.h"
#include "aic94xx_reg.h"
#include "aic94xx_hwi.h"
#include "aic94xx_seq.h"
#include "aic94xx_dump.h"
/* ---------- EMPTY SCB ---------- */
#define DL_PHY_MASK 7
#define BYTES_DMAED 0
#define PRIMITIVE_RECVD 0x08
#define PHY_EVENT 0x10
#define LINK_RESET_ERROR 0x18
#define TIMER_EVENT 0x20
#define REQ_TASK_ABORT 0xF0
#define REQ_DEVICE_RESET 0xF1
#define SIGNAL_NCQ_ERROR 0xF2
#define CLEAR_NCQ_ERROR 0xF3
#define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
| CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
| CURRENT_OOB_ERROR)
static void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
{
struct sas_phy *sas_phy = phy->sas_phy.phy;
switch (oob_mode & 7) {
case PHY_SPEED_60:
/* FIXME: sas transport class doesn't have this */
phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
break;
case PHY_SPEED_30:
phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
break;
case PHY_SPEED_15:
phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
break;
}
sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
if (oob_mode & SAS_MODE)
phy->sas_phy.oob_mode = SAS_OOB_MODE;
else if (oob_mode & SATA_MODE)
phy->sas_phy.oob_mode = SATA_OOB_MODE;
}
static void asd_phy_event_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
int phy_id = dl->status_block[0] & DL_PHY_MASK;
struct asd_phy *phy = &asd_ha->phys[phy_id];
u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
u8 oob_mode = dl->status_block[2];
switch (oob_status) {
case CURRENT_LOSS_OF_SIGNAL:
/* directly attached device was removed */
ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
asd_turn_led(asd_ha, phy_id, 0);
sas_phy_disconnected(&phy->sas_phy);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
break;
case CURRENT_OOB_DONE:
/* hot plugged device */
asd_turn_led(asd_ha, phy_id, 1);
get_lrate_mode(phy, oob_mode);
ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
break;
case CURRENT_SPINUP_HOLD:
/* hot plug SATA, no COMWAKE sent */
asd_turn_led(asd_ha, phy_id, 1);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
break;
case CURRENT_GTO_TIMEOUT:
case CURRENT_OOB_ERROR:
ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
dl->status_block[1]);
asd_turn_led(asd_ha, phy_id, 0);
sas_phy_disconnected(&phy->sas_phy);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
break;
}
}
/* If phys are enabled sparsely, this will do the right thing. */
static unsigned ord_phy(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
{
u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
int i, k = 0;
for_each_phy(enabled_mask, enabled_mask, i) {
if (&asd_ha->phys[i] == phy)
return k;
k++;
}
return 0;
}
/**
* asd_get_attached_sas_addr -- extract/generate attached SAS address
* phy: pointer to asd_phy
* sas_addr: pointer to buffer where the SAS address is to be written
*
* This function extracts the SAS address from an IDENTIFY frame
* received. If OOB is SATA, then a SAS address is generated from the
* HA tables.
*
* LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
* buffer.
*/
static void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
{
if (phy->sas_phy.frame_rcvd[0] == 0x34
&& phy->sas_phy.oob_mode == SATA_OOB_MODE) {
struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
/* FIS device-to-host */
u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
*(__be64 *)sas_addr = cpu_to_be64(addr);
} else {
struct sas_identify_frame *idframe =
(void *) phy->sas_phy.frame_rcvd;
memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
}
}
static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
{
int i;
struct asd_port *free_port = NULL;
struct asd_port *port;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
unsigned long flags;
spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
if (!phy->asd_port) {
for (i = 0; i < ASD_MAX_PHYS; i++) {
port = &asd_ha->asd_ports[i];
/* Check for wide port */
if (port->num_phys > 0 &&
memcmp(port->sas_addr, sas_phy->sas_addr,
SAS_ADDR_SIZE) == 0 &&
memcmp(port->attached_sas_addr,
sas_phy->attached_sas_addr,
SAS_ADDR_SIZE) == 0) {
break;
}
/* Find a free port */
if (port->num_phys == 0 && free_port == NULL) {
free_port = port;
}
}
/* Use a free port if this doesn't form a wide port */
if (i >= ASD_MAX_PHYS) {
port = free_port;
BUG_ON(!port);
memcpy(port->sas_addr, sas_phy->sas_addr,
SAS_ADDR_SIZE);
memcpy(port->attached_sas_addr,
sas_phy->attached_sas_addr,
SAS_ADDR_SIZE);
}
port->num_phys++;
port->phy_mask |= (1U << sas_phy->id);
phy->asd_port = port;
}
ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
__func__, phy->asd_port->phy_mask, sas_phy->id);
asd_update_port_links(asd_ha, phy);
spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
}
static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
{
struct asd_port *port = phy->asd_port;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
unsigned long flags;
spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
if (port) {
port->num_phys--;
port->phy_mask &= ~(1U << sas_phy->id);
phy->asd_port = NULL;
}
spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
}
static void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl,
int edb_id, int phy_id)
{
unsigned long flags;
int edb_el = edb_id + ascb->edb_index;
struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
struct asd_phy *phy = &ascb->ha->phys[phy_id];
struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
size = min(size, (u16) sizeof(phy->frame_rcvd));
spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
phy->sas_phy.frame_rcvd_size = size;
asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
asd_dump_frame_rcvd(phy, dl);
asd_form_port(ascb->ha, phy);
sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
}
static void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl,
int phy_id)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
struct asd_phy *phy = &asd_ha->phys[phy_id];
u8 lr_error = dl->status_block[1];
u8 retries_left = dl->status_block[2];
switch (lr_error) {
case 0:
ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
break;
case 1:
ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
break;
case 2:
ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
break;
case 3:
ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
break;
default:
ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
phy_id, lr_error);
break;
}
asd_turn_led(asd_ha, phy_id, 0);
sas_phy_disconnected(sas_phy);
asd_deform_port(asd_ha, phy);
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
if (retries_left == 0) {
int num = 1;
struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
GFP_ATOMIC);
if (!cp) {
asd_printk("%s: out of memory\n", __func__);
goto out;
}
ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
phy_id);
asd_build_control_phy(cp, phy_id, ENABLE_PHY);
if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
asd_ascb_free(cp);
}
out:
;
}
static void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl,
int phy_id)
{
unsigned long flags;
struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
struct asd_ha_struct *asd_ha = ascb->ha;
struct asd_phy *phy = &asd_ha->phys[phy_id];
u8 reg = dl->status_block[1];
u32 cont = dl->status_block[2] << ((reg & 3)*8);
reg &= ~3;
switch (reg) {
case LmPRMSTAT0BYTE0:
switch (cont) {
case LmBROADCH:
case LmBROADRVCH0:
case LmBROADRVCH1:
case LmBROADSES:
ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
phy_id, cont);
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
sas_phy->sas_prim = ffs(cont);
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
break;
case LmUNKNOWNP:
ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
break;
default:
ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
phy_id, reg, cont);
break;
}
break;
case LmPRMSTAT1BYTE0:
switch (cont) {
case LmHARDRST:
ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
phy_id);
/* The sequencer disables all phys on that port.
* We have to re-enable the phys ourselves. */
asd_deform_port(asd_ha, phy);
sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
break;
default:
ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
phy_id, reg, cont);
break;
}
break;
default:
ASD_DPRINTK("unknown primitive register:0x%x\n",
dl->status_block[1]);
break;
}
}
/**
* asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
* @ascb: pointer to Empty SCB
* @edb_id: index [0,6] to the empty data buffer which is to be invalidated
*
* After an EDB has been invalidated, if all EDBs in this ESCB have been
* invalidated, the ESCB is posted back to the sequencer.
* Context is tasklet/IRQ.
*/
void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
{
struct asd_seq_data *seq = &ascb->ha->seq;
struct empty_scb *escb = &ascb->scb->escb;
struct sg_el *eb = &escb->eb[edb_id];
struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
memset(edb->vaddr, 0, ASD_EDB_SIZE);
eb->flags |= ELEMENT_NOT_VALID;
escb->num_valid--;
if (escb->num_valid == 0) {
int i;
/* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
"dma_handle: 0x%08llx, next: 0x%08llx, "
"index:%d, opcode:0x%02x\n",
ascb->dma_scb.vaddr,
(u64)ascb->dma_scb.dma_handle,
le64_to_cpu(ascb->scb->header.next_scb),
le16_to_cpu(ascb->scb->header.index),
ascb->scb->header.opcode);
*/
escb->num_valid = ASD_EDBS_PER_SCB;
for (i = 0; i < ASD_EDBS_PER_SCB; i++)
escb->eb[i].flags = 0;
if (!list_empty(&ascb->list))
list_del_init(&ascb->list);
i = asd_post_escb_list(ascb->ha, ascb, 1);
if (i)
asd_printk("couldn't post escb, err:%d\n", i);
}
}
static void escb_tasklet_complete(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
u8 sb_opcode = dl->status_block[0];
int phy_id = sb_opcode & DL_PHY_MASK;
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
struct asd_phy *phy = &asd_ha->phys[phy_id];
if (edb > 6 || edb < 0) {
ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
edb, dl->opcode);
ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
sb_opcode, phy_id);
ASD_DPRINTK("escb: vaddr: 0x%p, "
"dma_handle: 0x%llx, next: 0x%llx, "
"index:%d, opcode:0x%02x\n",
ascb->dma_scb.vaddr,
(unsigned long long)ascb->dma_scb.dma_handle,
(unsigned long long)
le64_to_cpu(ascb->scb->header.next_scb),
le16_to_cpu(ascb->scb->header.index),
ascb->scb->header.opcode);
}
/* Catch these before we mask off the sb_opcode bits */
switch (sb_opcode) {
case REQ_TASK_ABORT: {
struct asd_ascb *a, *b;
u16 tc_abort;
struct domain_device *failed_dev = NULL;
ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
__func__, dl->status_block[3]);
/*
* Find the task that caused the abort and abort it first.
* The sequencer won't put anything on the done list until
* that happens.
*/
tc_abort = *((u16*)(&dl->status_block[1]));
tc_abort = le16_to_cpu(tc_abort);
list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
struct sas_task *task = a->uldd_task;
if (a->tc_index != tc_abort)
continue;
if (task) {
failed_dev = task->dev;
sas_task_abort(task);
} else {
ASD_DPRINTK("R_T_A for non TASK scb 0x%x\n",
a->scb->header.opcode);
}
break;
}
if (!failed_dev) {
ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n",
__func__, tc_abort);
goto out;
}
/*
* Now abort everything else for that device (hba?) so
* that the EH will wake up and do something.
*/
list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
struct sas_task *task = a->uldd_task;
if (task &&
task->dev == failed_dev &&
a->tc_index != tc_abort)
sas_task_abort(task);
}
goto out;
}
case REQ_DEVICE_RESET: {
struct asd_ascb *a;
u16 conn_handle;
unsigned long flags;
struct sas_task *last_dev_task = NULL;
conn_handle = *((u16*)(&dl->status_block[1]));
conn_handle = le16_to_cpu(conn_handle);
ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __func__,
dl->status_block[3]);
/* Find the last pending task for the device... */
list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
u16 x;
struct domain_device *dev;
struct sas_task *task = a->uldd_task;
if (!task)
continue;
dev = task->dev;
x = (unsigned long)dev->lldd_dev;
if (x == conn_handle)
last_dev_task = task;
}
if (!last_dev_task) {
ASD_DPRINTK("%s: Device reset for idle device %d?\n",
__func__, conn_handle);
goto out;
}
/* ...and set the reset flag */
spin_lock_irqsave(&last_dev_task->task_state_lock, flags);
last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags);
/* Kill all pending tasks for the device */
list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
u16 x;
struct domain_device *dev;
struct sas_task *task = a->uldd_task;
if (!task)
continue;
dev = task->dev;
x = (unsigned long)dev->lldd_dev;
if (x == conn_handle)
sas_task_abort(task);
}
goto out;
}
case SIGNAL_NCQ_ERROR:
ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __func__);
goto out;
case CLEAR_NCQ_ERROR:
ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __func__);
goto out;
}
sb_opcode &= ~DL_PHY_MASK;
switch (sb_opcode) {
case BYTES_DMAED:
ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __func__, phy_id);
asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
break;
case PRIMITIVE_RECVD:
ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __func__,
phy_id);
asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
break;
case PHY_EVENT:
ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __func__, phy_id);
asd_phy_event_tasklet(ascb, dl);
break;
case LINK_RESET_ERROR:
ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __func__,
phy_id);
asd_link_reset_err_tasklet(ascb, dl, phy_id);
break;
case TIMER_EVENT:
ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
__func__, phy_id);
asd_turn_led(asd_ha, phy_id, 0);
/* the device is gone */
sas_phy_disconnected(sas_phy);
asd_deform_port(asd_ha, phy);
sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
break;
default:
ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __func__,
phy_id, sb_opcode);
ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
edb, dl->opcode);
ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
sb_opcode, phy_id);
ASD_DPRINTK("escb: vaddr: 0x%p, "
"dma_handle: 0x%llx, next: 0x%llx, "
"index:%d, opcode:0x%02x\n",
ascb->dma_scb.vaddr,
(unsigned long long)ascb->dma_scb.dma_handle,
(unsigned long long)
le64_to_cpu(ascb->scb->header.next_scb),
le16_to_cpu(ascb->scb->header.index),
ascb->scb->header.opcode);
break;
}
out:
asd_invalidate_edb(ascb, edb);
}
int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
{
struct asd_seq_data *seq = &asd_ha->seq;
int i;
for (i = 0; i < seq->num_escbs; i++)
seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
ASD_DPRINTK("posting %d escbs\n", i);
return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
}
/* ---------- CONTROL PHY ---------- */
#define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
| CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
| CURRENT_OOB_ERROR)
/**
* control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
* @ascb: pointer to an ascb
* @dl: pointer to the done list entry
*
* This function completes a CONTROL PHY scb and frees the ascb.
* A note on LEDs:
* - an LED blinks if there is IO though it,
* - if a device is connected to the LED, it is lit,
* - if no device is connected to the LED, is is dimmed (off).
*/
static void control_phy_tasklet_complete(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct scb *scb = ascb->scb;
struct control_phy *control_phy = &scb->control_phy;
u8 phy_id = control_phy->phy_id;
struct asd_phy *phy = &ascb->ha->phys[phy_id];
u8 status = dl->status_block[0];
u8 oob_status = dl->status_block[1];
u8 oob_mode = dl->status_block[2];
/* u8 oob_signals= dl->status_block[3]; */
if (status != 0) {
ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
__func__, phy_id, status);
goto out;
}
switch (control_phy->sub_func) {
case DISABLE_PHY:
asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
asd_turn_led(asd_ha, phy_id, 0);
asd_control_led(asd_ha, phy_id, 0);
ASD_DPRINTK("%s: disable phy%d\n", __func__, phy_id);
break;
case ENABLE_PHY:
asd_control_led(asd_ha, phy_id, 1);
if (oob_status & CURRENT_OOB_DONE) {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
get_lrate_mode(phy, oob_mode);
asd_turn_led(asd_ha, phy_id, 1);
ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
__func__, phy_id,phy->sas_phy.linkrate,
phy->sas_phy.iproto);
} else if (oob_status & CURRENT_SPINUP_HOLD) {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
asd_turn_led(asd_ha, phy_id, 1);
ASD_DPRINTK("%s: phy%d, spinup hold\n", __func__,
phy_id);
} else if (oob_status & CURRENT_ERR_MASK) {
asd_turn_led(asd_ha, phy_id, 0);
ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
__func__, phy_id, oob_status);
} else if (oob_status & (CURRENT_HOT_PLUG_CNCT
| CURRENT_DEVICE_PRESENT)) {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
asd_turn_led(asd_ha, phy_id, 1);
ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
__func__, phy_id);
} else {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
asd_turn_led(asd_ha, phy_id, 0);
ASD_DPRINTK("%s: phy%d: no device present: "
"oob_status:0x%x\n",
__func__, phy_id, oob_status);
}
break;
case RELEASE_SPINUP_HOLD:
case PHY_NO_OP:
case EXECUTE_HARD_RESET:
ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __func__,
phy_id, control_phy->sub_func);
/* XXX finish */
break;
default:
ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __func__,
phy_id, control_phy->sub_func);
break;
}
out:
asd_ascb_free(ascb);
}
static void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
{
/* disable all speeds, then enable defaults */
*speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
| SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
switch (pd->max_sas_lrate) {
case SAS_LINK_RATE_6_0_GBPS:
*speed_mask &= ~SAS_SPEED_60_DIS;
default:
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask &= ~SAS_SPEED_30_DIS;
case SAS_LINK_RATE_1_5_GBPS:
*speed_mask &= ~SAS_SPEED_15_DIS;
}
switch (pd->min_sas_lrate) {
case SAS_LINK_RATE_6_0_GBPS:
*speed_mask |= SAS_SPEED_30_DIS;
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask |= SAS_SPEED_15_DIS;
default:
case SAS_LINK_RATE_1_5_GBPS:
/* nothing to do */
;
}
switch (pd->max_sata_lrate) {
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask &= ~SATA_SPEED_30_DIS;
default:
case SAS_LINK_RATE_1_5_GBPS:
*speed_mask &= ~SATA_SPEED_15_DIS;
}
switch (pd->min_sata_lrate) {
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask |= SATA_SPEED_15_DIS;
default:
case SAS_LINK_RATE_1_5_GBPS:
/* nothing to do */
;
}
}
/**
* asd_build_control_phy -- build a CONTROL PHY SCB
* @ascb: pointer to an ascb
* @phy_id: phy id to control, integer
* @subfunc: subfunction, what to actually to do the phy
*
* This function builds a CONTROL PHY scb. No allocation of any kind
* is performed. @ascb is allocated with the list function.
* The caller can override the ascb->tasklet_complete to point
* to its own callback function. It must call asd_ascb_free()
* at its tasklet complete function.
* See the default implementation.
*/
void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
{
struct asd_phy *phy = &ascb->ha->phys[phy_id];
struct scb *scb = ascb->scb;
struct control_phy *control_phy = &scb->control_phy;
scb->header.opcode = CONTROL_PHY;
control_phy->phy_id = (u8) phy_id;
control_phy->sub_func = subfunc;
switch (subfunc) {
case EXECUTE_HARD_RESET: /* 0x81 */
case ENABLE_PHY: /* 0x01 */
/* decide hot plug delay */
control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
/* decide speed mask */
set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
/* initiator port settings are in the hi nibble */
if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
control_phy->port_type = SAS_PROTOCOL_ALL << 4;
else if (phy->sas_phy.role == PHY_ROLE_TARGET)
control_phy->port_type = SAS_PROTOCOL_ALL;
else
control_phy->port_type =
(SAS_PROTOCOL_ALL << 4) | SAS_PROTOCOL_ALL;
/* link reset retries, this should be nominal */
control_phy->link_reset_retries = 10;
case RELEASE_SPINUP_HOLD: /* 0x02 */
/* decide the func_mask */
control_phy->func_mask = FUNCTION_MASK_DEFAULT;
if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
control_phy->func_mask &= ~SPINUP_HOLD_DIS;
else
control_phy->func_mask |= SPINUP_HOLD_DIS;
}
control_phy->conn_handle = cpu_to_le16(0xFFFF);
ascb->tasklet_complete = control_phy_tasklet_complete;
}
/* ---------- INITIATE LINK ADM TASK ---------- */
#if 0
static void link_adm_tasklet_complete(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
u8 opcode = dl->opcode;
struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
u8 phy_id = link_adm->phy_id;
if (opcode != TC_NO_ERROR) {
asd_printk("phy%d: link adm task 0x%x completed with error "
"0x%x\n", phy_id, link_adm->sub_func, opcode);
}
ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
phy_id, link_adm->sub_func, opcode);
asd_ascb_free(ascb);
}
void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
u8 subfunc)
{
struct scb *scb = ascb->scb;
struct initiate_link_adm *link_adm = &scb->link_adm;
scb->header.opcode = INITIATE_LINK_ADM_TASK;
link_adm->phy_id = phy_id;
link_adm->sub_func = subfunc;
link_adm->conn_handle = cpu_to_le16(0xFFFF);
ascb->tasklet_complete = link_adm_tasklet_complete;
}
#endif /* 0 */
/* ---------- SCB timer ---------- */
/**
* asd_ascb_timedout -- called when a pending SCB's timer has expired
* @data: unsigned long, a pointer to the ascb in question
*
* This is the default timeout function which does the most necessary.
* Upper layers can implement their own timeout function, say to free
* resources they have with this SCB, and then call this one at the
* end of their timeout function. To do this, one should initialize
* the ascb->timer.{function, data, expires} prior to calling the post
* funcion. The timer is started by the post function.
*/
void asd_ascb_timedout(unsigned long data)
{
struct asd_ascb *ascb = (void *) data;
struct asd_seq_data *seq = &ascb->ha->seq;
unsigned long flags;
ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
spin_lock_irqsave(&seq->pend_q_lock, flags);
seq->pending--;
list_del_init(&ascb->list);
spin_unlock_irqrestore(&seq->pend_q_lock, flags);
asd_ascb_free(ascb);
}
/* ---------- CONTROL PHY ---------- */
/* Given the spec value, return a driver value. */
static const int phy_func_table[] = {
[PHY_FUNC_NOP] = PHY_NO_OP,
[PHY_FUNC_LINK_RESET] = ENABLE_PHY,
[PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
[PHY_FUNC_DISABLE] = DISABLE_PHY,
[PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
};
int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
{
struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
struct asd_ascb *ascb;
struct sas_phy_linkrates *rates;
int res = 1;
switch (func) {
case PHY_FUNC_CLEAR_ERROR_LOG:
return -ENOSYS;
case PHY_FUNC_SET_LINK_RATE:
rates = arg;
if (rates->minimum_linkrate) {
pd->min_sas_lrate = rates->minimum_linkrate;
pd->min_sata_lrate = rates->minimum_linkrate;
}
if (rates->maximum_linkrate) {
pd->max_sas_lrate = rates->maximum_linkrate;
pd->max_sata_lrate = rates->maximum_linkrate;
}
func = PHY_FUNC_LINK_RESET;
break;
default:
break;
}
ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
if (!ascb)
return -ENOMEM;
asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
res = asd_post_ascb_list(asd_ha, ascb , 1);
if (res)
asd_ascb_free(ascb);
return res;
}