alistair23-linux/drivers/cpufreq/cpufreq_governor.c
Jane Li 6f1e4efd88 cpufreq: Fix timer/workqueue corruption by protecting reading governor_enabled
When a CPU is hot removed we'll cancel all the delayed work items via
gov_cancel_work(). Sometimes the delayed work function determines that
it should adjust the delay for all other CPUs that the policy is
managing. If this scenario occurs, the canceling CPU will cancel its own
work but queue up the other CPUs works to run.

Commit 3617f2 (cpufreq: Fix timer/workqueue corruption due to double
queueing) has tried to fix this, but reading governor_enabled is not
protected by cpufreq_governor_lock. Even though od_dbs_timer() checks
governor_enabled before gov_queue_work(), this scenario may occur. For
example:

 CPU0                                        CPU1
 ----                                        ----
 cpu_down()
  ...                                        <work runs>
  __cpufreq_remove_dev()                     od_dbs_timer()
   __cpufreq_governor()                       policy->governor_enabled
    policy->governor_enabled = false;
    cpufreq_governor_dbs()
     case CPUFREQ_GOV_STOP:
      gov_cancel_work(dbs_data, policy);
       cpu0 work is canceled
        timer is canceled
        cpu1 work is canceled
        <waits for cpu1>
                                              gov_queue_work(*, *, true);
                                               cpu0 work queued
                                               cpu1 work queued
                                               cpu2 work queued
                                               ...
        cpu1 work is canceled
        cpu2 work is canceled
        ...

At the end of the GOV_STOP case cpu0 still has a work queued to
run although the code is expecting all of the works to be
canceled. __cpufreq_remove_dev() will then proceed to
re-initialize all the other CPUs works except for the CPU that is
going down. The CPUFREQ_GOV_START case in cpufreq_governor_dbs()
will trample over the queued work and debugobjects will spit out
a warning:

WARNING: at lib/debugobjects.c:260 debug_print_object+0x94/0xbc()
ODEBUG: init active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x14
Modules linked in:
CPU: 1 PID: 1205 Comm: sh Tainted: G        W    3.10.0 #200
[<c01144f0>] (unwind_backtrace+0x0/0xf8) from [<c0111d98>] (show_stack+0x10/0x14)
[<c0111d98>] (show_stack+0x10/0x14) from [<c01272cc>] (warn_slowpath_common+0x4c/0x68)
[<c01272cc>] (warn_slowpath_common+0x4c/0x68) from [<c012737c>] (warn_slowpath_fmt+0x30/0x40)
[<c012737c>] (warn_slowpath_fmt+0x30/0x40) from [<c034c640>] (debug_print_object+0x94/0xbc)
[<c034c640>] (debug_print_object+0x94/0xbc) from [<c034c7f8>] (__debug_object_init+0xc8/0x3c0)
[<c034c7f8>] (__debug_object_init+0xc8/0x3c0) from [<c01360e0>] (init_timer_key+0x20/0x104)
[<c01360e0>] (init_timer_key+0x20/0x104) from [<c04872ac>] (cpufreq_governor_dbs+0x1dc/0x68c)
[<c04872ac>] (cpufreq_governor_dbs+0x1dc/0x68c) from [<c04833a8>] (__cpufreq_governor+0x80/0x1b0)
[<c04833a8>] (__cpufreq_governor+0x80/0x1b0) from [<c0483704>] (__cpufreq_remove_dev.isra.12+0x22c/0x380)
[<c0483704>] (__cpufreq_remove_dev.isra.12+0x22c/0x380) from [<c0692f38>] (cpufreq_cpu_callback+0x48/0x5c)
[<c0692f38>] (cpufreq_cpu_callback+0x48/0x5c) from [<c014fb40>] (notifier_call_chain+0x44/0x84)
[<c014fb40>] (notifier_call_chain+0x44/0x84) from [<c012ae44>] (__cpu_notify+0x2c/0x48)
[<c012ae44>] (__cpu_notify+0x2c/0x48) from [<c068dd40>] (_cpu_down+0x80/0x258)
[<c068dd40>] (_cpu_down+0x80/0x258) from [<c068df40>] (cpu_down+0x28/0x3c)
[<c068df40>] (cpu_down+0x28/0x3c) from [<c068e4c0>] (store_online+0x30/0x74)
[<c068e4c0>] (store_online+0x30/0x74) from [<c03a7308>] (dev_attr_store+0x18/0x24)
[<c03a7308>] (dev_attr_store+0x18/0x24) from [<c0256fe0>] (sysfs_write_file+0x100/0x180)
[<c0256fe0>] (sysfs_write_file+0x100/0x180) from [<c01fec9c>] (vfs_write+0xbc/0x184)
[<c01fec9c>] (vfs_write+0xbc/0x184) from [<c01ff034>] (SyS_write+0x40/0x68)
[<c01ff034>] (SyS_write+0x40/0x68) from [<c010e200>] (ret_fast_syscall+0x0/0x48)

In gov_queue_work(), lock cpufreq_governor_lock before gov_queue_work,
and unlock it after __gov_queue_work(). In this way, governor_enabled
is guaranteed not changed in gov_queue_work().

Signed-off-by: Jane Li <jiel@marvell.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-01-06 01:22:02 +01:00

383 lines
10 KiB
C

/*
* drivers/cpufreq/cpufreq_governor.c
*
* CPUFREQ governors common code
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
* (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/slab.h>
#include "cpufreq_governor.h"
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
if (have_governor_per_policy())
return dbs_data->cdata->attr_group_gov_pol;
else
return dbs_data->cdata->attr_group_gov_sys;
}
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
struct cpufreq_policy *policy;
unsigned int max_load = 0;
unsigned int ignore_nice;
unsigned int j;
if (dbs_data->cdata->governor == GOV_ONDEMAND)
ignore_nice = od_tuners->ignore_nice_load;
else
ignore_nice = cs_tuners->ignore_nice_load;
policy = cdbs->cur_policy;
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_common_info *j_cdbs;
u64 cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
unsigned int load;
int io_busy = 0;
j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
/*
* For the purpose of ondemand, waiting for disk IO is
* an indication that you're performance critical, and
* not that the system is actually idle. So do not add
* the iowait time to the cpu idle time.
*/
if (dbs_data->cdata->governor == GOV_ONDEMAND)
io_busy = od_tuners->io_is_busy;
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
wall_time = (unsigned int)
(cur_wall_time - j_cdbs->prev_cpu_wall);
j_cdbs->prev_cpu_wall = cur_wall_time;
idle_time = (unsigned int)
(cur_idle_time - j_cdbs->prev_cpu_idle);
j_cdbs->prev_cpu_idle = cur_idle_time;
if (ignore_nice) {
u64 cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
cdbs->prev_cpu_nice;
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
cdbs->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
if (unlikely(!wall_time || wall_time < idle_time))
continue;
load = 100 * (wall_time - idle_time) / wall_time;
if (load > max_load)
max_load = load;
}
dbs_data->cdata->gov_check_cpu(cpu, max_load);
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);
static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
unsigned int delay)
{
struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
}
void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
unsigned int delay, bool all_cpus)
{
int i;
mutex_lock(&cpufreq_governor_lock);
if (!policy->governor_enabled)
goto out_unlock;
if (!all_cpus) {
/*
* Use raw_smp_processor_id() to avoid preemptible warnings.
* We know that this is only called with all_cpus == false from
* works that have been queued with *_work_on() functions and
* those works are canceled during CPU_DOWN_PREPARE so they
* can't possibly run on any other CPU.
*/
__gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
} else {
for_each_cpu(i, policy->cpus)
__gov_queue_work(i, dbs_data, delay);
}
out_unlock:
mutex_unlock(&cpufreq_governor_lock);
}
EXPORT_SYMBOL_GPL(gov_queue_work);
static inline void gov_cancel_work(struct dbs_data *dbs_data,
struct cpufreq_policy *policy)
{
struct cpu_dbs_common_info *cdbs;
int i;
for_each_cpu(i, policy->cpus) {
cdbs = dbs_data->cdata->get_cpu_cdbs(i);
cancel_delayed_work_sync(&cdbs->work);
}
}
/* Will return if we need to evaluate cpu load again or not */
bool need_load_eval(struct cpu_dbs_common_info *cdbs,
unsigned int sampling_rate)
{
if (policy_is_shared(cdbs->cur_policy)) {
ktime_t time_now = ktime_get();
s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
/* Do nothing if we recently have sampled */
if (delta_us < (s64)(sampling_rate / 2))
return false;
else
cdbs->time_stamp = time_now;
}
return true;
}
EXPORT_SYMBOL_GPL(need_load_eval);
static void set_sampling_rate(struct dbs_data *dbs_data,
unsigned int sampling_rate)
{
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
cs_tuners->sampling_rate = sampling_rate;
} else {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
od_tuners->sampling_rate = sampling_rate;
}
}
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
struct common_dbs_data *cdata, unsigned int event)
{
struct dbs_data *dbs_data;
struct od_cpu_dbs_info_s *od_dbs_info = NULL;
struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
struct od_ops *od_ops = NULL;
struct od_dbs_tuners *od_tuners = NULL;
struct cs_dbs_tuners *cs_tuners = NULL;
struct cpu_dbs_common_info *cpu_cdbs;
unsigned int sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
int io_busy = 0;
int rc;
if (have_governor_per_policy())
dbs_data = policy->governor_data;
else
dbs_data = cdata->gdbs_data;
WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
switch (event) {
case CPUFREQ_GOV_POLICY_INIT:
if (have_governor_per_policy()) {
WARN_ON(dbs_data);
} else if (dbs_data) {
dbs_data->usage_count++;
policy->governor_data = dbs_data;
return 0;
}
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
if (!dbs_data) {
pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__);
return -ENOMEM;
}
dbs_data->cdata = cdata;
dbs_data->usage_count = 1;
rc = cdata->init(dbs_data);
if (rc) {
pr_err("%s: POLICY_INIT: init() failed\n", __func__);
kfree(dbs_data);
return rc;
}
if (!have_governor_per_policy())
WARN_ON(cpufreq_get_global_kobject());
rc = sysfs_create_group(get_governor_parent_kobj(policy),
get_sysfs_attr(dbs_data));
if (rc) {
cdata->exit(dbs_data);
kfree(dbs_data);
return rc;
}
policy->governor_data = dbs_data;
/* policy latency is in ns. Convert it to us first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
latency * LATENCY_MULTIPLIER));
if ((cdata->governor == GOV_CONSERVATIVE) &&
(!policy->governor->initialized)) {
struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
cpufreq_register_notifier(cs_ops->notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
}
if (!have_governor_per_policy())
cdata->gdbs_data = dbs_data;
return 0;
case CPUFREQ_GOV_POLICY_EXIT:
if (!--dbs_data->usage_count) {
sysfs_remove_group(get_governor_parent_kobj(policy),
get_sysfs_attr(dbs_data));
if (!have_governor_per_policy())
cpufreq_put_global_kobject();
if ((dbs_data->cdata->governor == GOV_CONSERVATIVE) &&
(policy->governor->initialized == 1)) {
struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
cpufreq_unregister_notifier(cs_ops->notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
}
cdata->exit(dbs_data);
kfree(dbs_data);
cdata->gdbs_data = NULL;
}
policy->governor_data = NULL;
return 0;
}
cpu_cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
cs_tuners = dbs_data->tuners;
cs_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
sampling_rate = cs_tuners->sampling_rate;
ignore_nice = cs_tuners->ignore_nice_load;
} else {
od_tuners = dbs_data->tuners;
od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
sampling_rate = od_tuners->sampling_rate;
ignore_nice = od_tuners->ignore_nice_load;
od_ops = dbs_data->cdata->gov_ops;
io_busy = od_tuners->io_is_busy;
}
switch (event) {
case CPUFREQ_GOV_START:
if (!policy->cur)
return -EINVAL;
mutex_lock(&dbs_data->mutex);
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_common_info *j_cdbs =
dbs_data->cdata->get_cpu_cdbs(j);
j_cdbs->cpu = j;
j_cdbs->cur_policy = policy;
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
&j_cdbs->prev_cpu_wall, io_busy);
if (ignore_nice)
j_cdbs->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
mutex_init(&j_cdbs->timer_mutex);
INIT_DEFERRABLE_WORK(&j_cdbs->work,
dbs_data->cdata->gov_dbs_timer);
}
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
cs_dbs_info->down_skip = 0;
cs_dbs_info->enable = 1;
cs_dbs_info->requested_freq = policy->cur;
} else {
od_dbs_info->rate_mult = 1;
od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
od_ops->powersave_bias_init_cpu(cpu);
}
mutex_unlock(&dbs_data->mutex);
/* Initiate timer time stamp */
cpu_cdbs->time_stamp = ktime_get();
gov_queue_work(dbs_data, policy,
delay_for_sampling_rate(sampling_rate), true);
break;
case CPUFREQ_GOV_STOP:
if (dbs_data->cdata->governor == GOV_CONSERVATIVE)
cs_dbs_info->enable = 0;
gov_cancel_work(dbs_data, policy);
mutex_lock(&dbs_data->mutex);
mutex_destroy(&cpu_cdbs->timer_mutex);
cpu_cdbs->cur_policy = NULL;
mutex_unlock(&dbs_data->mutex);
break;
case CPUFREQ_GOV_LIMITS:
mutex_lock(&cpu_cdbs->timer_mutex);
if (policy->max < cpu_cdbs->cur_policy->cur)
__cpufreq_driver_target(cpu_cdbs->cur_policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > cpu_cdbs->cur_policy->cur)
__cpufreq_driver_target(cpu_cdbs->cur_policy,
policy->min, CPUFREQ_RELATION_L);
dbs_check_cpu(dbs_data, cpu);
mutex_unlock(&cpu_cdbs->timer_mutex);
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);