alistair23-linux/drivers/scsi/cxlflash/main.c
Uma Krishnan 704c4b0ddc cxlflash: Shutdown notify support for CXL Flash cards
Some CXL Flash cards need notification of device shutdown in order to
flush pending I/Os.

A PCI notification hook for shutdown has been added where the driver
notifies the card and returns. When the device is removed in the PCI
remove path, notification code will wait for shutdown processing to
complete.

Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Acked-by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-07-12 23:16:31 -04:00

2711 lines
73 KiB
C

/*
* CXL Flash Device Driver
*
* Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
* Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
*
* Copyright (C) 2015 IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <asm/unaligned.h>
#include <misc/cxl.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <uapi/scsi/cxlflash_ioctl.h>
#include "main.h"
#include "sislite.h"
#include "common.h"
MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
MODULE_LICENSE("GPL");
/**
* cmd_checkout() - checks out an AFU command
* @afu: AFU to checkout from.
*
* Commands are checked out in a round-robin fashion. Note that since
* the command pool is larger than the hardware queue, the majority of
* times we will only loop once or twice before getting a command. The
* buffer and CDB within the command are initialized (zeroed) prior to
* returning.
*
* Return: The checked out command or NULL when command pool is empty.
*/
static struct afu_cmd *cmd_checkout(struct afu *afu)
{
int k, dec = CXLFLASH_NUM_CMDS;
struct afu_cmd *cmd;
while (dec--) {
k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
cmd = &afu->cmd[k];
if (!atomic_dec_if_positive(&cmd->free)) {
pr_devel("%s: returning found index=%d cmd=%p\n",
__func__, cmd->slot, cmd);
memset(cmd->buf, 0, CMD_BUFSIZE);
memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
return cmd;
}
}
return NULL;
}
/**
* cmd_checkin() - checks in an AFU command
* @cmd: AFU command to checkin.
*
* Safe to pass commands that have already been checked in. Several
* internal tracking fields are reset as part of the checkin. Note
* that these are intentionally reset prior to toggling the free bit
* to avoid clobbering values in the event that the command is checked
* out right away.
*/
static void cmd_checkin(struct afu_cmd *cmd)
{
cmd->rcb.scp = NULL;
cmd->rcb.timeout = 0;
cmd->sa.ioasc = 0;
cmd->cmd_tmf = false;
cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
pr_err("%s: Freeing cmd (%d) that is not in use!\n",
__func__, cmd->slot);
return;
}
pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
}
/**
* process_cmd_err() - command error handler
* @cmd: AFU command that experienced the error.
* @scp: SCSI command associated with the AFU command in error.
*
* Translates error bits from AFU command to SCSI command results.
*/
static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
{
struct sisl_ioarcb *ioarcb;
struct sisl_ioasa *ioasa;
u32 resid;
if (unlikely(!cmd))
return;
ioarcb = &(cmd->rcb);
ioasa = &(cmd->sa);
if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
resid = ioasa->resid;
scsi_set_resid(scp, resid);
pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
__func__, cmd, scp, resid);
}
if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
__func__, cmd, scp);
scp->result = (DID_ERROR << 16);
}
pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
"afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
__func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
ioasa->fc_extra);
if (ioasa->rc.scsi_rc) {
/* We have a SCSI status */
if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
memcpy(scp->sense_buffer, ioasa->sense_data,
SISL_SENSE_DATA_LEN);
scp->result = ioasa->rc.scsi_rc;
} else
scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
}
/*
* We encountered an error. Set scp->result based on nature
* of error.
*/
if (ioasa->rc.fc_rc) {
/* We have an FC status */
switch (ioasa->rc.fc_rc) {
case SISL_FC_RC_LINKDOWN:
scp->result = (DID_REQUEUE << 16);
break;
case SISL_FC_RC_RESID:
/* This indicates an FCP resid underrun */
if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
/* If the SISL_RC_FLAGS_OVERRUN flag was set,
* then we will handle this error else where.
* If not then we must handle it here.
* This is probably an AFU bug.
*/
scp->result = (DID_ERROR << 16);
}
break;
case SISL_FC_RC_RESIDERR:
/* Resid mismatch between adapter and device */
case SISL_FC_RC_TGTABORT:
case SISL_FC_RC_ABORTOK:
case SISL_FC_RC_ABORTFAIL:
case SISL_FC_RC_NOLOGI:
case SISL_FC_RC_ABORTPEND:
case SISL_FC_RC_WRABORTPEND:
case SISL_FC_RC_NOEXP:
case SISL_FC_RC_INUSE:
scp->result = (DID_ERROR << 16);
break;
}
}
if (ioasa->rc.afu_rc) {
/* We have an AFU error */
switch (ioasa->rc.afu_rc) {
case SISL_AFU_RC_NO_CHANNELS:
scp->result = (DID_NO_CONNECT << 16);
break;
case SISL_AFU_RC_DATA_DMA_ERR:
switch (ioasa->afu_extra) {
case SISL_AFU_DMA_ERR_PAGE_IN:
/* Retry */
scp->result = (DID_IMM_RETRY << 16);
break;
case SISL_AFU_DMA_ERR_INVALID_EA:
default:
scp->result = (DID_ERROR << 16);
}
break;
case SISL_AFU_RC_OUT_OF_DATA_BUFS:
/* Retry */
scp->result = (DID_ALLOC_FAILURE << 16);
break;
default:
scp->result = (DID_ERROR << 16);
}
}
}
/**
* cmd_complete() - command completion handler
* @cmd: AFU command that has completed.
*
* Prepares and submits command that has either completed or timed out to
* the SCSI stack. Checks AFU command back into command pool for non-internal
* (rcb.scp populated) commands.
*/
static void cmd_complete(struct afu_cmd *cmd)
{
struct scsi_cmnd *scp;
ulong lock_flags;
struct afu *afu = cmd->parent;
struct cxlflash_cfg *cfg = afu->parent;
bool cmd_is_tmf;
spin_lock_irqsave(&cmd->slock, lock_flags);
cmd->sa.host_use_b[0] |= B_DONE;
spin_unlock_irqrestore(&cmd->slock, lock_flags);
if (cmd->rcb.scp) {
scp = cmd->rcb.scp;
if (unlikely(cmd->sa.ioasc))
process_cmd_err(cmd, scp);
else
scp->result = (DID_OK << 16);
cmd_is_tmf = cmd->cmd_tmf;
cmd_checkin(cmd); /* Don't use cmd after here */
pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
"ioasc=%d\n", __func__, scp, scp->result,
cmd->sa.ioasc);
scsi_dma_unmap(scp);
scp->scsi_done(scp);
if (cmd_is_tmf) {
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
wake_up_all_locked(&cfg->tmf_waitq);
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
}
} else
complete(&cmd->cevent);
}
/**
* context_reset() - timeout handler for AFU commands
* @cmd: AFU command that timed out.
*
* Sends a reset to the AFU.
*/
static void context_reset(struct afu_cmd *cmd)
{
int nretry = 0;
u64 rrin = 0x1;
u64 room = 0;
struct afu *afu = cmd->parent;
ulong lock_flags;
pr_debug("%s: cmd=%p\n", __func__, cmd);
spin_lock_irqsave(&cmd->slock, lock_flags);
/* Already completed? */
if (cmd->sa.host_use_b[0] & B_DONE) {
spin_unlock_irqrestore(&cmd->slock, lock_flags);
return;
}
cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
spin_unlock_irqrestore(&cmd->slock, lock_flags);
/*
* We really want to send this reset at all costs, so spread
* out wait time on successive retries for available room.
*/
do {
room = readq_be(&afu->host_map->cmd_room);
atomic64_set(&afu->room, room);
if (room)
goto write_rrin;
udelay(1 << nretry);
} while (nretry++ < MC_ROOM_RETRY_CNT);
pr_err("%s: no cmd_room to send reset\n", __func__);
return;
write_rrin:
nretry = 0;
writeq_be(rrin, &afu->host_map->ioarrin);
do {
rrin = readq_be(&afu->host_map->ioarrin);
if (rrin != 0x1)
break;
/* Double delay each time */
udelay(1 << nretry);
} while (nretry++ < MC_ROOM_RETRY_CNT);
}
/**
* send_cmd() - sends an AFU command
* @afu: AFU associated with the host.
* @cmd: AFU command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
int nretry = 0;
int rc = 0;
u64 room;
long newval;
/*
* This routine is used by critical users such an AFU sync and to
* send a task management function (TMF). Thus we want to retry a
* bit before returning an error. To avoid the performance penalty
* of MMIO, we spread the update of 'room' over multiple commands.
*/
retry:
newval = atomic64_dec_if_positive(&afu->room);
if (!newval) {
do {
room = readq_be(&afu->host_map->cmd_room);
atomic64_set(&afu->room, room);
if (room)
goto write_ioarrin;
udelay(1 << nretry);
} while (nretry++ < MC_ROOM_RETRY_CNT);
dev_err(dev, "%s: no cmd_room to send 0x%X\n",
__func__, cmd->rcb.cdb[0]);
goto no_room;
} else if (unlikely(newval < 0)) {
/* This should be rare. i.e. Only if two threads race and
* decrement before the MMIO read is done. In this case
* just benefit from the other thread having updated
* afu->room.
*/
if (nretry++ < MC_ROOM_RETRY_CNT) {
udelay(1 << nretry);
goto retry;
}
goto no_room;
}
write_ioarrin:
writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
out:
pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
return rc;
no_room:
afu->read_room = true;
kref_get(&cfg->afu->mapcount);
schedule_work(&cfg->work_q);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
/**
* wait_resp() - polls for a response or timeout to a sent AFU command
* @afu: AFU associated with the host.
* @cmd: AFU command that was sent.
*/
static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
{
ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
if (!timeout)
context_reset(cmd);
if (unlikely(cmd->sa.ioasc != 0))
pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
"scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
cmd->sa.rc.fc_rc);
}
/**
* send_tmf() - sends a Task Management Function (TMF)
* @afu: AFU to checkout from.
* @scp: SCSI command from stack.
* @tmfcmd: TMF command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
{
struct afu_cmd *cmd;
u32 port_sel = scp->device->channel + 1;
short lflag = 0;
struct Scsi_Host *host = scp->device->host;
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
struct device *dev = &cfg->dev->dev;
ulong lock_flags;
int rc = 0;
ulong to;
cmd = cmd_checkout(afu);
if (unlikely(!cmd)) {
dev_err(dev, "%s: could not get a free command\n", __func__);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
/* When Task Management Function is active do not send another */
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active)
wait_event_interruptible_lock_irq(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock);
cfg->tmf_active = true;
cmd->cmd_tmf = true;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
cmd->rcb.ctx_id = afu->ctx_hndl;
cmd->rcb.port_sel = port_sel;
cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
lflag = SISL_REQ_FLAGS_TMF_CMD;
cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
/* Stash the scp in the reserved field, for reuse during interrupt */
cmd->rcb.scp = scp;
/* Copy the CDB from the cmd passed in */
memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
/* Send the command */
rc = send_cmd(afu, cmd);
if (unlikely(rc)) {
cmd_checkin(cmd);
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
goto out;
}
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
to = msecs_to_jiffies(5000);
to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock,
to);
if (!to) {
cfg->tmf_active = false;
dev_err(dev, "%s: TMF timed out!\n", __func__);
rc = -1;
}
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
out:
return rc;
}
static void afu_unmap(struct kref *ref)
{
struct afu *afu = container_of(ref, struct afu, mapcount);
if (likely(afu->afu_map)) {
cxl_psa_unmap((void __iomem *)afu->afu_map);
afu->afu_map = NULL;
}
}
/**
* cxlflash_driver_info() - information handler for this host driver
* @host: SCSI host associated with device.
*
* Return: A string describing the device.
*/
static const char *cxlflash_driver_info(struct Scsi_Host *host)
{
return CXLFLASH_ADAPTER_NAME;
}
/**
* cxlflash_queuecommand() - sends a mid-layer request
* @host: SCSI host associated with device.
* @scp: SCSI command to send.
*
* Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
{
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct afu_cmd *cmd;
u32 port_sel = scp->device->channel + 1;
int nseg, i, ncount;
struct scatterlist *sg;
ulong lock_flags;
short lflag = 0;
int rc = 0;
int kref_got = 0;
dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
"cdb=(%08X-%08X-%08X-%08X)\n",
__func__, scp, host->host_no, scp->device->channel,
scp->device->id, scp->device->lun,
get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
/*
* If a Task Management Function is active, wait for it to complete
* before continuing with regular commands.
*/
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active) {
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
switch (cfg->state) {
case STATE_RESET:
dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
case STATE_FAILTERM:
dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
scp->result = (DID_NO_CONNECT << 16);
scp->scsi_done(scp);
rc = 0;
goto out;
default:
break;
}
cmd = cmd_checkout(afu);
if (unlikely(!cmd)) {
dev_err(dev, "%s: could not get a free command\n", __func__);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
kref_get(&cfg->afu->mapcount);
kref_got = 1;
cmd->rcb.ctx_id = afu->ctx_hndl;
cmd->rcb.port_sel = port_sel;
cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
if (scp->sc_data_direction == DMA_TO_DEVICE)
lflag = SISL_REQ_FLAGS_HOST_WRITE;
else
lflag = SISL_REQ_FLAGS_HOST_READ;
cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
/* Stash the scp in the reserved field, for reuse during interrupt */
cmd->rcb.scp = scp;
nseg = scsi_dma_map(scp);
if (unlikely(nseg < 0)) {
dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
__func__, nseg);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
ncount = scsi_sg_count(scp);
scsi_for_each_sg(scp, sg, ncount, i) {
cmd->rcb.data_len = sg_dma_len(sg);
cmd->rcb.data_ea = sg_dma_address(sg);
}
/* Copy the CDB from the scsi_cmnd passed in */
memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
/* Send the command */
rc = send_cmd(afu, cmd);
if (unlikely(rc)) {
cmd_checkin(cmd);
scsi_dma_unmap(scp);
}
out:
if (kref_got)
kref_put(&afu->mapcount, afu_unmap);
pr_devel("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
if (pci_channel_offline(pdev))
wait_event_timeout(cfg->reset_waitq,
!pci_channel_offline(pdev),
CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
}
/**
* free_mem() - free memory associated with the AFU
* @cfg: Internal structure associated with the host.
*/
static void free_mem(struct cxlflash_cfg *cfg)
{
int i;
char *buf = NULL;
struct afu *afu = cfg->afu;
if (cfg->afu) {
for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
buf = afu->cmd[i].buf;
if (!((u64)buf & (PAGE_SIZE - 1)))
free_page((ulong)buf);
}
free_pages((ulong)afu, get_order(sizeof(struct afu)));
cfg->afu = NULL;
}
}
/**
* stop_afu() - stops the AFU command timers and unmaps the MMIO space
* @cfg: Internal structure associated with the host.
*
* Safe to call with AFU in a partially allocated/initialized state.
*
* Cleans up all state associated with the command queue, and unmaps
* the MMIO space.
*
* - complete() will take care of commands we initiated (they'll be checked
* in as part of the cleanup that occurs after the completion)
*
* - cmd_checkin() will take care of entries that we did not initiate and that
* have not (and will not) complete because they are sitting on a [now stale]
* hardware queue
*/
static void stop_afu(struct cxlflash_cfg *cfg)
{
int i;
struct afu *afu = cfg->afu;
struct afu_cmd *cmd;
if (likely(afu)) {
for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
cmd = &afu->cmd[i];
complete(&cmd->cevent);
if (!atomic_read(&cmd->free))
cmd_checkin(cmd);
}
if (likely(afu->afu_map)) {
cxl_psa_unmap((void __iomem *)afu->afu_map);
afu->afu_map = NULL;
}
kref_put(&afu->mapcount, afu_unmap);
}
}
/**
* term_intr() - disables all AFU interrupts
* @cfg: Internal structure associated with the host.
* @level: Depth of allocation, where to begin waterfall tear down.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
if (!afu || !cfg->mcctx) {
dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
return;
}
switch (level) {
case UNMAP_THREE:
cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
case UNMAP_TWO:
cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
case UNMAP_ONE:
cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
case FREE_IRQ:
cxl_free_afu_irqs(cfg->mcctx);
/* fall through */
case UNDO_NOOP:
/* No action required */
break;
}
}
/**
* term_mc() - terminates the master context
* @cfg: Internal structure associated with the host.
* @level: Depth of allocation, where to begin waterfall tear down.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_mc(struct cxlflash_cfg *cfg)
{
int rc = 0;
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
if (!afu || !cfg->mcctx) {
dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
return;
}
rc = cxl_stop_context(cfg->mcctx);
WARN_ON(rc);
cfg->mcctx = NULL;
}
/**
* term_afu() - terminates the AFU
* @cfg: Internal structure associated with the host.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_afu(struct cxlflash_cfg *cfg)
{
/*
* Tear down is carefully orchestrated to ensure
* no interrupts can come in when the problem state
* area is unmapped.
*
* 1) Disable all AFU interrupts
* 2) Unmap the problem state area
* 3) Stop the master context
*/
term_intr(cfg, UNMAP_THREE);
if (cfg->afu)
stop_afu(cfg);
term_mc(cfg);
pr_debug("%s: returning\n", __func__);
}
/**
* notify_shutdown() - notifies device of pending shutdown
* @cfg: Internal structure associated with the host.
* @wait: Whether to wait for shutdown processing to complete.
*
* This function will notify the AFU that the adapter is being shutdown
* and will wait for shutdown processing to complete if wait is true.
* This notification should flush pending I/Os to the device and halt
* further I/Os until the next AFU reset is issued and device restarted.
*/
static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct sisl_global_map __iomem *global = &afu->afu_map->global;
struct dev_dependent_vals *ddv;
u64 reg, status;
int i, retry_cnt = 0;
ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
return;
/* Notify AFU */
for (i = 0; i < NUM_FC_PORTS; i++) {
reg = readq_be(&global->fc_regs[i][FC_CONFIG2 / 8]);
reg |= SISL_FC_SHUTDOWN_NORMAL;
writeq_be(reg, &global->fc_regs[i][FC_CONFIG2 / 8]);
}
if (!wait)
return;
/* Wait up to 1.5 seconds for shutdown processing to complete */
for (i = 0; i < NUM_FC_PORTS; i++) {
retry_cnt = 0;
while (true) {
status = readq_be(&global->fc_regs[i][FC_STATUS / 8]);
if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
break;
if (++retry_cnt >= MC_RETRY_CNT) {
dev_dbg(dev, "%s: port %d shutdown processing "
"not yet completed\n", __func__, i);
break;
}
msleep(100 * retry_cnt);
}
}
}
/**
* cxlflash_shutdown() - shutdown handler
* @pdev: PCI device associated with the host.
*/
static void cxlflash_shutdown(struct pci_dev *pdev)
{
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
notify_shutdown(cfg, false);
}
/**
* cxlflash_remove() - PCI entry point to tear down host
* @pdev: PCI device associated with the host.
*
* Safe to use as a cleanup in partially allocated/initialized state.
*/
static void cxlflash_remove(struct pci_dev *pdev)
{
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
ulong lock_flags;
/* If a Task Management Function is active, wait for it to complete
* before continuing with remove.
*/
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active)
wait_event_interruptible_lock_irq(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock);
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
/* Notify AFU and wait for shutdown processing to complete */
notify_shutdown(cfg, true);
cfg->state = STATE_FAILTERM;
cxlflash_stop_term_user_contexts(cfg);
switch (cfg->init_state) {
case INIT_STATE_SCSI:
cxlflash_term_local_luns(cfg);
scsi_remove_host(cfg->host);
/* fall through */
case INIT_STATE_AFU:
cancel_work_sync(&cfg->work_q);
term_afu(cfg);
case INIT_STATE_PCI:
pci_disable_device(pdev);
case INIT_STATE_NONE:
free_mem(cfg);
scsi_host_put(cfg->host);
break;
}
pr_debug("%s: returning\n", __func__);
}
/**
* alloc_mem() - allocates the AFU and its command pool
* @cfg: Internal structure associated with the host.
*
* A partially allocated state remains on failure.
*
* Return:
* 0 on success
* -ENOMEM on failure to allocate memory
*/
static int alloc_mem(struct cxlflash_cfg *cfg)
{
int rc = 0;
int i;
char *buf = NULL;
struct device *dev = &cfg->dev->dev;
/* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(sizeof(struct afu)));
if (unlikely(!cfg->afu)) {
dev_err(dev, "%s: cannot get %d free pages\n",
__func__, get_order(sizeof(struct afu)));
rc = -ENOMEM;
goto out;
}
cfg->afu->parent = cfg;
cfg->afu->afu_map = NULL;
for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
if (!((u64)buf & (PAGE_SIZE - 1))) {
buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
if (unlikely(!buf)) {
dev_err(dev,
"%s: Allocate command buffers fail!\n",
__func__);
rc = -ENOMEM;
free_mem(cfg);
goto out;
}
}
cfg->afu->cmd[i].buf = buf;
atomic_set(&cfg->afu->cmd[i].free, 1);
cfg->afu->cmd[i].slot = i;
}
out:
return rc;
}
/**
* init_pci() - initializes the host as a PCI device
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_pci(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
int rc = 0;
rc = pci_enable_device(pdev);
if (rc || pci_channel_offline(pdev)) {
if (pci_channel_offline(pdev)) {
cxlflash_wait_for_pci_err_recovery(cfg);
rc = pci_enable_device(pdev);
}
if (rc) {
dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
__func__);
cxlflash_wait_for_pci_err_recovery(cfg);
goto out;
}
}
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_scsi() - adds the host to the SCSI stack and kicks off host scan
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_scsi(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
int rc = 0;
rc = scsi_add_host(cfg->host, &pdev->dev);
if (rc) {
dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
__func__, rc);
goto out;
}
scsi_scan_host(cfg->host);
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* set_port_online() - transitions the specified host FC port to online state
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call. Online state means
* that the FC link layer has synced, completed the handshaking process, and
* is ready for login to start.
*/
static void set_port_online(__be64 __iomem *fc_regs)
{
u64 cmdcfg;
cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
}
/**
* set_port_offline() - transitions the specified host FC port to offline state
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call.
*/
static void set_port_offline(__be64 __iomem *fc_regs)
{
u64 cmdcfg;
cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
}
/**
* wait_port_online() - waits for the specified host FC port come online
* @fc_regs: Top of MMIO region defined for specified port.
* @delay_us: Number of microseconds to delay between reading port status.
* @nretry: Number of cycles to retry reading port status.
*
* The provided MMIO region must be mapped prior to call. This will timeout
* when the cable is not plugged in.
*
* Return:
* TRUE (1) when the specified port is online
* FALSE (0) when the specified port fails to come online after timeout
* -EINVAL when @delay_us is less than 1000
*/
static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
{
u64 status;
if (delay_us < 1000) {
pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
return -EINVAL;
}
do {
msleep(delay_us / 1000);
status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
nretry--);
return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
}
/**
* wait_port_offline() - waits for the specified host FC port go offline
* @fc_regs: Top of MMIO region defined for specified port.
* @delay_us: Number of microseconds to delay between reading port status.
* @nretry: Number of cycles to retry reading port status.
*
* The provided MMIO region must be mapped prior to call.
*
* Return:
* TRUE (1) when the specified port is offline
* FALSE (0) when the specified port fails to go offline after timeout
* -EINVAL when @delay_us is less than 1000
*/
static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
{
u64 status;
if (delay_us < 1000) {
pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
return -EINVAL;
}
do {
msleep(delay_us / 1000);
status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
nretry--);
return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
}
/**
* afu_set_wwpn() - configures the WWPN for the specified host FC port
* @afu: AFU associated with the host that owns the specified FC port.
* @port: Port number being configured.
* @fc_regs: Top of MMIO region defined for specified port.
* @wwpn: The world-wide-port-number previously discovered for port.
*
* The provided MMIO region must be mapped prior to call. As part of the
* sequence to configure the WWPN, the port is toggled offline and then back
* online. This toggling action can cause this routine to delay up to a few
* seconds. When configured to use the internal LUN feature of the AFU, a
* failure to come online is overridden.
*
* Return:
* 0 when the WWPN is successfully written and the port comes back online
* -1 when the port fails to go offline or come back up online
*/
static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
u64 wwpn)
{
int rc = 0;
set_port_offline(fc_regs);
if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT)) {
pr_debug("%s: wait on port %d to go offline timed out\n",
__func__, port);
rc = -1; /* but continue on to leave the port back online */
}
if (rc == 0)
writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
/* Always return success after programming WWPN */
rc = 0;
set_port_online(fc_regs);
if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT)) {
pr_err("%s: wait on port %d to go online timed out\n",
__func__, port);
}
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* afu_link_reset() - resets the specified host FC port
* @afu: AFU associated with the host that owns the specified FC port.
* @port: Port number being configured.
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call. The sequence to
* reset the port involves toggling it offline and then back online. This
* action can cause this routine to delay up to a few seconds. An effort
* is made to maintain link with the device by switching to host to use
* the alternate port exclusively while the reset takes place.
* failure to come online is overridden.
*/
static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
{
u64 port_sel;
/* first switch the AFU to the other links, if any */
port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
port_sel &= ~(1ULL << port);
writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
set_port_offline(fc_regs);
if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT))
pr_err("%s: wait on port %d to go offline timed out\n",
__func__, port);
set_port_online(fc_regs);
if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT))
pr_err("%s: wait on port %d to go online timed out\n",
__func__, port);
/* switch back to include this port */
port_sel |= (1ULL << port);
writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
}
/*
* Asynchronous interrupt information table
*/
static const struct asyc_intr_info ainfo[] = {
{SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
{SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
{SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
{SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
{SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
{SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
{SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
{SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
{SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
{SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
{SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
{SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
{SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
{SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
{SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
{SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
{0x0, "", 0, 0} /* terminator */
};
/**
* find_ainfo() - locates and returns asynchronous interrupt information
* @status: Status code set by AFU on error.
*
* Return: The located information or NULL when the status code is invalid.
*/
static const struct asyc_intr_info *find_ainfo(u64 status)
{
const struct asyc_intr_info *info;
for (info = &ainfo[0]; info->status; info++)
if (info->status == status)
return info;
return NULL;
}
/**
* afu_err_intr_init() - clears and initializes the AFU for error interrupts
* @afu: AFU associated with the host.
*/
static void afu_err_intr_init(struct afu *afu)
{
int i;
u64 reg;
/* global async interrupts: AFU clears afu_ctrl on context exit
* if async interrupts were sent to that context. This prevents
* the AFU form sending further async interrupts when
* there is
* nobody to receive them.
*/
/* mask all */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
/* set LISN# to send and point to master context */
reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
if (afu->internal_lun)
reg |= 1; /* Bit 63 indicates local lun */
writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
/* clear all */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
/* unmask bits that are of interest */
/* note: afu can send an interrupt after this step */
writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
/* clear again in case a bit came on after previous clear but before */
/* unmask */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
/* Clear/Set internal lun bits */
reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
reg &= SISL_FC_INTERNAL_MASK;
if (afu->internal_lun)
reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
/* now clear FC errors */
for (i = 0; i < NUM_FC_PORTS; i++) {
writeq_be(0xFFFFFFFFU,
&afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
}
/* sync interrupts for master's IOARRIN write */
/* note that unlike asyncs, there can be no pending sync interrupts */
/* at this time (this is a fresh context and master has not written */
/* IOARRIN yet), so there is nothing to clear. */
/* set LISN#, it is always sent to the context that wrote IOARRIN */
writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
}
/**
* cxlflash_sync_err_irq() - interrupt handler for synchronous errors
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: Always return IRQ_HANDLED.
*/
static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
{
struct afu *afu = (struct afu *)data;
u64 reg;
u64 reg_unmasked;
reg = readq_be(&afu->host_map->intr_status);
reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
if (reg_unmasked == 0UL) {
pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
__func__, (u64)afu, reg);
goto cxlflash_sync_err_irq_exit;
}
pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
__func__, (u64)afu, reg);
writeq_be(reg_unmasked, &afu->host_map->intr_clear);
cxlflash_sync_err_irq_exit:
pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
return IRQ_HANDLED;
}
/**
* cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: Always return IRQ_HANDLED.
*/
static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
{
struct afu *afu = (struct afu *)data;
struct afu_cmd *cmd;
bool toggle = afu->toggle;
u64 entry,
*hrrq_start = afu->hrrq_start,
*hrrq_end = afu->hrrq_end,
*hrrq_curr = afu->hrrq_curr;
/* Process however many RRQ entries that are ready */
while (true) {
entry = *hrrq_curr;
if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
break;
cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
cmd_complete(cmd);
/* Advance to next entry or wrap and flip the toggle bit */
if (hrrq_curr < hrrq_end)
hrrq_curr++;
else {
hrrq_curr = hrrq_start;
toggle ^= SISL_RESP_HANDLE_T_BIT;
}
}
afu->hrrq_curr = hrrq_curr;
afu->toggle = toggle;
return IRQ_HANDLED;
}
/**
* cxlflash_async_err_irq() - interrupt handler for asynchronous errors
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: Always return IRQ_HANDLED.
*/
static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
{
struct afu *afu = (struct afu *)data;
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
u64 reg_unmasked;
const struct asyc_intr_info *info;
struct sisl_global_map __iomem *global = &afu->afu_map->global;
u64 reg;
u8 port;
int i;
reg = readq_be(&global->regs.aintr_status);
reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
if (reg_unmasked == 0) {
dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
__func__, reg);
goto out;
}
/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
writeq_be(reg_unmasked, &global->regs.aintr_clear);
/* Check each bit that is on */
for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
info = find_ainfo(1ULL << i);
if (((reg_unmasked & 0x1) == 0) || !info)
continue;
port = info->port;
dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
__func__, port, info->desc,
readq_be(&global->fc_regs[port][FC_STATUS / 8]));
/*
* Do link reset first, some OTHER errors will set FC_ERROR
* again if cleared before or w/o a reset
*/
if (info->action & LINK_RESET) {
dev_err(dev, "%s: FC Port %d: resetting link\n",
__func__, port);
cfg->lr_state = LINK_RESET_REQUIRED;
cfg->lr_port = port;
kref_get(&cfg->afu->mapcount);
schedule_work(&cfg->work_q);
}
if (info->action & CLR_FC_ERROR) {
reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
/*
* Since all errors are unmasked, FC_ERROR and FC_ERRCAP
* should be the same and tracing one is sufficient.
*/
dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
__func__, port, reg);
writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
}
if (info->action & SCAN_HOST) {
atomic_inc(&cfg->scan_host_needed);
kref_get(&cfg->afu->mapcount);
schedule_work(&cfg->work_q);
}
}
out:
dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
return IRQ_HANDLED;
}
/**
* start_context() - starts the master context
* @cfg: Internal structure associated with the host.
*
* Return: A success or failure value from CXL services.
*/
static int start_context(struct cxlflash_cfg *cfg)
{
int rc = 0;
rc = cxl_start_context(cfg->mcctx,
cfg->afu->work.work_element_descriptor,
NULL);
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* read_vpd() - obtains the WWPNs from VPD
* @cfg: Internal structure associated with the host.
* @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
*
* Return: 0 on success, -errno on failure
*/
static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
{
struct pci_dev *dev = cfg->dev;
int rc = 0;
int ro_start, ro_size, i, j, k;
ssize_t vpd_size;
char vpd_data[CXLFLASH_VPD_LEN];
char tmp_buf[WWPN_BUF_LEN] = { 0 };
char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
/* Get the VPD data from the device */
vpd_size = cxl_read_adapter_vpd(dev, vpd_data, sizeof(vpd_data));
if (unlikely(vpd_size <= 0)) {
dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
__func__, vpd_size);
rc = -ENODEV;
goto out;
}
/* Get the read only section offset */
ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
PCI_VPD_LRDT_RO_DATA);
if (unlikely(ro_start < 0)) {
dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
__func__);
rc = -ENODEV;
goto out;
}
/* Get the read only section size, cap when extends beyond read VPD */
ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
j = ro_size;
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
if (unlikely((i + j) > vpd_size)) {
pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
__func__, (i + j), vpd_size);
ro_size = vpd_size - i;
}
/*
* Find the offset of the WWPN tag within the read only
* VPD data and validate the found field (partials are
* no good to us). Convert the ASCII data to an integer
* value. Note that we must copy to a temporary buffer
* because the conversion service requires that the ASCII
* string be terminated.
*/
for (k = 0; k < NUM_FC_PORTS; k++) {
j = ro_size;
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
if (unlikely(i < 0)) {
dev_err(&dev->dev, "%s: Port %d WWPN not found "
"in VPD\n", __func__, k);
rc = -ENODEV;
goto out;
}
j = pci_vpd_info_field_size(&vpd_data[i]);
i += PCI_VPD_INFO_FLD_HDR_SIZE;
if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
"VPD corrupt\n",
__func__, k);
rc = -ENODEV;
goto out;
}
memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
if (unlikely(rc)) {
dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
"to integer\n", __func__, k);
rc = -ENODEV;
goto out;
}
}
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_pcr() - initialize the provisioning and control registers
* @cfg: Internal structure associated with the host.
*
* Also sets up fast access to the mapped registers and initializes AFU
* command fields that never change.
*/
static void init_pcr(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct sisl_ctrl_map __iomem *ctrl_map;
int i;
for (i = 0; i < MAX_CONTEXT; i++) {
ctrl_map = &afu->afu_map->ctrls[i].ctrl;
/* Disrupt any clients that could be running */
/* e.g. clients that survived a master restart */
writeq_be(0, &ctrl_map->rht_start);
writeq_be(0, &ctrl_map->rht_cnt_id);
writeq_be(0, &ctrl_map->ctx_cap);
}
/* Copy frequently used fields into afu */
afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
/* Program the Endian Control for the master context */
writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
/* Initialize cmd fields that never change */
for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
afu->cmd[i].rcb.rrq = 0x0;
}
}
/**
* init_global() - initialize AFU global registers
* @cfg: Internal structure associated with the host.
*/
static int init_global(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
int i = 0, num_ports = 0;
int rc = 0;
u64 reg;
rc = read_vpd(cfg, &wwpn[0]);
if (rc) {
dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
goto out;
}
pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
/* Set up RRQ in AFU for master issued cmds */
writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
/* AFU configuration */
reg = readq_be(&afu->afu_map->global.regs.afu_config);
reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
/* enable all auto retry options and control endianness */
/* leave others at default: */
/* CTX_CAP write protected, mbox_r does not clear on read and */
/* checker on if dual afu */
writeq_be(reg, &afu->afu_map->global.regs.afu_config);
/* Global port select: select either port */
if (afu->internal_lun) {
/* Only use port 0 */
writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
num_ports = NUM_FC_PORTS - 1;
} else {
writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
num_ports = NUM_FC_PORTS;
}
for (i = 0; i < num_ports; i++) {
/* Unmask all errors (but they are still masked at AFU) */
writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
/* Clear CRC error cnt & set a threshold */
(void)readq_be(&afu->afu_map->global.
fc_regs[i][FC_CNT_CRCERR / 8]);
writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
[FC_CRC_THRESH / 8]);
/* Set WWPNs. If already programmed, wwpn[i] is 0 */
if (wwpn[i] != 0 &&
afu_set_wwpn(afu, i,
&afu->afu_map->global.fc_regs[i][0],
wwpn[i])) {
dev_err(dev, "%s: failed to set WWPN on port %d\n",
__func__, i);
rc = -EIO;
goto out;
}
/* Programming WWPN back to back causes additional
* offline/online transitions and a PLOGI
*/
msleep(100);
}
/* Set up master's own CTX_CAP to allow real mode, host translation */
/* tables, afu cmds and read/write GSCSI cmds. */
/* First, unlock ctx_cap write by reading mbox */
(void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
&afu->ctrl_map->ctx_cap);
/* Initialize heartbeat */
afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
out:
return rc;
}
/**
* start_afu() - initializes and starts the AFU
* @cfg: Internal structure associated with the host.
*/
static int start_afu(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct afu_cmd *cmd;
int i = 0;
int rc = 0;
for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
cmd = &afu->cmd[i];
init_completion(&cmd->cevent);
spin_lock_init(&cmd->slock);
cmd->parent = afu;
}
init_pcr(cfg);
/* After an AFU reset, RRQ entries are stale, clear them */
memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
/* Initialize RRQ pointers */
afu->hrrq_start = &afu->rrq_entry[0];
afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
afu->hrrq_curr = afu->hrrq_start;
afu->toggle = 1;
rc = init_global(cfg);
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_intr() - setup interrupt handlers for the master context
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static enum undo_level init_intr(struct cxlflash_cfg *cfg,
struct cxl_context *ctx)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
int rc = 0;
enum undo_level level = UNDO_NOOP;
rc = cxl_allocate_afu_irqs(ctx, 3);
if (unlikely(rc)) {
dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
__func__, rc);
level = UNDO_NOOP;
goto out;
}
rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
"SISL_MSI_SYNC_ERROR");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
__func__);
level = FREE_IRQ;
goto out;
}
rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
"SISL_MSI_RRQ_UPDATED");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
__func__);
level = UNMAP_ONE;
goto out;
}
rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
"SISL_MSI_ASYNC_ERROR");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
__func__);
level = UNMAP_TWO;
goto out;
}
out:
return level;
}
/**
* init_mc() - create and register as the master context
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_mc(struct cxlflash_cfg *cfg)
{
struct cxl_context *ctx;
struct device *dev = &cfg->dev->dev;
int rc = 0;
enum undo_level level;
ctx = cxl_get_context(cfg->dev);
if (unlikely(!ctx)) {
rc = -ENOMEM;
goto ret;
}
cfg->mcctx = ctx;
/* Set it up as a master with the CXL */
cxl_set_master(ctx);
/* During initialization reset the AFU to start from a clean slate */
rc = cxl_afu_reset(cfg->mcctx);
if (unlikely(rc)) {
dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
__func__, rc);
goto ret;
}
level = init_intr(cfg, ctx);
if (unlikely(level)) {
dev_err(dev, "%s: setting up interrupts failed rc=%d\n",
__func__, rc);
goto out;
}
/* This performs the equivalent of the CXL_IOCTL_START_WORK.
* The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
* element (pe) that is embedded in the context (ctx)
*/
rc = start_context(cfg);
if (unlikely(rc)) {
dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
level = UNMAP_THREE;
goto out;
}
ret:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
out:
term_intr(cfg, level);
goto ret;
}
/**
* init_afu() - setup as master context and start AFU
* @cfg: Internal structure associated with the host.
*
* This routine is a higher level of control for configuring the
* AFU on probe and reset paths.
*
* Return: 0 on success, -errno on failure
*/
static int init_afu(struct cxlflash_cfg *cfg)
{
u64 reg;
int rc = 0;
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
cxl_perst_reloads_same_image(cfg->cxl_afu, true);
rc = init_mc(cfg);
if (rc) {
dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
__func__, rc);
goto out;
}
/* Map the entire MMIO space of the AFU */
afu->afu_map = cxl_psa_map(cfg->mcctx);
if (!afu->afu_map) {
dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
rc = -ENOMEM;
goto err1;
}
kref_init(&afu->mapcount);
/* No byte reverse on reading afu_version or string will be backwards */
reg = readq(&afu->afu_map->global.regs.afu_version);
memcpy(afu->version, &reg, sizeof(reg));
afu->interface_version =
readq_be(&afu->afu_map->global.regs.interface_version);
if ((afu->interface_version + 1) == 0) {
pr_err("Back level AFU, please upgrade. AFU version %s "
"interface version 0x%llx\n", afu->version,
afu->interface_version);
rc = -EINVAL;
goto err2;
}
pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__,
afu->version, afu->interface_version);
rc = start_afu(cfg);
if (rc) {
dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
__func__, rc);
goto err2;
}
afu_err_intr_init(cfg->afu);
atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
/* Restore the LUN mappings */
cxlflash_restore_luntable(cfg);
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
err2:
kref_put(&afu->mapcount, afu_unmap);
err1:
term_intr(cfg, UNMAP_THREE);
term_mc(cfg);
goto out;
}
/**
* cxlflash_afu_sync() - builds and sends an AFU sync command
* @afu: AFU associated with the host.
* @ctx_hndl_u: Identifies context requesting sync.
* @res_hndl_u: Identifies resource requesting sync.
* @mode: Type of sync to issue (lightweight, heavyweight, global).
*
* The AFU can only take 1 sync command at a time. This routine enforces this
* limitation by using a mutex to provide exclusive access to the AFU during
* the sync. This design point requires calling threads to not be on interrupt
* context due to the possibility of sleeping during concurrent sync operations.
*
* AFU sync operations are only necessary and allowed when the device is
* operating normally. When not operating normally, sync requests can occur as
* part of cleaning up resources associated with an adapter prior to removal.
* In this scenario, these requests are simply ignored (safe due to the AFU
* going away).
*
* Return:
* 0 on success
* -1 on failure
*/
int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
res_hndl_t res_hndl_u, u8 mode)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct afu_cmd *cmd = NULL;
int rc = 0;
int retry_cnt = 0;
static DEFINE_MUTEX(sync_active);
if (cfg->state != STATE_NORMAL) {
pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
return 0;
}
mutex_lock(&sync_active);
retry:
cmd = cmd_checkout(afu);
if (unlikely(!cmd)) {
retry_cnt++;
udelay(1000 * retry_cnt);
if (retry_cnt < MC_RETRY_CNT)
goto retry;
dev_err(dev, "%s: could not get a free command\n", __func__);
rc = -1;
goto out;
}
pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
cmd->rcb.port_sel = 0x0; /* NA */
cmd->rcb.lun_id = 0x0; /* NA */
cmd->rcb.data_len = 0x0;
cmd->rcb.data_ea = 0x0;
cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
cmd->rcb.cdb[1] = mode;
/* The cdb is aligned, no unaligned accessors required */
*((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
*((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
rc = send_cmd(afu, cmd);
if (unlikely(rc))
goto out;
wait_resp(afu, cmd);
/* Set on timeout */
if (unlikely((cmd->sa.ioasc != 0) ||
(cmd->sa.host_use_b[0] & B_ERROR)))
rc = -1;
out:
mutex_unlock(&sync_active);
if (cmd)
cmd_checkin(cmd);
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* afu_reset() - resets the AFU
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int afu_reset(struct cxlflash_cfg *cfg)
{
int rc = 0;
/* Stop the context before the reset. Since the context is
* no longer available restart it after the reset is complete
*/
term_afu(cfg);
rc = init_afu(cfg);
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* drain_ioctls() - wait until all currently executing ioctls have completed
* @cfg: Internal structure associated with the host.
*
* Obtain write access to read/write semaphore that wraps ioctl
* handling to 'drain' ioctls currently executing.
*/
static void drain_ioctls(struct cxlflash_cfg *cfg)
{
down_write(&cfg->ioctl_rwsem);
up_write(&cfg->ioctl_rwsem);
}
/**
* cxlflash_eh_device_reset_handler() - reset a single LUN
* @scp: SCSI command to send.
*
* Return:
* SUCCESS as defined in scsi/scsi.h
* FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
{
int rc = SUCCESS;
struct Scsi_Host *host = scp->device->host;
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
struct afu *afu = cfg->afu;
int rcr = 0;
pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
"cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
host->host_no, scp->device->channel,
scp->device->id, scp->device->lun,
get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
retry:
switch (cfg->state) {
case STATE_NORMAL:
rcr = send_tmf(afu, scp, TMF_LUN_RESET);
if (unlikely(rcr))
rc = FAILED;
break;
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
goto retry;
default:
rc = FAILED;
break;
}
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_eh_host_reset_handler() - reset the host adapter
* @scp: SCSI command from stack identifying host.
*
* Return:
* SUCCESS as defined in scsi/scsi.h
* FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
{
int rc = SUCCESS;
int rcr = 0;
struct Scsi_Host *host = scp->device->host;
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
"cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
host->host_no, scp->device->channel,
scp->device->id, scp->device->lun,
get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
switch (cfg->state) {
case STATE_NORMAL:
cfg->state = STATE_RESET;
drain_ioctls(cfg);
cxlflash_mark_contexts_error(cfg);
rcr = afu_reset(cfg);
if (rcr) {
rc = FAILED;
cfg->state = STATE_FAILTERM;
} else
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
break;
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
if (cfg->state == STATE_NORMAL)
break;
/* fall through */
default:
rc = FAILED;
break;
}
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_change_queue_depth() - change the queue depth for the device
* @sdev: SCSI device destined for queue depth change.
* @qdepth: Requested queue depth value to set.
*
* The requested queue depth is capped to the maximum supported value.
*
* Return: The actual queue depth set.
*/
static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
scsi_change_queue_depth(sdev, qdepth);
return sdev->queue_depth;
}
/**
* cxlflash_show_port_status() - queries and presents the current port status
* @port: Desired port for status reporting.
* @afu: AFU owning the specified port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
{
char *disp_status;
u64 status;
__be64 __iomem *fc_regs;
if (port >= NUM_FC_PORTS)
return 0;
fc_regs = &afu->afu_map->global.fc_regs[port][0];
status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
status &= FC_MTIP_STATUS_MASK;
if (status == FC_MTIP_STATUS_ONLINE)
disp_status = "online";
else if (status == FC_MTIP_STATUS_OFFLINE)
disp_status = "offline";
else
disp_status = "unknown";
return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
}
/**
* port0_show() - queries and presents the current status of port 0
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port0_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
struct afu *afu = cfg->afu;
return cxlflash_show_port_status(0, afu, buf);
}
/**
* port1_show() - queries and presents the current status of port 1
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port1_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
struct afu *afu = cfg->afu;
return cxlflash_show_port_status(1, afu, buf);
}
/**
* lun_mode_show() - presents the current LUN mode of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the LUN mode.
* @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t lun_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
}
/**
* lun_mode_store() - sets the LUN mode of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the LUN mode.
* @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
* @count: Length of data resizing in @buf.
*
* The CXL Flash AFU supports a dummy LUN mode where the external
* links and storage are not required. Space on the FPGA is used
* to create 1 or 2 small LUNs which are presented to the system
* as if they were a normal storage device. This feature is useful
* during development and also provides manufacturing with a way
* to test the AFU without an actual device.
*
* 0 = external LUN[s] (default)
* 1 = internal LUN (1 x 64K, 512B blocks, id 0)
* 2 = internal LUN (1 x 64K, 4K blocks, id 0)
* 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
* 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t lun_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
struct afu *afu = cfg->afu;
int rc;
u32 lun_mode;
rc = kstrtouint(buf, 10, &lun_mode);
if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
afu->internal_lun = lun_mode;
/*
* When configured for internal LUN, there is only one channel,
* channel number 0, else there will be 2 (default).
*/
if (afu->internal_lun)
shost->max_channel = 0;
else
shost->max_channel = NUM_FC_PORTS - 1;
afu_reset(cfg);
scsi_scan_host(cfg->host);
}
return count;
}
/**
* ioctl_version_show() - presents the current ioctl version of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the ioctl version.
* @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t ioctl_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
}
/**
* cxlflash_show_port_lun_table() - queries and presents the port LUN table
* @port: Desired port for status reporting.
* @afu: AFU owning the specified port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t cxlflash_show_port_lun_table(u32 port,
struct afu *afu,
char *buf)
{
int i;
ssize_t bytes = 0;
__be64 __iomem *fc_port;
if (port >= NUM_FC_PORTS)
return 0;
fc_port = &afu->afu_map->global.fc_port[port][0];
for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
"%03d: %016llX\n", i, readq_be(&fc_port[i]));
return bytes;
}
/**
* port0_lun_table_show() - presents the current LUN table of port 0
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port0_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
struct afu *afu = cfg->afu;
return cxlflash_show_port_lun_table(0, afu, buf);
}
/**
* port1_lun_table_show() - presents the current LUN table of port 1
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port1_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
struct afu *afu = cfg->afu;
return cxlflash_show_port_lun_table(1, afu, buf);
}
/**
* mode_show() - presents the current mode of the device
* @dev: Generic device associated with the device.
* @attr: Device attribute representing the device mode.
* @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
return scnprintf(buf, PAGE_SIZE, "%s\n",
sdev->hostdata ? "superpipe" : "legacy");
}
/*
* Host attributes
*/
static DEVICE_ATTR_RO(port0);
static DEVICE_ATTR_RO(port1);
static DEVICE_ATTR_RW(lun_mode);
static DEVICE_ATTR_RO(ioctl_version);
static DEVICE_ATTR_RO(port0_lun_table);
static DEVICE_ATTR_RO(port1_lun_table);
static struct device_attribute *cxlflash_host_attrs[] = {
&dev_attr_port0,
&dev_attr_port1,
&dev_attr_lun_mode,
&dev_attr_ioctl_version,
&dev_attr_port0_lun_table,
&dev_attr_port1_lun_table,
NULL
};
/*
* Device attributes
*/
static DEVICE_ATTR_RO(mode);
static struct device_attribute *cxlflash_dev_attrs[] = {
&dev_attr_mode,
NULL
};
/*
* Host template
*/
static struct scsi_host_template driver_template = {
.module = THIS_MODULE,
.name = CXLFLASH_ADAPTER_NAME,
.info = cxlflash_driver_info,
.ioctl = cxlflash_ioctl,
.proc_name = CXLFLASH_NAME,
.queuecommand = cxlflash_queuecommand,
.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
.change_queue_depth = cxlflash_change_queue_depth,
.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
.can_queue = CXLFLASH_MAX_CMDS,
.this_id = -1,
.sg_tablesize = SG_NONE, /* No scatter gather support */
.max_sectors = CXLFLASH_MAX_SECTORS,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = cxlflash_host_attrs,
.sdev_attrs = cxlflash_dev_attrs,
};
/*
* Device dependent values
*/
static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
0ULL };
static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
CXLFLASH_NOTIFY_SHUTDOWN };
/*
* PCI device binding table
*/
static struct pci_device_id cxlflash_pci_table[] = {
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
{}
};
MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
/**
* cxlflash_worker_thread() - work thread handler for the AFU
* @work: Work structure contained within cxlflash associated with host.
*
* Handles the following events:
* - Link reset which cannot be performed on interrupt context due to
* blocking up to a few seconds
* - Read AFU command room
* - Rescan the host
*/
static void cxlflash_worker_thread(struct work_struct *work)
{
struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
work_q);
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
int port;
ulong lock_flags;
/* Avoid MMIO if the device has failed */
if (cfg->state != STATE_NORMAL)
return;
spin_lock_irqsave(cfg->host->host_lock, lock_flags);
if (cfg->lr_state == LINK_RESET_REQUIRED) {
port = cfg->lr_port;
if (port < 0)
dev_err(dev, "%s: invalid port index %d\n",
__func__, port);
else {
spin_unlock_irqrestore(cfg->host->host_lock,
lock_flags);
/* The reset can block... */
afu_link_reset(afu, port,
&afu->afu_map->global.fc_regs[port][0]);
spin_lock_irqsave(cfg->host->host_lock, lock_flags);
}
cfg->lr_state = LINK_RESET_COMPLETE;
}
if (afu->read_room) {
atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
afu->read_room = false;
}
spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
scsi_scan_host(cfg->host);
kref_put(&afu->mapcount, afu_unmap);
}
/**
* cxlflash_probe() - PCI entry point to add host
* @pdev: PCI device associated with the host.
* @dev_id: PCI device id associated with device.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_probe(struct pci_dev *pdev,
const struct pci_device_id *dev_id)
{
struct Scsi_Host *host;
struct cxlflash_cfg *cfg = NULL;
struct dev_dependent_vals *ddv;
int rc = 0;
dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
__func__, pdev->irq);
ddv = (struct dev_dependent_vals *)dev_id->driver_data;
driver_template.max_sectors = ddv->max_sectors;
host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
if (!host) {
dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
__func__);
rc = -ENOMEM;
goto out;
}
host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
host->max_channel = NUM_FC_PORTS - 1;
host->unique_id = host->host_no;
host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
cfg = (struct cxlflash_cfg *)host->hostdata;
cfg->host = host;
rc = alloc_mem(cfg);
if (rc) {
dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n",
__func__);
rc = -ENOMEM;
scsi_host_put(cfg->host);
goto out;
}
cfg->init_state = INIT_STATE_NONE;
cfg->dev = pdev;
cfg->cxl_fops = cxlflash_cxl_fops;
/*
* The promoted LUNs move to the top of the LUN table. The rest stay
* on the bottom half. The bottom half grows from the end
* (index = 255), whereas the top half grows from the beginning
* (index = 0).
*/
cfg->promote_lun_index = 0;
cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
cfg->dev_id = (struct pci_device_id *)dev_id;
init_waitqueue_head(&cfg->tmf_waitq);
init_waitqueue_head(&cfg->reset_waitq);
INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
cfg->lr_state = LINK_RESET_INVALID;
cfg->lr_port = -1;
spin_lock_init(&cfg->tmf_slock);
mutex_init(&cfg->ctx_tbl_list_mutex);
mutex_init(&cfg->ctx_recovery_mutex);
init_rwsem(&cfg->ioctl_rwsem);
INIT_LIST_HEAD(&cfg->ctx_err_recovery);
INIT_LIST_HEAD(&cfg->lluns);
pci_set_drvdata(pdev, cfg);
cfg->cxl_afu = cxl_pci_to_afu(pdev);
rc = init_pci(cfg);
if (rc) {
dev_err(&pdev->dev, "%s: call to init_pci "
"failed rc=%d!\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_PCI;
rc = init_afu(cfg);
if (rc) {
dev_err(&pdev->dev, "%s: call to init_afu "
"failed rc=%d!\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_AFU;
rc = init_scsi(cfg);
if (rc) {
dev_err(&pdev->dev, "%s: call to init_scsi "
"failed rc=%d!\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_SCSI;
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
out_remove:
cxlflash_remove(pdev);
goto out;
}
/**
* cxlflash_pci_error_detected() - called when a PCI error is detected
* @pdev: PCI device struct.
* @state: PCI channel state.
*
* Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
*/
static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
int rc = 0;
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
switch (state) {
case pci_channel_io_frozen:
cfg->state = STATE_RESET;
scsi_block_requests(cfg->host);
drain_ioctls(cfg);
rc = cxlflash_mark_contexts_error(cfg);
if (unlikely(rc))
dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
__func__, rc);
term_afu(cfg);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
cfg->state = STATE_FAILTERM;
wake_up_all(&cfg->reset_waitq);
scsi_unblock_requests(cfg->host);
return PCI_ERS_RESULT_DISCONNECT;
default:
break;
}
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* cxlflash_pci_slot_reset() - called when PCI slot has been reset
* @pdev: PCI device struct.
*
* This routine is called by the pci error recovery code after the PCI
* slot has been reset, just before we should resume normal operations.
*
* Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
*/
static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
{
int rc = 0;
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
rc = init_afu(cfg);
if (unlikely(rc)) {
dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
/**
* cxlflash_pci_resume() - called when normal operation can resume
* @pdev: PCI device struct
*/
static void cxlflash_pci_resume(struct pci_dev *pdev)
{
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
scsi_unblock_requests(cfg->host);
}
static const struct pci_error_handlers cxlflash_err_handler = {
.error_detected = cxlflash_pci_error_detected,
.slot_reset = cxlflash_pci_slot_reset,
.resume = cxlflash_pci_resume,
};
/*
* PCI device structure
*/
static struct pci_driver cxlflash_driver = {
.name = CXLFLASH_NAME,
.id_table = cxlflash_pci_table,
.probe = cxlflash_probe,
.remove = cxlflash_remove,
.shutdown = cxlflash_shutdown,
.err_handler = &cxlflash_err_handler,
};
/**
* init_cxlflash() - module entry point
*
* Return: 0 on success, -errno on failure
*/
static int __init init_cxlflash(void)
{
pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME);
cxlflash_list_init();
return pci_register_driver(&cxlflash_driver);
}
/**
* exit_cxlflash() - module exit point
*/
static void __exit exit_cxlflash(void)
{
cxlflash_term_global_luns();
cxlflash_free_errpage();
pci_unregister_driver(&cxlflash_driver);
}
module_init(init_cxlflash);
module_exit(exit_cxlflash);