alistair23-linux/drivers/gpu/drm/i915/i915_debugfs.c
Chris Wilson 548764bb7c drm/i915: Keep the ctx workarounds tightly packed
For each platform, we have a few registers that are rewritten with
different values -- they are not part of a sequence, just different parts
of a masked register set at different times (e.g. platform and gen
workarounds). Consolidate these into a single register write to keep the
table compact, important since we are running of room in the current
fixed sized buffer.

While adjusting the construction of the wa table, make it non fatal so
that the driver still loads but keeping the warning and extra details
for inspection.

Inspecting the changes for a Kabylake system,
Before:
	Address	val		mask		read
	0x07014	0x20002000	0x00002000	0x00002100
	0x0E194	0x01000100	0x00000100	0x00000114
	0x0E4F0	0x81008100	0x00008100	0xFFFF8120
	0x0E184	0x00200020	0x00000020	0x00000022
	0x0E194	0x00140014	0x00000014	0x00000114
	0x07004	0x00420042	0x00000042	0x000029C2
	0x0E188	0x00080000	0x00000008	0x00008030
	0x07300	0x80208020	0x00008020	0x00008830
	0x07300	0x00100010	0x00000010	0x00008830
	0x0E184	0x00020002	0x00000002	0x00000022
	0x0E180	0x20002000	0x00002000	0x00002000
	0x02580	0x00010000	0x00000001	0x00000004
	0x02580	0x00060004	0x00000006	0x00000004
	0x07014	0x01000100	0x00000100	0x00002100
	0x0E100	0x00100010	0x00000010	0x00008050

After:
	Address	val		mask		read
	0x02580	0x00070004	0x00000007	0x00000004
	0x07004	0x00420042	0x00000042	0x000029C2
	0x07014	0x21002100	0x00002100	0x00002100
	0x07300	0x80308030	0x00008030	0x00008830
	0x0E100	0x00100010	0x00000010	0x00008050
	0x0E180	0x20002000	0x00002000	0x00002000
	0x0E184	0x00220022	0x00000022	0x00000022
	0x0E188	0x00080000	0x00000008	0x00008030
	0x0E194	0x01140114	0x00000114	0x00000114
	0x0E4F0	0x81008100	0x00008100	0xFFFF8120

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Oscar Mateo <oscar.mateo@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180615120207.13952-1-chris@chris-wilson.co.uk
2018-06-15 13:27:04 +01:00

4961 lines
136 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/debugfs.h>
#include <linux/sort.h>
#include <linux/sched/mm.h>
#include "intel_drv.h"
#include "intel_guc_submission.h"
static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
{
return to_i915(node->minor->dev);
}
static int i915_capabilities(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const struct intel_device_info *info = INTEL_INFO(dev_priv);
struct drm_printer p = drm_seq_file_printer(m);
seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
intel_device_info_dump_flags(info, &p);
intel_device_info_dump_runtime(info, &p);
intel_driver_caps_print(&dev_priv->caps, &p);
kernel_param_lock(THIS_MODULE);
i915_params_dump(&i915_modparams, &p);
kernel_param_unlock(THIS_MODULE);
return 0;
}
static char get_active_flag(struct drm_i915_gem_object *obj)
{
return i915_gem_object_is_active(obj) ? '*' : ' ';
}
static char get_pin_flag(struct drm_i915_gem_object *obj)
{
return obj->pin_global ? 'p' : ' ';
}
static char get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (i915_gem_object_get_tiling(obj)) {
default:
case I915_TILING_NONE: return ' ';
case I915_TILING_X: return 'X';
case I915_TILING_Y: return 'Y';
}
}
static char get_global_flag(struct drm_i915_gem_object *obj)
{
return obj->userfault_count ? 'g' : ' ';
}
static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
{
return obj->mm.mapping ? 'M' : ' ';
}
static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
{
u64 size = 0;
struct i915_vma *vma;
for_each_ggtt_vma(vma, obj) {
if (drm_mm_node_allocated(&vma->node))
size += vma->node.size;
}
return size;
}
static const char *
stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
{
size_t x = 0;
switch (page_sizes) {
case 0:
return "";
case I915_GTT_PAGE_SIZE_4K:
return "4K";
case I915_GTT_PAGE_SIZE_64K:
return "64K";
case I915_GTT_PAGE_SIZE_2M:
return "2M";
default:
if (!buf)
return "M";
if (page_sizes & I915_GTT_PAGE_SIZE_2M)
x += snprintf(buf + x, len - x, "2M, ");
if (page_sizes & I915_GTT_PAGE_SIZE_64K)
x += snprintf(buf + x, len - x, "64K, ");
if (page_sizes & I915_GTT_PAGE_SIZE_4K)
x += snprintf(buf + x, len - x, "4K, ");
buf[x-2] = '\0';
return buf;
}
}
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct intel_engine_cs *engine;
struct i915_vma *vma;
unsigned int frontbuffer_bits;
int pin_count = 0;
lockdep_assert_held(&obj->base.dev->struct_mutex);
seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
&obj->base,
get_active_flag(obj),
get_pin_flag(obj),
get_tiling_flag(obj),
get_global_flag(obj),
get_pin_mapped_flag(obj),
obj->base.size / 1024,
obj->read_domains,
obj->write_domain,
i915_cache_level_str(dev_priv, obj->cache_level),
obj->mm.dirty ? " dirty" : "",
obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
seq_printf(m, " (name: %d)", obj->base.name);
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (i915_vma_is_pinned(vma))
pin_count++;
}
seq_printf(m, " (pinned x %d)", pin_count);
if (obj->pin_global)
seq_printf(m, " (global)");
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
i915_vma_is_ggtt(vma) ? "g" : "pp",
vma->node.start, vma->node.size,
stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
if (i915_vma_is_ggtt(vma)) {
switch (vma->ggtt_view.type) {
case I915_GGTT_VIEW_NORMAL:
seq_puts(m, ", normal");
break;
case I915_GGTT_VIEW_PARTIAL:
seq_printf(m, ", partial [%08llx+%x]",
vma->ggtt_view.partial.offset << PAGE_SHIFT,
vma->ggtt_view.partial.size << PAGE_SHIFT);
break;
case I915_GGTT_VIEW_ROTATED:
seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
vma->ggtt_view.rotated.plane[0].width,
vma->ggtt_view.rotated.plane[0].height,
vma->ggtt_view.rotated.plane[0].stride,
vma->ggtt_view.rotated.plane[0].offset,
vma->ggtt_view.rotated.plane[1].width,
vma->ggtt_view.rotated.plane[1].height,
vma->ggtt_view.rotated.plane[1].stride,
vma->ggtt_view.rotated.plane[1].offset);
break;
default:
MISSING_CASE(vma->ggtt_view.type);
break;
}
}
if (vma->fence)
seq_printf(m, " , fence: %d%s",
vma->fence->id,
i915_gem_active_isset(&vma->last_fence) ? "*" : "");
seq_puts(m, ")");
}
if (obj->stolen)
seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
engine = i915_gem_object_last_write_engine(obj);
if (engine)
seq_printf(m, " (%s)", engine->name);
frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
if (frontbuffer_bits)
seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
}
static int obj_rank_by_stolen(const void *A, const void *B)
{
const struct drm_i915_gem_object *a =
*(const struct drm_i915_gem_object **)A;
const struct drm_i915_gem_object *b =
*(const struct drm_i915_gem_object **)B;
if (a->stolen->start < b->stolen->start)
return -1;
if (a->stolen->start > b->stolen->start)
return 1;
return 0;
}
static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_i915_gem_object **objects;
struct drm_i915_gem_object *obj;
u64 total_obj_size, total_gtt_size;
unsigned long total, count, n;
int ret;
total = READ_ONCE(dev_priv->mm.object_count);
objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
if (!objects)
return -ENOMEM;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
total_obj_size = total_gtt_size = count = 0;
spin_lock(&dev_priv->mm.obj_lock);
list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
if (count == total)
break;
if (obj->stolen == NULL)
continue;
objects[count++] = obj;
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
}
list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
if (count == total)
break;
if (obj->stolen == NULL)
continue;
objects[count++] = obj;
total_obj_size += obj->base.size;
}
spin_unlock(&dev_priv->mm.obj_lock);
sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
seq_puts(m, "Stolen:\n");
for (n = 0; n < count; n++) {
seq_puts(m, " ");
describe_obj(m, objects[n]);
seq_putc(m, '\n');
}
seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
count, total_obj_size, total_gtt_size);
mutex_unlock(&dev->struct_mutex);
out:
kvfree(objects);
return ret;
}
struct file_stats {
struct drm_i915_file_private *file_priv;
unsigned long count;
u64 total, unbound;
u64 global, shared;
u64 active, inactive;
};
static int per_file_stats(int id, void *ptr, void *data)
{
struct drm_i915_gem_object *obj = ptr;
struct file_stats *stats = data;
struct i915_vma *vma;
lockdep_assert_held(&obj->base.dev->struct_mutex);
stats->count++;
stats->total += obj->base.size;
if (!obj->bind_count)
stats->unbound += obj->base.size;
if (obj->base.name || obj->base.dma_buf)
stats->shared += obj->base.size;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (i915_vma_is_ggtt(vma)) {
stats->global += vma->node.size;
} else {
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
if (ppgtt->vm.file != stats->file_priv)
continue;
}
if (i915_vma_is_active(vma))
stats->active += vma->node.size;
else
stats->inactive += vma->node.size;
}
return 0;
}
#define print_file_stats(m, name, stats) do { \
if (stats.count) \
seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
name, \
stats.count, \
stats.total, \
stats.active, \
stats.inactive, \
stats.global, \
stats.shared, \
stats.unbound); \
} while (0)
static void print_batch_pool_stats(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj;
struct file_stats stats;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int j;
memset(&stats, 0, sizeof(stats));
for_each_engine(engine, dev_priv, id) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link)
per_file_stats(0, obj, &stats);
}
}
print_file_stats(m, "[k]batch pool", stats);
}
static int per_file_ctx_stats(int idx, void *ptr, void *data)
{
struct i915_gem_context *ctx = ptr;
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, ctx->i915, id) {
struct intel_context *ce = to_intel_context(ctx, engine);
if (ce->state)
per_file_stats(0, ce->state->obj, data);
if (ce->ring)
per_file_stats(0, ce->ring->vma->obj, data);
}
return 0;
}
static void print_context_stats(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct file_stats stats;
struct drm_file *file;
memset(&stats, 0, sizeof(stats));
mutex_lock(&dev->struct_mutex);
if (dev_priv->kernel_context)
per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
list_for_each_entry(file, &dev->filelist, lhead) {
struct drm_i915_file_private *fpriv = file->driver_priv;
idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
}
mutex_unlock(&dev->struct_mutex);
print_file_stats(m, "[k]contexts", stats);
}
static int i915_gem_object_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
struct drm_i915_gem_object *obj;
unsigned int page_sizes = 0;
struct drm_file *file;
char buf[80];
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "%u objects, %llu bytes\n",
dev_priv->mm.object_count,
dev_priv->mm.object_memory);
size = count = 0;
mapped_size = mapped_count = 0;
purgeable_size = purgeable_count = 0;
huge_size = huge_count = 0;
spin_lock(&dev_priv->mm.obj_lock);
list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
size += obj->base.size;
++count;
if (obj->mm.madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
if (obj->mm.mapping) {
mapped_count++;
mapped_size += obj->base.size;
}
if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
huge_count++;
huge_size += obj->base.size;
page_sizes |= obj->mm.page_sizes.sg;
}
}
seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
size = count = dpy_size = dpy_count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
size += obj->base.size;
++count;
if (obj->pin_global) {
dpy_size += obj->base.size;
++dpy_count;
}
if (obj->mm.madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
if (obj->mm.mapping) {
mapped_count++;
mapped_size += obj->base.size;
}
if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
huge_count++;
huge_size += obj->base.size;
page_sizes |= obj->mm.page_sizes.sg;
}
}
spin_unlock(&dev_priv->mm.obj_lock);
seq_printf(m, "%u bound objects, %llu bytes\n",
count, size);
seq_printf(m, "%u purgeable objects, %llu bytes\n",
purgeable_count, purgeable_size);
seq_printf(m, "%u mapped objects, %llu bytes\n",
mapped_count, mapped_size);
seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
huge_count,
stringify_page_sizes(page_sizes, buf, sizeof(buf)),
huge_size);
seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
dpy_count, dpy_size);
seq_printf(m, "%llu [%pa] gtt total\n",
ggtt->vm.total, &ggtt->mappable_end);
seq_printf(m, "Supported page sizes: %s\n",
stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
buf, sizeof(buf)));
seq_putc(m, '\n');
print_batch_pool_stats(m, dev_priv);
mutex_unlock(&dev->struct_mutex);
mutex_lock(&dev->filelist_mutex);
print_context_stats(m, dev_priv);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct file_stats stats;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_request *request;
struct task_struct *task;
mutex_lock(&dev->struct_mutex);
memset(&stats, 0, sizeof(stats));
stats.file_priv = file->driver_priv;
spin_lock(&file->table_lock);
idr_for_each(&file->object_idr, per_file_stats, &stats);
spin_unlock(&file->table_lock);
/*
* Although we have a valid reference on file->pid, that does
* not guarantee that the task_struct who called get_pid() is
* still alive (e.g. get_pid(current) => fork() => exit()).
* Therefore, we need to protect this ->comm access using RCU.
*/
request = list_first_entry_or_null(&file_priv->mm.request_list,
struct i915_request,
client_link);
rcu_read_lock();
task = pid_task(request && request->gem_context->pid ?
request->gem_context->pid : file->pid,
PIDTYPE_PID);
print_file_stats(m, task ? task->comm : "<unknown>", stats);
rcu_read_unlock();
mutex_unlock(&dev->struct_mutex);
}
mutex_unlock(&dev->filelist_mutex);
return 0;
}
static int i915_gem_gtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_i915_private *dev_priv = node_to_i915(node);
struct drm_device *dev = &dev_priv->drm;
struct drm_i915_gem_object **objects;
struct drm_i915_gem_object *obj;
u64 total_obj_size, total_gtt_size;
unsigned long nobject, n;
int count, ret;
nobject = READ_ONCE(dev_priv->mm.object_count);
objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
if (!objects)
return -ENOMEM;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
count = 0;
spin_lock(&dev_priv->mm.obj_lock);
list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
objects[count++] = obj;
if (count == nobject)
break;
}
spin_unlock(&dev_priv->mm.obj_lock);
total_obj_size = total_gtt_size = 0;
for (n = 0; n < count; n++) {
obj = objects[n];
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
count, total_obj_size, total_gtt_size);
kvfree(objects);
return 0;
}
static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_i915_gem_object *obj;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int total = 0;
int ret, j;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for_each_engine(engine, dev_priv, id) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
int count;
count = 0;
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link)
count++;
seq_printf(m, "%s cache[%d]: %d objects\n",
engine->name, j, count);
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link) {
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
}
total += count;
}
}
seq_printf(m, "total: %d\n", total);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static void gen8_display_interrupt_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
int pipe;
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv,
power_domain)) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c IMR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IMR(pipe)));
seq_printf(m, "Pipe %c IIR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IIR(pipe)));
seq_printf(m, "Pipe %c IER:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IER(pipe)));
intel_display_power_put(dev_priv, power_domain);
}
seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_PORT_IMR));
seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_PORT_IIR));
seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_PORT_IER));
seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_MISC_IMR));
seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_MISC_IIR));
seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_MISC_IER));
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
}
static int i915_interrupt_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int i, pipe;
intel_runtime_pm_get(dev_priv);
if (IS_CHERRYVIEW(dev_priv)) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv,
power_domain)) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
intel_display_power_put(dev_priv, power_domain);
}
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
} else if (INTEL_GEN(dev_priv) >= 11) {
seq_printf(m, "Master Interrupt Control: %08x\n",
I915_READ(GEN11_GFX_MSTR_IRQ));
seq_printf(m, "Render/Copy Intr Enable: %08x\n",
I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
seq_printf(m, "VCS/VECS Intr Enable: %08x\n",
I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
seq_printf(m, "GUC/SG Intr Enable:\t %08x\n",
I915_READ(GEN11_GUC_SG_INTR_ENABLE));
seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
seq_printf(m, "Crypto Intr Enable:\t %08x\n",
I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n",
I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
seq_printf(m, "Display Interrupt Control:\t%08x\n",
I915_READ(GEN11_DISPLAY_INT_CTL));
gen8_display_interrupt_info(m);
} else if (INTEL_GEN(dev_priv) >= 8) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
gen8_display_interrupt_info(m);
} else if (IS_VALLEYVIEW(dev_priv)) {
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv,
power_domain)) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
intel_display_power_put(dev_priv, power_domain);
}
seq_printf(m, "Master IER:\t%08x\n",
I915_READ(VLV_MASTER_IER));
seq_printf(m, "Render IER:\t%08x\n",
I915_READ(GTIER));
seq_printf(m, "Render IIR:\t%08x\n",
I915_READ(GTIIR));
seq_printf(m, "Render IMR:\t%08x\n",
I915_READ(GTIMR));
seq_printf(m, "PM IER:\t\t%08x\n",
I915_READ(GEN6_PMIER));
seq_printf(m, "PM IIR:\t\t%08x\n",
I915_READ(GEN6_PMIIR));
seq_printf(m, "PM IMR:\t\t%08x\n",
I915_READ(GEN6_PMIMR));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
} else if (!HAS_PCH_SPLIT(dev_priv)) {
seq_printf(m, "Interrupt enable: %08x\n",
I915_READ(IER));
seq_printf(m, "Interrupt identity: %08x\n",
I915_READ(IIR));
seq_printf(m, "Interrupt mask: %08x\n",
I915_READ(IMR));
for_each_pipe(dev_priv, pipe)
seq_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
seq_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
seq_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
seq_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
seq_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
seq_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
seq_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
seq_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
seq_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
if (INTEL_GEN(dev_priv) >= 11) {
seq_printf(m, "RCS Intr Mask:\t %08x\n",
I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
seq_printf(m, "BCS Intr Mask:\t %08x\n",
I915_READ(GEN11_BCS_RSVD_INTR_MASK));
seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
I915_READ(GEN11_GUC_SG_INTR_MASK));
seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
seq_printf(m, "Crypto Intr Mask:\t %08x\n",
I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
} else if (INTEL_GEN(dev_priv) >= 6) {
for_each_engine(engine, dev_priv, id) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
engine->name, I915_READ_IMR(engine));
}
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct i915_vma *vma = dev_priv->fence_regs[i].vma;
seq_printf(m, "Fence %d, pin count = %d, object = ",
i, dev_priv->fence_regs[i].pin_count);
if (!vma)
seq_puts(m, "unused");
else
describe_obj(m, vma->obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
size_t count, loff_t *pos)
{
struct i915_gpu_state *error = file->private_data;
struct drm_i915_error_state_buf str;
ssize_t ret;
loff_t tmp;
if (!error)
return 0;
ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
if (ret)
return ret;
ret = i915_error_state_to_str(&str, error);
if (ret)
goto out;
tmp = 0;
ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
if (ret < 0)
goto out;
*pos = str.start + ret;
out:
i915_error_state_buf_release(&str);
return ret;
}
static int gpu_state_release(struct inode *inode, struct file *file)
{
i915_gpu_state_put(file->private_data);
return 0;
}
static int i915_gpu_info_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
struct i915_gpu_state *gpu;
intel_runtime_pm_get(i915);
gpu = i915_capture_gpu_state(i915);
intel_runtime_pm_put(i915);
if (!gpu)
return -ENOMEM;
file->private_data = gpu;
return 0;
}
static const struct file_operations i915_gpu_info_fops = {
.owner = THIS_MODULE,
.open = i915_gpu_info_open,
.read = gpu_state_read,
.llseek = default_llseek,
.release = gpu_state_release,
};
static ssize_t
i915_error_state_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct i915_gpu_state *error = filp->private_data;
if (!error)
return 0;
DRM_DEBUG_DRIVER("Resetting error state\n");
i915_reset_error_state(error->i915);
return cnt;
}
static int i915_error_state_open(struct inode *inode, struct file *file)
{
file->private_data = i915_first_error_state(inode->i_private);
return 0;
}
static const struct file_operations i915_error_state_fops = {
.owner = THIS_MODULE,
.open = i915_error_state_open,
.read = gpu_state_read,
.write = i915_error_state_write,
.llseek = default_llseek,
.release = gpu_state_release,
};
#endif
static int
i915_next_seqno_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
struct drm_device *dev = &dev_priv->drm;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
ret = i915_gem_set_global_seqno(dev, val);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
NULL, i915_next_seqno_set,
"0x%llx\n");
static int i915_frequency_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_rps *rps = &dev_priv->gt_pm.rps;
int ret = 0;
intel_runtime_pm_get(dev_priv);
if (IS_GEN5(dev_priv)) {
u16 rgvswctl = I915_READ16(MEMSWCTL);
u16 rgvstat = I915_READ16(MEMSTAT_ILK);
seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
seq_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
u32 rpmodectl, freq_sts;
mutex_lock(&dev_priv->pcu_lock);
rpmodectl = I915_READ(GEN6_RP_CONTROL);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
seq_printf(m, "actual GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
seq_printf(m, "current GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->cur_freq));
seq_printf(m, "max GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m, "min GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->min_freq));
seq_printf(m, "idle GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->idle_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(dev_priv, rps->efficient_freq));
mutex_unlock(&dev_priv->pcu_lock);
} else if (INTEL_GEN(dev_priv) >= 6) {
u32 rp_state_limits;
u32 gt_perf_status;
u32 rp_state_cap;
u32 rpmodectl, rpinclimit, rpdeclimit;
u32 rpstat, cagf, reqf;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
int max_freq;
rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
if (IS_GEN9_LP(dev_priv)) {
rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
} else {
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
}
/* RPSTAT1 is in the GT power well */
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
reqf = I915_READ(GEN6_RPNSWREQ);
if (INTEL_GEN(dev_priv) >= 9)
reqf >>= 23;
else {
reqf &= ~GEN6_TURBO_DISABLE;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
reqf >>= 24;
else
reqf >>= 25;
}
reqf = intel_gpu_freq(dev_priv, reqf);
rpmodectl = I915_READ(GEN6_RP_CONTROL);
rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
cagf = intel_gpu_freq(dev_priv,
intel_get_cagf(dev_priv, rpstat));
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
if (INTEL_GEN(dev_priv) >= 11) {
pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
/*
* The equivalent to the PM ISR & IIR cannot be read
* without affecting the current state of the system
*/
pm_isr = 0;
pm_iir = 0;
} else if (INTEL_GEN(dev_priv) >= 8) {
pm_ier = I915_READ(GEN8_GT_IER(2));
pm_imr = I915_READ(GEN8_GT_IMR(2));
pm_isr = I915_READ(GEN8_GT_ISR(2));
pm_iir = I915_READ(GEN8_GT_IIR(2));
} else {
pm_ier = I915_READ(GEN6_PMIER);
pm_imr = I915_READ(GEN6_PMIMR);
pm_isr = I915_READ(GEN6_PMISR);
pm_iir = I915_READ(GEN6_PMIIR);
}
pm_mask = I915_READ(GEN6_PMINTRMSK);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
pm_ier, pm_imr, pm_mask);
if (INTEL_GEN(dev_priv) <= 10)
seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
pm_isr, pm_iir);
seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
rps->pm_intrmsk_mbz);
seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
seq_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
seq_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
seq_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
seq_printf(m, "CAGF: %dMHz\n", cagf);
seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
seq_printf(m, "RP CUR UP: %d (%dus)\n",
rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
seq_printf(m, "RP PREV UP: %d (%dus)\n",
rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
rp_state_cap >> 16) & 0xff;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
max_freq = (rp_state_cap & 0xff00) >> 8;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
rp_state_cap >> 0) & 0xff;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
seq_printf(m, "Max overclocked frequency: %dMHz\n",
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m, "Current freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->cur_freq));
seq_printf(m, "Actual freq: %d MHz\n", cagf);
seq_printf(m, "Idle freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->idle_freq));
seq_printf(m, "Min freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->min_freq));
seq_printf(m, "Boost freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->boost_freq));
seq_printf(m, "Max freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(dev_priv, rps->efficient_freq));
} else {
seq_puts(m, "no P-state info available\n");
}
seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
intel_runtime_pm_put(dev_priv);
return ret;
}
static void i915_instdone_info(struct drm_i915_private *dev_priv,
struct seq_file *m,
struct intel_instdone *instdone)
{
int slice;
int subslice;
seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
instdone->instdone);
if (INTEL_GEN(dev_priv) <= 3)
return;
seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
instdone->slice_common);
if (INTEL_GEN(dev_priv) <= 6)
return;
for_each_instdone_slice_subslice(dev_priv, slice, subslice)
seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice, instdone->sampler[slice][subslice]);
for_each_instdone_slice_subslice(dev_priv, slice, subslice)
seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice, instdone->row[slice][subslice]);
}
static int i915_hangcheck_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
u64 acthd[I915_NUM_ENGINES];
u32 seqno[I915_NUM_ENGINES];
struct intel_instdone instdone;
enum intel_engine_id id;
if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
seq_puts(m, "Wedged\n");
if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
seq_puts(m, "Reset in progress: struct_mutex backoff\n");
if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
seq_puts(m, "Reset in progress: reset handoff to waiter\n");
if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
seq_puts(m, "Waiter holding struct mutex\n");
if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
seq_puts(m, "struct_mutex blocked for reset\n");
if (!i915_modparams.enable_hangcheck) {
seq_puts(m, "Hangcheck disabled\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
for_each_engine(engine, dev_priv, id) {
acthd[id] = intel_engine_get_active_head(engine);
seqno[id] = intel_engine_get_seqno(engine);
}
intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
intel_runtime_pm_put(dev_priv);
if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
seq_printf(m, "Hangcheck active, timer fires in %dms\n",
jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
jiffies));
else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
seq_puts(m, "Hangcheck active, work pending\n");
else
seq_puts(m, "Hangcheck inactive\n");
seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
for_each_engine(engine, dev_priv, id) {
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct rb_node *rb;
seq_printf(m, "%s:\n", engine->name);
seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
engine->hangcheck.seqno, seqno[id],
intel_engine_last_submit(engine));
seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s, wedged? %s\n",
yesno(intel_engine_has_waiter(engine)),
yesno(test_bit(engine->id,
&dev_priv->gpu_error.missed_irq_rings)),
yesno(engine->hangcheck.stalled),
yesno(engine->hangcheck.wedged));
spin_lock_irq(&b->rb_lock);
for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
struct intel_wait *w = rb_entry(rb, typeof(*w), node);
seq_printf(m, "\t%s [%d] waiting for %x\n",
w->tsk->comm, w->tsk->pid, w->seqno);
}
spin_unlock_irq(&b->rb_lock);
seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
(long long)engine->hangcheck.acthd,
(long long)acthd[id]);
seq_printf(m, "\taction = %s(%d) %d ms ago\n",
hangcheck_action_to_str(engine->hangcheck.action),
engine->hangcheck.action,
jiffies_to_msecs(jiffies -
engine->hangcheck.action_timestamp));
if (engine->id == RCS) {
seq_puts(m, "\tinstdone read =\n");
i915_instdone_info(dev_priv, m, &instdone);
seq_puts(m, "\tinstdone accu =\n");
i915_instdone_info(dev_priv, m,
&engine->hangcheck.instdone);
}
}
return 0;
}
static int i915_reset_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct i915_gpu_error *error = &dev_priv->gpu_error;
struct intel_engine_cs *engine;
enum intel_engine_id id;
seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
for_each_engine(engine, dev_priv, id) {
seq_printf(m, "%s = %u\n", engine->name,
i915_reset_engine_count(error, engine));
}
return 0;
}
static int ironlake_drpc_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 rgvmodectl, rstdbyctl;
u16 crstandvid;
rgvmodectl = I915_READ(MEMMODECTL);
rstdbyctl = I915_READ(RSTDBYCTL);
crstandvid = I915_READ16(CRSTANDVID);
seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
seq_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
seq_printf(m, "HW control enabled: %s\n",
yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
seq_printf(m, "SW control enabled: %s\n",
yesno(rgvmodectl & MEMMODE_SWMODE_EN));
seq_printf(m, "Gated voltage change: %s\n",
yesno(rgvmodectl & MEMMODE_RCLK_GATE));
seq_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
seq_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
seq_printf(m, "Render standby enabled: %s\n",
yesno(!(rstdbyctl & RCX_SW_EXIT)));
seq_puts(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
seq_puts(m, "on\n");
break;
case RSX_STATUS_RC1:
seq_puts(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
seq_puts(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
seq_puts(m, "RS1\n");
break;
case RSX_STATUS_RS2:
seq_puts(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
seq_puts(m, "RC3 (RC6+)\n");
break;
default:
seq_puts(m, "unknown\n");
break;
}
return 0;
}
static int i915_forcewake_domains(struct seq_file *m, void *data)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
struct intel_uncore_forcewake_domain *fw_domain;
unsigned int tmp;
seq_printf(m, "user.bypass_count = %u\n",
i915->uncore.user_forcewake.count);
for_each_fw_domain(fw_domain, i915, tmp)
seq_printf(m, "%s.wake_count = %u\n",
intel_uncore_forcewake_domain_to_str(fw_domain->id),
READ_ONCE(fw_domain->wake_count));
return 0;
}
static void print_rc6_res(struct seq_file *m,
const char *title,
const i915_reg_t reg)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
seq_printf(m, "%s %u (%llu us)\n",
title, I915_READ(reg),
intel_rc6_residency_us(dev_priv, reg));
}
static int vlv_drpc_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 rcctl1, pw_status;
pw_status = I915_READ(VLV_GTLC_PW_STATUS);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
GEN6_RC_CTL_EI_MODE(1))));
seq_printf(m, "Render Power Well: %s\n",
(pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
return i915_forcewake_domains(m, NULL);
}
static int gen6_drpc_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 gt_core_status, rcctl1, rc6vids = 0;
u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
if (INTEL_GEN(dev_priv) >= 9) {
gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
}
if (INTEL_GEN(dev_priv) <= 7) {
mutex_lock(&dev_priv->pcu_lock);
sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
&rc6vids);
mutex_unlock(&dev_priv->pcu_lock);
}
seq_printf(m, "RC1e Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
if (INTEL_GEN(dev_priv) >= 9) {
seq_printf(m, "Render Well Gating Enabled: %s\n",
yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
seq_printf(m, "Media Well Gating Enabled: %s\n",
yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
}
seq_printf(m, "Deep RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
seq_printf(m, "Deepest RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
seq_puts(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
seq_puts(m, "Core Power Down\n");
else
seq_puts(m, "on\n");
break;
case GEN6_RC3:
seq_puts(m, "RC3\n");
break;
case GEN6_RC6:
seq_puts(m, "RC6\n");
break;
case GEN6_RC7:
seq_puts(m, "RC7\n");
break;
default:
seq_puts(m, "Unknown\n");
break;
}
seq_printf(m, "Core Power Down: %s\n",
yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
if (INTEL_GEN(dev_priv) >= 9) {
seq_printf(m, "Render Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
}
/* Not exactly sure what this is */
print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
GEN6_GT_GFX_RC6_LOCKED);
print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
if (INTEL_GEN(dev_priv) <= 7) {
seq_printf(m, "RC6 voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
seq_printf(m, "RC6+ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
seq_printf(m, "RC6++ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
}
return i915_forcewake_domains(m, NULL);
}
static int i915_drpc_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
int err;
intel_runtime_pm_get(dev_priv);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
err = vlv_drpc_info(m);
else if (INTEL_GEN(dev_priv) >= 6)
err = gen6_drpc_info(m);
else
err = ironlake_drpc_info(m);
intel_runtime_pm_put(dev_priv);
return err;
}
static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
seq_printf(m, "FB tracking busy bits: 0x%08x\n",
dev_priv->fb_tracking.busy_bits);
seq_printf(m, "FB tracking flip bits: 0x%08x\n",
dev_priv->fb_tracking.flip_bits);
return 0;
}
static int i915_fbc_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_fbc *fbc = &dev_priv->fbc;
if (!HAS_FBC(dev_priv))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
mutex_lock(&fbc->lock);
if (intel_fbc_is_active(dev_priv))
seq_puts(m, "FBC enabled\n");
else
seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
if (fbc->work.scheduled)
seq_printf(m, "FBC worker scheduled on vblank %llu, now %llu\n",
fbc->work.scheduled_vblank,
drm_crtc_vblank_count(&fbc->crtc->base));
if (intel_fbc_is_active(dev_priv)) {
u32 mask;
if (INTEL_GEN(dev_priv) >= 8)
mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
else if (INTEL_GEN(dev_priv) >= 7)
mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
else if (INTEL_GEN(dev_priv) >= 5)
mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
else if (IS_G4X(dev_priv))
mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
else
mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
FBC_STAT_COMPRESSED);
seq_printf(m, "Compressing: %s\n", yesno(mask));
}
mutex_unlock(&fbc->lock);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_fbc_false_color_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
return -ENODEV;
*val = dev_priv->fbc.false_color;
return 0;
}
static int i915_fbc_false_color_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
u32 reg;
if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
return -ENODEV;
mutex_lock(&dev_priv->fbc.lock);
reg = I915_READ(ILK_DPFC_CONTROL);
dev_priv->fbc.false_color = val;
I915_WRITE(ILK_DPFC_CONTROL, val ?
(reg | FBC_CTL_FALSE_COLOR) :
(reg & ~FBC_CTL_FALSE_COLOR));
mutex_unlock(&dev_priv->fbc.lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
i915_fbc_false_color_get, i915_fbc_false_color_set,
"%llu\n");
static int i915_ips_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
if (!HAS_IPS(dev_priv))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "Enabled by kernel parameter: %s\n",
yesno(i915_modparams.enable_ips));
if (INTEL_GEN(dev_priv) >= 8) {
seq_puts(m, "Currently: unknown\n");
} else {
if (I915_READ(IPS_CTL) & IPS_ENABLE)
seq_puts(m, "Currently: enabled\n");
else
seq_puts(m, "Currently: disabled\n");
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_sr_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
bool sr_enabled = false;
intel_runtime_pm_get(dev_priv);
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
if (INTEL_GEN(dev_priv) >= 9)
/* no global SR status; inspect per-plane WM */;
else if (HAS_PCH_SPLIT(dev_priv))
sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
IS_I945G(dev_priv) || IS_I945GM(dev_priv))
sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
else if (IS_I915GM(dev_priv))
sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
else if (IS_PINEVIEW(dev_priv))
sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
intel_runtime_pm_put(dev_priv);
seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
return 0;
}
static int i915_emon_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
unsigned long temp, chipset, gfx;
int ret;
if (!IS_GEN5(dev_priv))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
temp = i915_mch_val(dev_priv);
chipset = i915_chipset_val(dev_priv);
gfx = i915_gfx_val(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GMCH temp: %ld\n", temp);
seq_printf(m, "Chipset power: %ld\n", chipset);
seq_printf(m, "GFX power: %ld\n", gfx);
seq_printf(m, "Total power: %ld\n", chipset + gfx);
return 0;
}
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_rps *rps = &dev_priv->gt_pm.rps;
unsigned int max_gpu_freq, min_gpu_freq;
int gpu_freq, ia_freq;
int ret;
if (!HAS_LLC(dev_priv))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
if (ret)
goto out;
min_gpu_freq = rps->min_freq;
max_gpu_freq = rps->max_freq;
if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
/* Convert GT frequency to 50 HZ units */
min_gpu_freq /= GEN9_FREQ_SCALER;
max_gpu_freq /= GEN9_FREQ_SCALER;
}
seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
ia_freq = gpu_freq;
sandybridge_pcode_read(dev_priv,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq);
seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
intel_gpu_freq(dev_priv, (gpu_freq *
(IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ?
GEN9_FREQ_SCALER : 1))),
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
mutex_unlock(&dev_priv->pcu_lock);
out:
intel_runtime_pm_put(dev_priv);
return ret;
}
static int i915_opregion(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_opregion *opregion = &dev_priv->opregion;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
if (opregion->header)
seq_write(m, opregion->header, OPREGION_SIZE);
mutex_unlock(&dev->struct_mutex);
out:
return 0;
}
static int i915_vbt(struct seq_file *m, void *unused)
{
struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
if (opregion->vbt)
seq_write(m, opregion->vbt, opregion->vbt_size);
return 0;
}
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_framebuffer *fbdev_fb = NULL;
struct drm_framebuffer *drm_fb;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
#ifdef CONFIG_DRM_FBDEV_EMULATION
if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
fbdev_fb->base.width,
fbdev_fb->base.height,
fbdev_fb->base.format->depth,
fbdev_fb->base.format->cpp[0] * 8,
fbdev_fb->base.modifier,
drm_framebuffer_read_refcount(&fbdev_fb->base));
describe_obj(m, intel_fb_obj(&fbdev_fb->base));
seq_putc(m, '\n');
}
#endif
mutex_lock(&dev->mode_config.fb_lock);
drm_for_each_fb(drm_fb, dev) {
struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
if (fb == fbdev_fb)
continue;
seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
fb->base.width,
fb->base.height,
fb->base.format->depth,
fb->base.format->cpp[0] * 8,
fb->base.modifier,
drm_framebuffer_read_refcount(&fb->base));
describe_obj(m, intel_fb_obj(&fb->base));
seq_putc(m, '\n');
}
mutex_unlock(&dev->mode_config.fb_lock);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
{
seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
ring->space, ring->head, ring->tail, ring->emit);
}
static int i915_context_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
enum intel_engine_id id;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
seq_printf(m, "HW context %u ", ctx->hw_id);
if (ctx->pid) {
struct task_struct *task;
task = get_pid_task(ctx->pid, PIDTYPE_PID);
if (task) {
seq_printf(m, "(%s [%d]) ",
task->comm, task->pid);
put_task_struct(task);
}
} else if (IS_ERR(ctx->file_priv)) {
seq_puts(m, "(deleted) ");
} else {
seq_puts(m, "(kernel) ");
}
seq_putc(m, ctx->remap_slice ? 'R' : 'r');
seq_putc(m, '\n');
for_each_engine(engine, dev_priv, id) {
struct intel_context *ce =
to_intel_context(ctx, engine);
seq_printf(m, "%s: ", engine->name);
if (ce->state)
describe_obj(m, ce->state->obj);
if (ce->ring)
describe_ctx_ring(m, ce->ring);
seq_putc(m, '\n');
}
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static const char *swizzle_string(unsigned swizzle)
{
switch (swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unknown";
}
return "bug";
}
static int i915_swizzle_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
intel_runtime_pm_get(dev_priv);
seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_x));
seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_y));
if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
seq_printf(m, "DDC = 0x%08x\n",
I915_READ(DCC));
seq_printf(m, "DDC2 = 0x%08x\n",
I915_READ(DCC2));
seq_printf(m, "C0DRB3 = 0x%04x\n",
I915_READ16(C0DRB3));
seq_printf(m, "C1DRB3 = 0x%04x\n",
I915_READ16(C1DRB3));
} else if (INTEL_GEN(dev_priv) >= 6) {
seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
I915_READ(MAD_DIMM_C0));
seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
I915_READ(MAD_DIMM_C1));
seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
I915_READ(MAD_DIMM_C2));
seq_printf(m, "TILECTL = 0x%08x\n",
I915_READ(TILECTL));
if (INTEL_GEN(dev_priv) >= 8)
seq_printf(m, "GAMTARBMODE = 0x%08x\n",
I915_READ(GAMTARBMODE));
else
seq_printf(m, "ARB_MODE = 0x%08x\n",
I915_READ(ARB_MODE));
seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
I915_READ(DISP_ARB_CTL));
}
if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
seq_puts(m, "L-shaped memory detected\n");
intel_runtime_pm_put(dev_priv);
return 0;
}
static int per_file_ctx(int id, void *ptr, void *data)
{
struct i915_gem_context *ctx = ptr;
struct seq_file *m = data;
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
if (!ppgtt) {
seq_printf(m, " no ppgtt for context %d\n",
ctx->user_handle);
return 0;
}
if (i915_gem_context_is_default(ctx))
seq_puts(m, " default context:\n");
else
seq_printf(m, " context %d:\n", ctx->user_handle);
ppgtt->debug_dump(ppgtt, m);
return 0;
}
static void gen8_ppgtt_info(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int i;
if (!ppgtt)
return;
for_each_engine(engine, dev_priv, id) {
seq_printf(m, "%s\n", engine->name);
for (i = 0; i < 4; i++) {
u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
pdp <<= 32;
pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
}
}
}
static void gen6_ppgtt_info(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
if (IS_GEN6(dev_priv))
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for_each_engine(engine, dev_priv, id) {
seq_printf(m, "%s\n", engine->name);
if (IS_GEN7(dev_priv))
seq_printf(m, "GFX_MODE: 0x%08x\n",
I915_READ(RING_MODE_GEN7(engine)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE(engine)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE_READ(engine)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
I915_READ(RING_PP_DIR_DCLV(engine)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
seq_puts(m, "aliasing PPGTT:\n");
seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
ppgtt->debug_dump(ppgtt, m);
}
seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
}
static int i915_ppgtt_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_file *file;
int ret;
mutex_lock(&dev->filelist_mutex);
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out_unlock;
intel_runtime_pm_get(dev_priv);
if (INTEL_GEN(dev_priv) >= 8)
gen8_ppgtt_info(m, dev_priv);
else if (INTEL_GEN(dev_priv) >= 6)
gen6_ppgtt_info(m, dev_priv);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct drm_i915_file_private *file_priv = file->driver_priv;
struct task_struct *task;
task = get_pid_task(file->pid, PIDTYPE_PID);
if (!task) {
ret = -ESRCH;
goto out_rpm;
}
seq_printf(m, "\nproc: %s\n", task->comm);
put_task_struct(task);
idr_for_each(&file_priv->context_idr, per_file_ctx,
(void *)(unsigned long)m);
}
out_rpm:
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
out_unlock:
mutex_unlock(&dev->filelist_mutex);
return ret;
}
static int count_irq_waiters(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int count = 0;
for_each_engine(engine, i915, id)
count += intel_engine_has_waiter(engine);
return count;
}
static const char *rps_power_to_str(unsigned int power)
{
static const char * const strings[] = {
[LOW_POWER] = "low power",
[BETWEEN] = "mixed",
[HIGH_POWER] = "high power",
};
if (power >= ARRAY_SIZE(strings) || !strings[power])
return "unknown";
return strings[power];
}
static int i915_rps_boost_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_rps *rps = &dev_priv->gt_pm.rps;
struct drm_file *file;
seq_printf(m, "RPS enabled? %d\n", rps->enabled);
seq_printf(m, "GPU busy? %s [%d requests]\n",
yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
seq_printf(m, "Boosts outstanding? %d\n",
atomic_read(&rps->num_waiters));
seq_printf(m, "Frequency requested %d\n",
intel_gpu_freq(dev_priv, rps->cur_freq));
seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
intel_gpu_freq(dev_priv, rps->min_freq),
intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
intel_gpu_freq(dev_priv, rps->idle_freq),
intel_gpu_freq(dev_priv, rps->efficient_freq),
intel_gpu_freq(dev_priv, rps->boost_freq));
mutex_lock(&dev->filelist_mutex);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct drm_i915_file_private *file_priv = file->driver_priv;
struct task_struct *task;
rcu_read_lock();
task = pid_task(file->pid, PIDTYPE_PID);
seq_printf(m, "%s [%d]: %d boosts\n",
task ? task->comm : "<unknown>",
task ? task->pid : -1,
atomic_read(&file_priv->rps_client.boosts));
rcu_read_unlock();
}
seq_printf(m, "Kernel (anonymous) boosts: %d\n",
atomic_read(&rps->boosts));
mutex_unlock(&dev->filelist_mutex);
if (INTEL_GEN(dev_priv) >= 6 &&
rps->enabled &&
dev_priv->gt.active_requests) {
u32 rpup, rpupei;
u32 rpdown, rpdownei;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
rps_power_to_str(rps->power));
seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
rpup && rpupei ? 100 * rpup / rpupei : 0,
rps->up_threshold);
seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
rps->down_threshold);
} else {
seq_puts(m, "\nRPS Autotuning inactive\n");
}
return 0;
}
static int i915_llc(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const bool edram = INTEL_GEN(dev_priv) > 8;
seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
intel_uncore_edram_size(dev_priv)/1024/1024);
return 0;
}
static int i915_huc_load_status_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_printer p;
if (!HAS_HUC(dev_priv))
return -ENODEV;
p = drm_seq_file_printer(m);
intel_uc_fw_dump(&dev_priv->huc.fw, &p);
intel_runtime_pm_get(dev_priv);
seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_guc_load_status_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_printer p;
u32 tmp, i;
if (!HAS_GUC(dev_priv))
return -ENODEV;
p = drm_seq_file_printer(m);
intel_uc_fw_dump(&dev_priv->guc.fw, &p);
intel_runtime_pm_get(dev_priv);
tmp = I915_READ(GUC_STATUS);
seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
seq_printf(m, "\tBootrom status = 0x%x\n",
(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
seq_printf(m, "\tuKernel status = 0x%x\n",
(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
seq_printf(m, "\tMIA Core status = 0x%x\n",
(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
seq_puts(m, "\nScratch registers:\n");
for (i = 0; i < 16; i++)
seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
intel_runtime_pm_put(dev_priv);
return 0;
}
static const char *
stringify_guc_log_type(enum guc_log_buffer_type type)
{
switch (type) {
case GUC_ISR_LOG_BUFFER:
return "ISR";
case GUC_DPC_LOG_BUFFER:
return "DPC";
case GUC_CRASH_DUMP_LOG_BUFFER:
return "CRASH";
default:
MISSING_CASE(type);
}
return "";
}
static void i915_guc_log_info(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct intel_guc_log *log = &dev_priv->guc.log;
enum guc_log_buffer_type type;
if (!intel_guc_log_relay_enabled(log)) {
seq_puts(m, "GuC log relay disabled\n");
return;
}
seq_puts(m, "GuC logging stats:\n");
seq_printf(m, "\tRelay full count: %u\n",
log->relay.full_count);
for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
seq_printf(m, "\t%s:\tflush count %10u, overflow count %10u\n",
stringify_guc_log_type(type),
log->stats[type].flush,
log->stats[type].sampled_overflow);
}
}
static void i915_guc_client_info(struct seq_file *m,
struct drm_i915_private *dev_priv,
struct intel_guc_client *client)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
uint64_t tot = 0;
seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
client->priority, client->stage_id, client->proc_desc_offset);
seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
client->doorbell_id, client->doorbell_offset);
for_each_engine(engine, dev_priv, id) {
u64 submissions = client->submissions[id];
tot += submissions;
seq_printf(m, "\tSubmissions: %llu %s\n",
submissions, engine->name);
}
seq_printf(m, "\tTotal: %llu\n", tot);
}
static int i915_guc_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const struct intel_guc *guc = &dev_priv->guc;
if (!USES_GUC(dev_priv))
return -ENODEV;
i915_guc_log_info(m, dev_priv);
if (!USES_GUC_SUBMISSION(dev_priv))
return 0;
GEM_BUG_ON(!guc->execbuf_client);
seq_printf(m, "\nDoorbell map:\n");
seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
seq_printf(m, "Doorbell next cacheline: 0x%x\n", guc->db_cacheline);
seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
i915_guc_client_info(m, dev_priv, guc->execbuf_client);
if (guc->preempt_client) {
seq_printf(m, "\nGuC preempt client @ %p:\n",
guc->preempt_client);
i915_guc_client_info(m, dev_priv, guc->preempt_client);
}
/* Add more as required ... */
return 0;
}
static int i915_guc_stage_pool(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const struct intel_guc *guc = &dev_priv->guc;
struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
struct intel_guc_client *client = guc->execbuf_client;
unsigned int tmp;
int index;
if (!USES_GUC_SUBMISSION(dev_priv))
return -ENODEV;
for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
struct intel_engine_cs *engine;
if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
continue;
seq_printf(m, "GuC stage descriptor %u:\n", index);
seq_printf(m, "\tIndex: %u\n", desc->stage_id);
seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
seq_printf(m, "\tPriority: %d\n", desc->priority);
seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
seq_printf(m, "\tEngines used: 0x%x\n",
desc->engines_used);
seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
desc->db_trigger_phy,
desc->db_trigger_cpu,
desc->db_trigger_uk);
seq_printf(m, "\tProcess descriptor: 0x%x\n",
desc->process_desc);
seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
desc->wq_addr, desc->wq_size);
seq_putc(m, '\n');
for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
u32 guc_engine_id = engine->guc_id;
struct guc_execlist_context *lrc =
&desc->lrc[guc_engine_id];
seq_printf(m, "\t%s LRC:\n", engine->name);
seq_printf(m, "\t\tContext desc: 0x%x\n",
lrc->context_desc);
seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
seq_putc(m, '\n');
}
}
return 0;
}
static int i915_guc_log_dump(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_i915_private *dev_priv = node_to_i915(node);
bool dump_load_err = !!node->info_ent->data;
struct drm_i915_gem_object *obj = NULL;
u32 *log;
int i = 0;
if (!HAS_GUC(dev_priv))
return -ENODEV;
if (dump_load_err)
obj = dev_priv->guc.load_err_log;
else if (dev_priv->guc.log.vma)
obj = dev_priv->guc.log.vma->obj;
if (!obj)
return 0;
log = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(log)) {
DRM_DEBUG("Failed to pin object\n");
seq_puts(m, "(log data unaccessible)\n");
return PTR_ERR(log);
}
for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
*(log + i), *(log + i + 1),
*(log + i + 2), *(log + i + 3));
seq_putc(m, '\n');
i915_gem_object_unpin_map(obj);
return 0;
}
static int i915_guc_log_level_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
if (!USES_GUC(dev_priv))
return -ENODEV;
*val = intel_guc_log_get_level(&dev_priv->guc.log);
return 0;
}
static int i915_guc_log_level_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
if (!USES_GUC(dev_priv))
return -ENODEV;
return intel_guc_log_set_level(&dev_priv->guc.log, val);
}
DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_level_fops,
i915_guc_log_level_get, i915_guc_log_level_set,
"%lld\n");
static int i915_guc_log_relay_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (!USES_GUC(dev_priv))
return -ENODEV;
file->private_data = &dev_priv->guc.log;
return intel_guc_log_relay_open(&dev_priv->guc.log);
}
static ssize_t
i915_guc_log_relay_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct intel_guc_log *log = filp->private_data;
intel_guc_log_relay_flush(log);
return cnt;
}
static int i915_guc_log_relay_release(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
intel_guc_log_relay_close(&dev_priv->guc.log);
return 0;
}
static const struct file_operations i915_guc_log_relay_fops = {
.owner = THIS_MODULE,
.open = i915_guc_log_relay_open,
.write = i915_guc_log_relay_write,
.release = i915_guc_log_relay_release,
};
static const char *psr2_live_status(u32 val)
{
static const char * const live_status[] = {
"IDLE",
"CAPTURE",
"CAPTURE_FS",
"SLEEP",
"BUFON_FW",
"ML_UP",
"SU_STANDBY",
"FAST_SLEEP",
"DEEP_SLEEP",
"BUF_ON",
"TG_ON"
};
val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
if (val < ARRAY_SIZE(live_status))
return live_status[val];
return "unknown";
}
static const char *psr_sink_status(u8 val)
{
static const char * const sink_status[] = {
"inactive",
"transition to active, capture and display",
"active, display from RFB",
"active, capture and display on sink device timings",
"transition to inactive, capture and display, timing re-sync",
"reserved",
"reserved",
"sink internal error"
};
val &= DP_PSR_SINK_STATE_MASK;
if (val < ARRAY_SIZE(sink_status))
return sink_status[val];
return "unknown";
}
static int i915_edp_psr_status(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 psrperf = 0;
bool enabled = false;
bool sink_support;
if (!HAS_PSR(dev_priv))
return -ENODEV;
sink_support = dev_priv->psr.sink_support;
seq_printf(m, "Sink_Support: %s\n", yesno(sink_support));
if (!sink_support)
return 0;
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->psr.lock);
seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
dev_priv->psr.busy_frontbuffer_bits);
if (dev_priv->psr.psr2_enabled)
enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
else
enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
seq_printf(m, "Main link in standby mode: %s\n",
yesno(dev_priv->psr.link_standby));
seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
/*
* SKL+ Perf counter is reset to 0 everytime DC state is entered
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
psrperf = I915_READ(EDP_PSR_PERF_CNT) &
EDP_PSR_PERF_CNT_MASK;
seq_printf(m, "Performance_Counter: %u\n", psrperf);
}
if (dev_priv->psr.psr2_enabled) {
u32 psr2 = I915_READ(EDP_PSR2_STATUS);
seq_printf(m, "EDP_PSR2_STATUS: %x [%s]\n",
psr2, psr2_live_status(psr2));
}
if (dev_priv->psr.enabled) {
struct drm_dp_aux *aux = &dev_priv->psr.enabled->aux;
u8 val;
if (drm_dp_dpcd_readb(aux, DP_PSR_STATUS, &val) == 1)
seq_printf(m, "Sink PSR status: 0x%x [%s]\n", val,
psr_sink_status(val));
}
mutex_unlock(&dev_priv->psr.lock);
if (READ_ONCE(dev_priv->psr.debug)) {
seq_printf(m, "Last attempted entry at: %lld\n",
dev_priv->psr.last_entry_attempt);
seq_printf(m, "Last exit at: %lld\n",
dev_priv->psr.last_exit);
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int
i915_edp_psr_debug_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
if (!CAN_PSR(dev_priv))
return -ENODEV;
DRM_DEBUG_KMS("PSR debug %s\n", enableddisabled(val));
intel_runtime_pm_get(dev_priv);
intel_psr_irq_control(dev_priv, !!val);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int
i915_edp_psr_debug_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
if (!CAN_PSR(dev_priv))
return -ENODEV;
*val = READ_ONCE(dev_priv->psr.debug);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops,
i915_edp_psr_debug_get, i915_edp_psr_debug_set,
"%llu\n");
static int i915_sink_crc(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp = NULL;
struct drm_modeset_acquire_ctx ctx;
int ret;
u8 crc[6];
drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
drm_connector_list_iter_begin(dev, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
struct drm_crtc *crtc;
struct drm_connector_state *state;
struct intel_crtc_state *crtc_state;
if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
continue;
retry:
ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
if (ret)
goto err;
state = connector->base.state;
if (!state->best_encoder)
continue;
crtc = state->crtc;
ret = drm_modeset_lock(&crtc->mutex, &ctx);
if (ret)
goto err;
crtc_state = to_intel_crtc_state(crtc->state);
if (!crtc_state->base.active)
continue;
/*
* We need to wait for all crtc updates to complete, to make
* sure any pending modesets and plane updates are completed.
*/
if (crtc_state->base.commit) {
ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
if (ret)
goto err;
}
intel_dp = enc_to_intel_dp(state->best_encoder);
ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
if (ret)
goto err;
seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
crc[0], crc[1], crc[2],
crc[3], crc[4], crc[5]);
goto out;
err:
if (ret == -EDEADLK) {
ret = drm_modeset_backoff(&ctx);
if (!ret)
goto retry;
}
goto out;
}
ret = -ENODEV;
out:
drm_connector_list_iter_end(&conn_iter);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return ret;
}
static int i915_energy_uJ(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
unsigned long long power;
u32 units;
if (INTEL_GEN(dev_priv) < 6)
return -ENODEV;
intel_runtime_pm_get(dev_priv);
if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
intel_runtime_pm_put(dev_priv);
return -ENODEV;
}
units = (power & 0x1f00) >> 8;
power = I915_READ(MCH_SECP_NRG_STTS);
power = (1000000 * power) >> units; /* convert to uJ */
intel_runtime_pm_put(dev_priv);
seq_printf(m, "%llu", power);
return 0;
}
static int i915_runtime_pm_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct pci_dev *pdev = dev_priv->drm.pdev;
if (!HAS_RUNTIME_PM(dev_priv))
seq_puts(m, "Runtime power management not supported\n");
seq_printf(m, "GPU idle: %s (epoch %u)\n",
yesno(!dev_priv->gt.awake), dev_priv->gt.epoch);
seq_printf(m, "IRQs disabled: %s\n",
yesno(!intel_irqs_enabled(dev_priv)));
#ifdef CONFIG_PM
seq_printf(m, "Usage count: %d\n",
atomic_read(&dev_priv->drm.dev->power.usage_count));
#else
seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
#endif
seq_printf(m, "PCI device power state: %s [%d]\n",
pci_power_name(pdev->current_state),
pdev->current_state);
return 0;
}
static int i915_power_domain_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
int i;
mutex_lock(&power_domains->lock);
seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
for (i = 0; i < power_domains->power_well_count; i++) {
struct i915_power_well *power_well;
enum intel_display_power_domain power_domain;
power_well = &power_domains->power_wells[i];
seq_printf(m, "%-25s %d\n", power_well->name,
power_well->count);
for_each_power_domain(power_domain, power_well->domains)
seq_printf(m, " %-23s %d\n",
intel_display_power_domain_str(power_domain),
power_domains->domain_use_count[power_domain]);
}
mutex_unlock(&power_domains->lock);
return 0;
}
static int i915_dmc_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_csr *csr;
if (!HAS_CSR(dev_priv))
return -ENODEV;
csr = &dev_priv->csr;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
seq_printf(m, "path: %s\n", csr->fw_path);
if (!csr->dmc_payload)
goto out;
seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
CSR_VERSION_MINOR(csr->version));
if (IS_KABYLAKE(dev_priv) ||
(IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
seq_printf(m, "DC3 -> DC5 count: %d\n",
I915_READ(SKL_CSR_DC3_DC5_COUNT));
seq_printf(m, "DC5 -> DC6 count: %d\n",
I915_READ(SKL_CSR_DC5_DC6_COUNT));
} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
seq_printf(m, "DC3 -> DC5 count: %d\n",
I915_READ(BXT_CSR_DC3_DC5_COUNT));
}
out:
seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
intel_runtime_pm_put(dev_priv);
return 0;
}
static void intel_seq_print_mode(struct seq_file *m, int tabs,
struct drm_display_mode *mode)
{
int i;
for (i = 0; i < tabs; i++)
seq_putc(m, '\t');
seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
}
static void intel_encoder_info(struct seq_file *m,
struct intel_crtc *intel_crtc,
struct intel_encoder *intel_encoder)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_connector *intel_connector;
struct drm_encoder *encoder;
encoder = &intel_encoder->base;
seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
encoder->base.id, encoder->name);
for_each_connector_on_encoder(dev, encoder, intel_connector) {
struct drm_connector *connector = &intel_connector->base;
seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
connector->base.id,
connector->name,
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
struct drm_display_mode *mode = &crtc->mode;
seq_printf(m, ", mode:\n");
intel_seq_print_mode(m, 2, mode);
} else {
seq_putc(m, '\n');
}
}
}
static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_encoder *intel_encoder;
struct drm_plane_state *plane_state = crtc->primary->state;
struct drm_framebuffer *fb = plane_state->fb;
if (fb)
seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
fb->base.id, plane_state->src_x >> 16,
plane_state->src_y >> 16, fb->width, fb->height);
else
seq_puts(m, "\tprimary plane disabled\n");
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
intel_encoder_info(m, intel_crtc, intel_encoder);
}
static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
{
struct drm_display_mode *mode = panel->fixed_mode;
seq_printf(m, "\tfixed mode:\n");
intel_seq_print_mode(m, 2, mode);
}
static void intel_dp_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
intel_panel_info(m, &intel_connector->panel);
drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
&intel_dp->aux);
}
static void intel_dp_mst_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_dp_mst_encoder *intel_mst =
enc_to_mst(&intel_encoder->base);
struct intel_digital_port *intel_dig_port = intel_mst->primary;
struct intel_dp *intel_dp = &intel_dig_port->dp;
bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
intel_connector->port);
seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
}
static void intel_hdmi_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
}
static void intel_lvds_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
intel_panel_info(m, &intel_connector->panel);
}
static void intel_connector_info(struct seq_file *m,
struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct drm_display_mode *mode;
seq_printf(m, "connector %d: type %s, status: %s\n",
connector->base.id, connector->name,
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
seq_printf(m, "\tname: %s\n", connector->display_info.name);
seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
connector->display_info.width_mm,
connector->display_info.height_mm);
seq_printf(m, "\tsubpixel order: %s\n",
drm_get_subpixel_order_name(connector->display_info.subpixel_order));
seq_printf(m, "\tCEA rev: %d\n",
connector->display_info.cea_rev);
}
if (!intel_encoder)
return;
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_DisplayPort:
case DRM_MODE_CONNECTOR_eDP:
if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
intel_dp_mst_info(m, intel_connector);
else
intel_dp_info(m, intel_connector);
break;
case DRM_MODE_CONNECTOR_LVDS:
if (intel_encoder->type == INTEL_OUTPUT_LVDS)
intel_lvds_info(m, intel_connector);
break;
case DRM_MODE_CONNECTOR_HDMIA:
if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
intel_encoder->type == INTEL_OUTPUT_DDI)
intel_hdmi_info(m, intel_connector);
break;
default:
break;
}
seq_printf(m, "\tmodes:\n");
list_for_each_entry(mode, &connector->modes, head)
intel_seq_print_mode(m, 2, mode);
}
static const char *plane_type(enum drm_plane_type type)
{
switch (type) {
case DRM_PLANE_TYPE_OVERLAY:
return "OVL";
case DRM_PLANE_TYPE_PRIMARY:
return "PRI";
case DRM_PLANE_TYPE_CURSOR:
return "CUR";
/*
* Deliberately omitting default: to generate compiler warnings
* when a new drm_plane_type gets added.
*/
}
return "unknown";
}
static const char *plane_rotation(unsigned int rotation)
{
static char buf[48];
/*
* According to doc only one DRM_MODE_ROTATE_ is allowed but this
* will print them all to visualize if the values are misused
*/
snprintf(buf, sizeof(buf),
"%s%s%s%s%s%s(0x%08x)",
(rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
(rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
(rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
(rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
(rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
(rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
rotation);
return buf;
}
static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_plane *intel_plane;
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
struct drm_plane_state *state;
struct drm_plane *plane = &intel_plane->base;
struct drm_format_name_buf format_name;
if (!plane->state) {
seq_puts(m, "plane->state is NULL!\n");
continue;
}
state = plane->state;
if (state->fb) {
drm_get_format_name(state->fb->format->format,
&format_name);
} else {
sprintf(format_name.str, "N/A");
}
seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
plane->base.id,
plane_type(intel_plane->base.type),
state->crtc_x, state->crtc_y,
state->crtc_w, state->crtc_h,
(state->src_x >> 16),
((state->src_x & 0xffff) * 15625) >> 10,
(state->src_y >> 16),
((state->src_y & 0xffff) * 15625) >> 10,
(state->src_w >> 16),
((state->src_w & 0xffff) * 15625) >> 10,
(state->src_h >> 16),
((state->src_h & 0xffff) * 15625) >> 10,
format_name.str,
plane_rotation(state->rotation));
}
}
static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct intel_crtc_state *pipe_config;
int num_scalers = intel_crtc->num_scalers;
int i;
pipe_config = to_intel_crtc_state(intel_crtc->base.state);
/* Not all platformas have a scaler */
if (num_scalers) {
seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
num_scalers,
pipe_config->scaler_state.scaler_users,
pipe_config->scaler_state.scaler_id);
for (i = 0; i < num_scalers; i++) {
struct intel_scaler *sc =
&pipe_config->scaler_state.scalers[i];
seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
i, yesno(sc->in_use), sc->mode);
}
seq_puts(m, "\n");
} else {
seq_puts(m, "\tNo scalers available on this platform\n");
}
}
static int i915_display_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *crtc;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "CRTC info\n");
seq_printf(m, "---------\n");
for_each_intel_crtc(dev, crtc) {
struct intel_crtc_state *pipe_config;
drm_modeset_lock(&crtc->base.mutex, NULL);
pipe_config = to_intel_crtc_state(crtc->base.state);
seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
crtc->base.base.id, pipe_name(crtc->pipe),
yesno(pipe_config->base.active),
pipe_config->pipe_src_w, pipe_config->pipe_src_h,
yesno(pipe_config->dither), pipe_config->pipe_bpp);
if (pipe_config->base.active) {
struct intel_plane *cursor =
to_intel_plane(crtc->base.cursor);
intel_crtc_info(m, crtc);
seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
yesno(cursor->base.state->visible),
cursor->base.state->crtc_x,
cursor->base.state->crtc_y,
cursor->base.state->crtc_w,
cursor->base.state->crtc_h,
cursor->cursor.base);
intel_scaler_info(m, crtc);
intel_plane_info(m, crtc);
}
seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
yesno(!crtc->cpu_fifo_underrun_disabled),
yesno(!crtc->pch_fifo_underrun_disabled));
drm_modeset_unlock(&crtc->base.mutex);
}
seq_printf(m, "\n");
seq_printf(m, "Connector info\n");
seq_printf(m, "--------------\n");
mutex_lock(&dev->mode_config.mutex);
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter)
intel_connector_info(m, connector);
drm_connector_list_iter_end(&conn_iter);
mutex_unlock(&dev->mode_config.mutex);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_engine_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct drm_printer p;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "GT awake? %s (epoch %u)\n",
yesno(dev_priv->gt.awake), dev_priv->gt.epoch);
seq_printf(m, "Global active requests: %d\n",
dev_priv->gt.active_requests);
seq_printf(m, "CS timestamp frequency: %u kHz\n",
dev_priv->info.cs_timestamp_frequency_khz);
p = drm_seq_file_printer(m);
for_each_engine(engine, dev_priv, id)
intel_engine_dump(engine, &p, "%s\n", engine->name);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_rcs_topology(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_printer p = drm_seq_file_printer(m);
intel_device_info_dump_topology(&INTEL_INFO(dev_priv)->sseu, &p);
return 0;
}
static int i915_shrinker_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
return 0;
}
static int i915_shared_dplls_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
int i;
drm_modeset_lock_all(dev);
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->info->name,
pll->info->id);
seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
seq_printf(m, " tracked hardware state:\n");
seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
seq_printf(m, " dpll_md: 0x%08x\n",
pll->state.hw_state.dpll_md);
seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
seq_printf(m, " cfgcr0: 0x%08x\n", pll->state.hw_state.cfgcr0);
seq_printf(m, " cfgcr1: 0x%08x\n", pll->state.hw_state.cfgcr1);
seq_printf(m, " mg_refclkin_ctl: 0x%08x\n",
pll->state.hw_state.mg_refclkin_ctl);
seq_printf(m, " mg_clktop2_coreclkctl1: 0x%08x\n",
pll->state.hw_state.mg_clktop2_coreclkctl1);
seq_printf(m, " mg_clktop2_hsclkctl: 0x%08x\n",
pll->state.hw_state.mg_clktop2_hsclkctl);
seq_printf(m, " mg_pll_div0: 0x%08x\n",
pll->state.hw_state.mg_pll_div0);
seq_printf(m, " mg_pll_div1: 0x%08x\n",
pll->state.hw_state.mg_pll_div1);
seq_printf(m, " mg_pll_lf: 0x%08x\n",
pll->state.hw_state.mg_pll_lf);
seq_printf(m, " mg_pll_frac_lock: 0x%08x\n",
pll->state.hw_state.mg_pll_frac_lock);
seq_printf(m, " mg_pll_ssc: 0x%08x\n",
pll->state.hw_state.mg_pll_ssc);
seq_printf(m, " mg_pll_bias: 0x%08x\n",
pll->state.hw_state.mg_pll_bias);
seq_printf(m, " mg_pll_tdc_coldst_bias: 0x%08x\n",
pll->state.hw_state.mg_pll_tdc_coldst_bias);
}
drm_modeset_unlock_all(dev);
return 0;
}
static int i915_wa_registers(struct seq_file *m, void *unused)
{
struct i915_workarounds *wa = &node_to_i915(m->private)->workarounds;
int i;
seq_printf(m, "Workarounds applied: %d\n", wa->count);
for (i = 0; i < wa->count; ++i)
seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
wa->reg[i].addr, wa->reg[i].value, wa->reg[i].mask);
return 0;
}
static int i915_ipc_status_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
seq_printf(m, "Isochronous Priority Control: %s\n",
yesno(dev_priv->ipc_enabled));
return 0;
}
static int i915_ipc_status_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (!HAS_IPC(dev_priv))
return -ENODEV;
return single_open(file, i915_ipc_status_show, dev_priv);
}
static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
int ret;
bool enable;
ret = kstrtobool_from_user(ubuf, len, &enable);
if (ret < 0)
return ret;
intel_runtime_pm_get(dev_priv);
if (!dev_priv->ipc_enabled && enable)
DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
dev_priv->wm.distrust_bios_wm = true;
dev_priv->ipc_enabled = enable;
intel_enable_ipc(dev_priv);
intel_runtime_pm_put(dev_priv);
return len;
}
static const struct file_operations i915_ipc_status_fops = {
.owner = THIS_MODULE,
.open = i915_ipc_status_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = i915_ipc_status_write
};
static int i915_ddb_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct skl_ddb_allocation *ddb;
struct skl_ddb_entry *entry;
enum pipe pipe;
int plane;
if (INTEL_GEN(dev_priv) < 9)
return -ENODEV;
drm_modeset_lock_all(dev);
ddb = &dev_priv->wm.skl_hw.ddb;
seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
for_each_pipe(dev_priv, pipe) {
seq_printf(m, "Pipe %c\n", pipe_name(pipe));
for_each_universal_plane(dev_priv, pipe, plane) {
entry = &ddb->plane[pipe][plane];
seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
entry->start, entry->end,
skl_ddb_entry_size(entry));
}
entry = &ddb->plane[pipe][PLANE_CURSOR];
seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
entry->end, skl_ddb_entry_size(entry));
}
drm_modeset_unlock_all(dev);
return 0;
}
static void drrs_status_per_crtc(struct seq_file *m,
struct drm_device *dev,
struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_drrs *drrs = &dev_priv->drrs;
int vrefresh = 0;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->state->crtc != &intel_crtc->base)
continue;
seq_printf(m, "%s:\n", connector->name);
}
drm_connector_list_iter_end(&conn_iter);
if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
seq_puts(m, "\tVBT: DRRS_type: Static");
else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
seq_puts(m, "\tVBT: DRRS_type: Seamless");
else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
seq_puts(m, "\tVBT: DRRS_type: None");
else
seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
seq_puts(m, "\n\n");
if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
struct intel_panel *panel;
mutex_lock(&drrs->mutex);
/* DRRS Supported */
seq_puts(m, "\tDRRS Supported: Yes\n");
/* disable_drrs() will make drrs->dp NULL */
if (!drrs->dp) {
seq_puts(m, "Idleness DRRS: Disabled\n");
if (dev_priv->psr.enabled)
seq_puts(m,
"\tAs PSR is enabled, DRRS is not enabled\n");
mutex_unlock(&drrs->mutex);
return;
}
panel = &drrs->dp->attached_connector->panel;
seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
drrs->busy_frontbuffer_bits);
seq_puts(m, "\n\t\t");
if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
vrefresh = panel->fixed_mode->vrefresh;
} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
vrefresh = panel->downclock_mode->vrefresh;
} else {
seq_printf(m, "DRRS_State: Unknown(%d)\n",
drrs->refresh_rate_type);
mutex_unlock(&drrs->mutex);
return;
}
seq_printf(m, "\t\tVrefresh: %d", vrefresh);
seq_puts(m, "\n\t\t");
mutex_unlock(&drrs->mutex);
} else {
/* DRRS not supported. Print the VBT parameter*/
seq_puts(m, "\tDRRS Supported : No");
}
seq_puts(m, "\n");
}
static int i915_drrs_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *intel_crtc;
int active_crtc_cnt = 0;
drm_modeset_lock_all(dev);
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->base.state->active) {
active_crtc_cnt++;
seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
drrs_status_per_crtc(m, dev, intel_crtc);
}
}
drm_modeset_unlock_all(dev);
if (!active_crtc_cnt)
seq_puts(m, "No active crtc found\n");
return 0;
}
static int i915_dp_mst_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_encoder *intel_encoder;
struct intel_digital_port *intel_dig_port;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
continue;
intel_encoder = intel_attached_encoder(connector);
if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
continue;
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
if (!intel_dig_port->dp.can_mst)
continue;
seq_printf(m, "MST Source Port %c\n",
port_name(intel_dig_port->base.port));
drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
static ssize_t i915_displayport_test_active_write(struct file *file,
const char __user *ubuf,
size_t len, loff_t *offp)
{
char *input_buffer;
int status = 0;
struct drm_device *dev;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
int val = 0;
dev = ((struct seq_file *)file->private_data)->private;
if (len == 0)
return 0;
input_buffer = memdup_user_nul(ubuf, len);
if (IS_ERR(input_buffer))
return PTR_ERR(input_buffer);
DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
status = kstrtoint(input_buffer, 10, &val);
if (status < 0)
break;
DRM_DEBUG_DRIVER("Got %d for test active\n", val);
/* To prevent erroneous activation of the compliance
* testing code, only accept an actual value of 1 here
*/
if (val == 1)
intel_dp->compliance.test_active = 1;
else
intel_dp->compliance.test_active = 0;
}
}
drm_connector_list_iter_end(&conn_iter);
kfree(input_buffer);
if (status < 0)
return status;
*offp += len;
return len;
}
static int i915_displayport_test_active_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
if (intel_dp->compliance.test_active)
seq_puts(m, "1");
else
seq_puts(m, "0");
} else
seq_puts(m, "0");
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
static int i915_displayport_test_active_open(struct inode *inode,
struct file *file)
{
return single_open(file, i915_displayport_test_active_show,
inode->i_private);
}
static const struct file_operations i915_displayport_test_active_fops = {
.owner = THIS_MODULE,
.open = i915_displayport_test_active_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = i915_displayport_test_active_write
};
static int i915_displayport_test_data_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
if (intel_dp->compliance.test_type ==
DP_TEST_LINK_EDID_READ)
seq_printf(m, "%lx",
intel_dp->compliance.test_data.edid);
else if (intel_dp->compliance.test_type ==
DP_TEST_LINK_VIDEO_PATTERN) {
seq_printf(m, "hdisplay: %d\n",
intel_dp->compliance.test_data.hdisplay);
seq_printf(m, "vdisplay: %d\n",
intel_dp->compliance.test_data.vdisplay);
seq_printf(m, "bpc: %u\n",
intel_dp->compliance.test_data.bpc);
}
} else
seq_puts(m, "0");
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_data);
static int i915_displayport_test_type_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
seq_printf(m, "%02lx", intel_dp->compliance.test_type);
} else
seq_puts(m, "0");
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_type);
static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
int level;
int num_levels;
if (IS_CHERRYVIEW(dev_priv))
num_levels = 3;
else if (IS_VALLEYVIEW(dev_priv))
num_levels = 1;
else if (IS_G4X(dev_priv))
num_levels = 3;
else
num_levels = ilk_wm_max_level(dev_priv) + 1;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++) {
unsigned int latency = wm[level];
/*
* - WM1+ latency values in 0.5us units
* - latencies are in us on gen9/vlv/chv
*/
if (INTEL_GEN(dev_priv) >= 9 ||
IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv) ||
IS_G4X(dev_priv))
latency *= 10;
else if (level > 0)
latency *= 5;
seq_printf(m, "WM%d %u (%u.%u usec)\n",
level, wm[level], latency / 10, latency % 10);
}
drm_modeset_unlock_all(dev);
}
static int pri_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
const uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.pri_latency;
wm_latency_show(m, latencies);
return 0;
}
static int spr_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
const uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.spr_latency;
wm_latency_show(m, latencies);
return 0;
}
static int cur_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
const uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.cur_latency;
wm_latency_show(m, latencies);
return 0;
}
static int pri_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
return -ENODEV;
return single_open(file, pri_wm_latency_show, dev_priv);
}
static int spr_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (HAS_GMCH_DISPLAY(dev_priv))
return -ENODEV;
return single_open(file, spr_wm_latency_show, dev_priv);
}
static int cur_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (HAS_GMCH_DISPLAY(dev_priv))
return -ENODEV;
return single_open(file, cur_wm_latency_show, dev_priv);
}
static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp, uint16_t wm[8])
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
uint16_t new[8] = { 0 };
int num_levels;
int level;
int ret;
char tmp[32];
if (IS_CHERRYVIEW(dev_priv))
num_levels = 3;
else if (IS_VALLEYVIEW(dev_priv))
num_levels = 1;
else if (IS_G4X(dev_priv))
num_levels = 3;
else
num_levels = ilk_wm_max_level(dev_priv) + 1;
if (len >= sizeof(tmp))
return -EINVAL;
if (copy_from_user(tmp, ubuf, len))
return -EFAULT;
tmp[len] = '\0';
ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
&new[0], &new[1], &new[2], &new[3],
&new[4], &new[5], &new[6], &new[7]);
if (ret != num_levels)
return -EINVAL;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++)
wm[level] = new[level];
drm_modeset_unlock_all(dev);
return len;
}
static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.pri_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.spr_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.cur_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static const struct file_operations i915_pri_wm_latency_fops = {
.owner = THIS_MODULE,
.open = pri_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = pri_wm_latency_write
};
static const struct file_operations i915_spr_wm_latency_fops = {
.owner = THIS_MODULE,
.open = spr_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = spr_wm_latency_write
};
static const struct file_operations i915_cur_wm_latency_fops = {
.owner = THIS_MODULE,
.open = cur_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = cur_wm_latency_write
};
static int
i915_wedged_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
*val = i915_terminally_wedged(&dev_priv->gpu_error);
return 0;
}
static int
i915_wedged_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
struct intel_engine_cs *engine;
unsigned int tmp;
/*
* There is no safeguard against this debugfs entry colliding
* with the hangcheck calling same i915_handle_error() in
* parallel, causing an explosion. For now we assume that the
* test harness is responsible enough not to inject gpu hangs
* while it is writing to 'i915_wedged'
*/
if (i915_reset_backoff(&i915->gpu_error))
return -EAGAIN;
for_each_engine_masked(engine, i915, val, tmp) {
engine->hangcheck.seqno = intel_engine_get_seqno(engine);
engine->hangcheck.stalled = true;
}
i915_handle_error(i915, val, I915_ERROR_CAPTURE,
"Manually set wedged engine mask = %llx", val);
wait_on_bit(&i915->gpu_error.flags,
I915_RESET_HANDOFF,
TASK_UNINTERRUPTIBLE);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
i915_wedged_get, i915_wedged_set,
"%llu\n");
static int
fault_irq_set(struct drm_i915_private *i915,
unsigned long *irq,
unsigned long val)
{
int err;
err = mutex_lock_interruptible(&i915->drm.struct_mutex);
if (err)
return err;
err = i915_gem_wait_for_idle(i915,
I915_WAIT_LOCKED |
I915_WAIT_INTERRUPTIBLE);
if (err)
goto err_unlock;
*irq = val;
mutex_unlock(&i915->drm.struct_mutex);
/* Flush idle worker to disarm irq */
drain_delayed_work(&i915->gt.idle_work);
return 0;
err_unlock:
mutex_unlock(&i915->drm.struct_mutex);
return err;
}
static int
i915_ring_missed_irq_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
*val = dev_priv->gpu_error.missed_irq_rings;
return 0;
}
static int
i915_ring_missed_irq_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
i915_ring_missed_irq_get, i915_ring_missed_irq_set,
"0x%08llx\n");
static int
i915_ring_test_irq_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
*val = dev_priv->gpu_error.test_irq_rings;
return 0;
}
static int
i915_ring_test_irq_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
val &= INTEL_INFO(i915)->ring_mask;
DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
i915_ring_test_irq_get, i915_ring_test_irq_set,
"0x%08llx\n");
#define DROP_UNBOUND BIT(0)
#define DROP_BOUND BIT(1)
#define DROP_RETIRE BIT(2)
#define DROP_ACTIVE BIT(3)
#define DROP_FREED BIT(4)
#define DROP_SHRINK_ALL BIT(5)
#define DROP_IDLE BIT(6)
#define DROP_ALL (DROP_UNBOUND | \
DROP_BOUND | \
DROP_RETIRE | \
DROP_ACTIVE | \
DROP_FREED | \
DROP_SHRINK_ALL |\
DROP_IDLE)
static int
i915_drop_caches_get(void *data, u64 *val)
{
*val = DROP_ALL;
return 0;
}
static int
i915_drop_caches_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
struct drm_device *dev = &dev_priv->drm;
int ret = 0;
DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
val, val & DROP_ALL);
/* No need to check and wait for gpu resets, only libdrm auto-restarts
* on ioctls on -EAGAIN. */
if (val & (DROP_ACTIVE | DROP_RETIRE)) {
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (val & DROP_ACTIVE)
ret = i915_gem_wait_for_idle(dev_priv,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED);
if (val & DROP_RETIRE)
i915_retire_requests(dev_priv);
mutex_unlock(&dev->struct_mutex);
}
fs_reclaim_acquire(GFP_KERNEL);
if (val & DROP_BOUND)
i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
if (val & DROP_UNBOUND)
i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
if (val & DROP_SHRINK_ALL)
i915_gem_shrink_all(dev_priv);
fs_reclaim_release(GFP_KERNEL);
if (val & DROP_IDLE) {
do {
if (READ_ONCE(dev_priv->gt.active_requests))
flush_delayed_work(&dev_priv->gt.retire_work);
drain_delayed_work(&dev_priv->gt.idle_work);
} while (READ_ONCE(dev_priv->gt.awake));
}
if (val & DROP_FREED)
i915_gem_drain_freed_objects(dev_priv);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
i915_drop_caches_get, i915_drop_caches_set,
"0x%08llx\n");
static int
i915_cache_sharing_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
u32 snpcr;
if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
intel_runtime_pm_put(dev_priv);
*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
return 0;
}
static int
i915_cache_sharing_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
u32 snpcr;
if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
return -ENODEV;
if (val > 3)
return -EINVAL;
intel_runtime_pm_get(dev_priv);
DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
intel_runtime_pm_put(dev_priv);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
i915_cache_sharing_get, i915_cache_sharing_set,
"%llu\n");
static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 2
const int ss_max = SS_MAX;
u32 sig1[SS_MAX], sig2[SS_MAX];
int ss;
sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (sig1[ss] & CHV_SS_PG_ENABLE)
/* skip disabled subslice */
continue;
sseu->slice_mask = BIT(0);
sseu->subslice_mask[0] |= BIT(ss);
eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice, eu_cnt);
}
#undef SS_MAX
}
static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 6
const struct intel_device_info *info = INTEL_INFO(dev_priv);
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
/*
* FIXME: Valid SS Mask respects the spec and read
* only valid bits for those registers, excluding reserverd
* although this seems wrong because it would leave many
* subslices without ACK.
*/
s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
GEN10_PGCTL_VALID_SS_MASK(s);
eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
sseu->subslice_mask[s] = info->sseu.subslice_mask[s];
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
eu_mask[ss % 2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 3
const struct intel_device_info *info = INTEL_INFO(dev_priv);
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
if (IS_GEN9_BC(dev_priv))
sseu->subslice_mask[s] =
INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
if (IS_GEN9_LP(dev_priv)) {
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
sseu->subslice_mask[s] |= BIT(ss);
}
eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
eu_mask[ss%2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
int s;
sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
if (sseu->slice_mask) {
sseu->eu_per_subslice =
INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
for (s = 0; s < fls(sseu->slice_mask); s++) {
sseu->subslice_mask[s] =
INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
}
sseu->eu_total = sseu->eu_per_subslice *
sseu_subslice_total(sseu);
/* subtract fused off EU(s) from enabled slice(s) */
for (s = 0; s < fls(sseu->slice_mask); s++) {
u8 subslice_7eu =
INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
sseu->eu_total -= hweight8(subslice_7eu);
}
}
}
static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
const struct sseu_dev_info *sseu)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const char *type = is_available_info ? "Available" : "Enabled";
int s;
seq_printf(m, " %s Slice Mask: %04x\n", type,
sseu->slice_mask);
seq_printf(m, " %s Slice Total: %u\n", type,
hweight8(sseu->slice_mask));
seq_printf(m, " %s Subslice Total: %u\n", type,
sseu_subslice_total(sseu));
for (s = 0; s < fls(sseu->slice_mask); s++) {
seq_printf(m, " %s Slice%i subslices: %u\n", type,
s, hweight8(sseu->subslice_mask[s]));
}
seq_printf(m, " %s EU Total: %u\n", type,
sseu->eu_total);
seq_printf(m, " %s EU Per Subslice: %u\n", type,
sseu->eu_per_subslice);
if (!is_available_info)
return;
seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
if (HAS_POOLED_EU(dev_priv))
seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
seq_printf(m, " Has Slice Power Gating: %s\n",
yesno(sseu->has_slice_pg));
seq_printf(m, " Has Subslice Power Gating: %s\n",
yesno(sseu->has_subslice_pg));
seq_printf(m, " Has EU Power Gating: %s\n",
yesno(sseu->has_eu_pg));
}
static int i915_sseu_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct sseu_dev_info sseu;
if (INTEL_GEN(dev_priv) < 8)
return -ENODEV;
seq_puts(m, "SSEU Device Info\n");
i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
seq_puts(m, "SSEU Device Status\n");
memset(&sseu, 0, sizeof(sseu));
sseu.max_slices = INTEL_INFO(dev_priv)->sseu.max_slices;
sseu.max_subslices = INTEL_INFO(dev_priv)->sseu.max_subslices;
sseu.max_eus_per_subslice =
INTEL_INFO(dev_priv)->sseu.max_eus_per_subslice;
intel_runtime_pm_get(dev_priv);
if (IS_CHERRYVIEW(dev_priv)) {
cherryview_sseu_device_status(dev_priv, &sseu);
} else if (IS_BROADWELL(dev_priv)) {
broadwell_sseu_device_status(dev_priv, &sseu);
} else if (IS_GEN9(dev_priv)) {
gen9_sseu_device_status(dev_priv, &sseu);
} else if (INTEL_GEN(dev_priv) >= 10) {
gen10_sseu_device_status(dev_priv, &sseu);
}
intel_runtime_pm_put(dev_priv);
i915_print_sseu_info(m, false, &sseu);
return 0;
}
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
if (INTEL_GEN(i915) < 6)
return 0;
intel_runtime_pm_get(i915);
intel_uncore_forcewake_user_get(i915);
return 0;
}
static int i915_forcewake_release(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
if (INTEL_GEN(i915) < 6)
return 0;
intel_uncore_forcewake_user_put(i915);
intel_runtime_pm_put(i915);
return 0;
}
static const struct file_operations i915_forcewake_fops = {
.owner = THIS_MODULE,
.open = i915_forcewake_open,
.release = i915_forcewake_release,
};
static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct i915_hotplug *hotplug = &dev_priv->hotplug;
seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
seq_printf(m, "Detected: %s\n",
yesno(delayed_work_pending(&hotplug->reenable_work)));
return 0;
}
static ssize_t i915_hpd_storm_ctl_write(struct file *file,
const char __user *ubuf, size_t len,
loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
struct i915_hotplug *hotplug = &dev_priv->hotplug;
unsigned int new_threshold;
int i;
char *newline;
char tmp[16];
if (len >= sizeof(tmp))
return -EINVAL;
if (copy_from_user(tmp, ubuf, len))
return -EFAULT;
tmp[len] = '\0';
/* Strip newline, if any */
newline = strchr(tmp, '\n');
if (newline)
*newline = '\0';
if (strcmp(tmp, "reset") == 0)
new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
else if (kstrtouint(tmp, 10, &new_threshold) != 0)
return -EINVAL;
if (new_threshold > 0)
DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
new_threshold);
else
DRM_DEBUG_KMS("Disabling HPD storm detection\n");
spin_lock_irq(&dev_priv->irq_lock);
hotplug->hpd_storm_threshold = new_threshold;
/* Reset the HPD storm stats so we don't accidentally trigger a storm */
for_each_hpd_pin(i)
hotplug->stats[i].count = 0;
spin_unlock_irq(&dev_priv->irq_lock);
/* Re-enable hpd immediately if we were in an irq storm */
flush_delayed_work(&dev_priv->hotplug.reenable_work);
return len;
}
static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
{
return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
}
static const struct file_operations i915_hpd_storm_ctl_fops = {
.owner = THIS_MODULE,
.open = i915_hpd_storm_ctl_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = i915_hpd_storm_ctl_write
};
static int i915_drrs_ctl_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *intel_crtc;
struct intel_encoder *encoder;
struct intel_dp *intel_dp;
if (INTEL_GEN(dev_priv) < 7)
return -ENODEV;
drm_modeset_lock_all(dev);
for_each_intel_crtc(dev, intel_crtc) {
if (!intel_crtc->base.state->active ||
!intel_crtc->config->has_drrs)
continue;
for_each_encoder_on_crtc(dev, &intel_crtc->base, encoder) {
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n",
val ? "en" : "dis", val);
intel_dp = enc_to_intel_dp(&encoder->base);
if (val)
intel_edp_drrs_enable(intel_dp,
intel_crtc->config);
else
intel_edp_drrs_disable(intel_dp,
intel_crtc->config);
}
}
drm_modeset_unlock_all(dev);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n");
static ssize_t
i915_fifo_underrun_reset_write(struct file *filp,
const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
struct drm_i915_private *dev_priv = filp->private_data;
struct intel_crtc *intel_crtc;
struct drm_device *dev = &dev_priv->drm;
int ret;
bool reset;
ret = kstrtobool_from_user(ubuf, cnt, &reset);
if (ret)
return ret;
if (!reset)
return cnt;
for_each_intel_crtc(dev, intel_crtc) {
struct drm_crtc_commit *commit;
struct intel_crtc_state *crtc_state;
ret = drm_modeset_lock_single_interruptible(&intel_crtc->base.mutex);
if (ret)
return ret;
crtc_state = to_intel_crtc_state(intel_crtc->base.state);
commit = crtc_state->base.commit;
if (commit) {
ret = wait_for_completion_interruptible(&commit->hw_done);
if (!ret)
ret = wait_for_completion_interruptible(&commit->flip_done);
}
if (!ret && crtc_state->base.active) {
DRM_DEBUG_KMS("Re-arming FIFO underruns on pipe %c\n",
pipe_name(intel_crtc->pipe));
intel_crtc_arm_fifo_underrun(intel_crtc, crtc_state);
}
drm_modeset_unlock(&intel_crtc->base.mutex);
if (ret)
return ret;
}
ret = intel_fbc_reset_underrun(dev_priv);
if (ret)
return ret;
return cnt;
}
static const struct file_operations i915_fifo_underrun_reset_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = i915_fifo_underrun_reset_write,
.llseek = default_llseek,
};
static const struct drm_info_list i915_debugfs_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_gtt", i915_gem_gtt_info, 0},
{"i915_gem_stolen", i915_gem_stolen_list_info },
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
{"i915_guc_info", i915_guc_info, 0},
{"i915_guc_load_status", i915_guc_load_status_info, 0},
{"i915_guc_log_dump", i915_guc_log_dump, 0},
{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
{"i915_huc_load_status", i915_huc_load_status_info, 0},
{"i915_frequency_info", i915_frequency_info, 0},
{"i915_hangcheck_info", i915_hangcheck_info, 0},
{"i915_reset_info", i915_reset_info, 0},
{"i915_drpc_info", i915_drpc_info, 0},
{"i915_emon_status", i915_emon_status, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
{"i915_fbc_status", i915_fbc_status, 0},
{"i915_ips_status", i915_ips_status, 0},
{"i915_sr_status", i915_sr_status, 0},
{"i915_opregion", i915_opregion, 0},
{"i915_vbt", i915_vbt, 0},
{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_forcewake_domains", i915_forcewake_domains, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_ppgtt_info", i915_ppgtt_info, 0},
{"i915_llc", i915_llc, 0},
{"i915_edp_psr_status", i915_edp_psr_status, 0},
{"i915_sink_crc_eDP1", i915_sink_crc, 0},
{"i915_energy_uJ", i915_energy_uJ, 0},
{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
{"i915_power_domain_info", i915_power_domain_info, 0},
{"i915_dmc_info", i915_dmc_info, 0},
{"i915_display_info", i915_display_info, 0},
{"i915_engine_info", i915_engine_info, 0},
{"i915_rcs_topology", i915_rcs_topology, 0},
{"i915_shrinker_info", i915_shrinker_info, 0},
{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
{"i915_dp_mst_info", i915_dp_mst_info, 0},
{"i915_wa_registers", i915_wa_registers, 0},
{"i915_ddb_info", i915_ddb_info, 0},
{"i915_sseu_status", i915_sseu_status, 0},
{"i915_drrs_status", i915_drrs_status, 0},
{"i915_rps_boost_info", i915_rps_boost_info, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
static const struct i915_debugfs_files {
const char *name;
const struct file_operations *fops;
} i915_debugfs_files[] = {
{"i915_wedged", &i915_wedged_fops},
{"i915_cache_sharing", &i915_cache_sharing_fops},
{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
{"i915_ring_test_irq", &i915_ring_test_irq_fops},
{"i915_gem_drop_caches", &i915_drop_caches_fops},
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
{"i915_error_state", &i915_error_state_fops},
{"i915_gpu_info", &i915_gpu_info_fops},
#endif
{"i915_fifo_underrun_reset", &i915_fifo_underrun_reset_ops},
{"i915_next_seqno", &i915_next_seqno_fops},
{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
{"i915_fbc_false_color", &i915_fbc_false_color_fops},
{"i915_dp_test_data", &i915_displayport_test_data_fops},
{"i915_dp_test_type", &i915_displayport_test_type_fops},
{"i915_dp_test_active", &i915_displayport_test_active_fops},
{"i915_guc_log_level", &i915_guc_log_level_fops},
{"i915_guc_log_relay", &i915_guc_log_relay_fops},
{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
{"i915_ipc_status", &i915_ipc_status_fops},
{"i915_drrs_ctl", &i915_drrs_ctl_fops},
{"i915_edp_psr_debug", &i915_edp_psr_debug_fops}
};
int i915_debugfs_register(struct drm_i915_private *dev_priv)
{
struct drm_minor *minor = dev_priv->drm.primary;
struct dentry *ent;
int ret, i;
ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
minor->debugfs_root, to_i915(minor->dev),
&i915_forcewake_fops);
if (!ent)
return -ENOMEM;
ret = intel_pipe_crc_create(minor);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
ent = debugfs_create_file(i915_debugfs_files[i].name,
S_IRUGO | S_IWUSR,
minor->debugfs_root,
to_i915(minor->dev),
i915_debugfs_files[i].fops);
if (!ent)
return -ENOMEM;
}
return drm_debugfs_create_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES,
minor->debugfs_root, minor);
}
struct dpcd_block {
/* DPCD dump start address. */
unsigned int offset;
/* DPCD dump end address, inclusive. If unset, .size will be used. */
unsigned int end;
/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
size_t size;
/* Only valid for eDP. */
bool edp;
};
static const struct dpcd_block i915_dpcd_debug[] = {
{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
{ .offset = DP_SET_POWER },
{ .offset = DP_EDP_DPCD_REV },
{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
};
static int i915_dpcd_show(struct seq_file *m, void *data)
{
struct drm_connector *connector = m->private;
struct intel_dp *intel_dp =
enc_to_intel_dp(&intel_attached_encoder(connector)->base);
uint8_t buf[16];
ssize_t err;
int i;
if (connector->status != connector_status_connected)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
const struct dpcd_block *b = &i915_dpcd_debug[i];
size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
if (b->edp &&
connector->connector_type != DRM_MODE_CONNECTOR_eDP)
continue;
/* low tech for now */
if (WARN_ON(size > sizeof(buf)))
continue;
err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
if (err <= 0) {
DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
size, b->offset, err);
continue;
}
seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_dpcd);
static int i915_panel_show(struct seq_file *m, void *data)
{
struct drm_connector *connector = m->private;
struct intel_dp *intel_dp =
enc_to_intel_dp(&intel_attached_encoder(connector)->base);
if (connector->status != connector_status_connected)
return -ENODEV;
seq_printf(m, "Panel power up delay: %d\n",
intel_dp->panel_power_up_delay);
seq_printf(m, "Panel power down delay: %d\n",
intel_dp->panel_power_down_delay);
seq_printf(m, "Backlight on delay: %d\n",
intel_dp->backlight_on_delay);
seq_printf(m, "Backlight off delay: %d\n",
intel_dp->backlight_off_delay);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_panel);
/**
* i915_debugfs_connector_add - add i915 specific connector debugfs files
* @connector: pointer to a registered drm_connector
*
* Cleanup will be done by drm_connector_unregister() through a call to
* drm_debugfs_connector_remove().
*
* Returns 0 on success, negative error codes on error.
*/
int i915_debugfs_connector_add(struct drm_connector *connector)
{
struct dentry *root = connector->debugfs_entry;
/* The connector must have been registered beforehands. */
if (!root)
return -ENODEV;
if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
connector->connector_type == DRM_MODE_CONNECTOR_eDP)
debugfs_create_file("i915_dpcd", S_IRUGO, root,
connector, &i915_dpcd_fops);
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
debugfs_create_file("i915_panel_timings", S_IRUGO, root,
connector, &i915_panel_fops);
return 0;
}