alistair23-linux/kernel/power/swap.c
Rafael J. Wysocki a634cc1016 swsusp: introduce restore platform operations
At least on some machines it is necessary to prepare the ACPI firmware for the
restoration of the system memory state from the hibernation image if the
"platform" mode of hibernation has been used.  Namely, in that cases we need
to disable the GPEs before replacing the "boot" kernel with the "frozen"
kernel (cf.  http://bugzilla.kernel.org/show_bug.cgi?id=7887).  After the
restore they will be re-enabled by hibernation_ops->finish(), but if the
restore fails, they have to be re-enabled by the restore code explicitly.

For this purpose we can introduce two additional hibernation operations,
called pre_restore() and restore_cleanup() and call them from the restore code
path.  Still, they should be called if the "platform" mode of hibernation has
been used, so we need to pass the information about the hibernation mode from
the "frozen" kernel to the "boot" kernel in the image header.

Apparently, we can't drop the disabling of GPEs before the restore because of
Bug #7887 .   We also can't do it unconditionally, because the GPEs wouldn't
have been enabled after a successful restore if the suspend had been done in
the 'shutdown' or 'reboot' mode.

In principle we could (and probably should) unconditionally disable the GPEs
before each snapshot creation *and* before the restore, but then we'd have to
unconditionally enable them after the snapshot creation as well as after the
restore (or restore failure)   Still, for this purpose we'd need to modify
acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to
introduce some mechanism synchronizing the disablind/enabling of the GPEs with
the device drivers' .suspend()/.resume() routines and with
disable_/enable_nonboot_cpus().   However, this would have affected the
suspend (ie.  s2ram) code as well as the hibernation, which I'd like to avoid
in this patch series.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:42 -07:00

648 lines
15 KiB
C

/*
* linux/kernel/power/swap.c
*
* This file provides functions for reading the suspend image from
* and writing it to a swap partition.
*
* Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
*
* This file is released under the GPLv2.
*
*/
#include <linux/module.h>
#include <linux/file.h>
#include <linux/utsname.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/genhd.h>
#include <linux/device.h>
#include <linux/buffer_head.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pm.h>
#include "power.h"
extern char resume_file[];
#define SWSUSP_SIG "S1SUSPEND"
struct swsusp_header {
char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)];
sector_t image;
unsigned int flags; /* Flags to pass to the "boot" kernel */
char orig_sig[10];
char sig[10];
} __attribute__((packed));
static struct swsusp_header *swsusp_header;
/*
* General things
*/
static unsigned short root_swap = 0xffff;
static struct block_device *resume_bdev;
/**
* submit - submit BIO request.
* @rw: READ or WRITE.
* @off physical offset of page.
* @page: page we're reading or writing.
* @bio_chain: list of pending biod (for async reading)
*
* Straight from the textbook - allocate and initialize the bio.
* If we're reading, make sure the page is marked as dirty.
* Then submit it and, if @bio_chain == NULL, wait.
*/
static int submit(int rw, pgoff_t page_off, struct page *page,
struct bio **bio_chain)
{
struct bio *bio;
bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1);
if (!bio)
return -ENOMEM;
bio->bi_sector = page_off * (PAGE_SIZE >> 9);
bio->bi_bdev = resume_bdev;
bio->bi_end_io = end_swap_bio_read;
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
printk("swsusp: ERROR: adding page to bio at %ld\n", page_off);
bio_put(bio);
return -EFAULT;
}
lock_page(page);
bio_get(bio);
if (bio_chain == NULL) {
submit_bio(rw | (1 << BIO_RW_SYNC), bio);
wait_on_page_locked(page);
if (rw == READ)
bio_set_pages_dirty(bio);
bio_put(bio);
} else {
if (rw == READ)
get_page(page); /* These pages are freed later */
bio->bi_private = *bio_chain;
*bio_chain = bio;
submit_bio(rw | (1 << BIO_RW_SYNC), bio);
}
return 0;
}
static int bio_read_page(pgoff_t page_off, void *addr, struct bio **bio_chain)
{
return submit(READ, page_off, virt_to_page(addr), bio_chain);
}
static int bio_write_page(pgoff_t page_off, void *addr, struct bio **bio_chain)
{
return submit(WRITE, page_off, virt_to_page(addr), bio_chain);
}
static int wait_on_bio_chain(struct bio **bio_chain)
{
struct bio *bio;
struct bio *next_bio;
int ret = 0;
if (bio_chain == NULL)
return 0;
bio = *bio_chain;
if (bio == NULL)
return 0;
while (bio) {
struct page *page;
next_bio = bio->bi_private;
page = bio->bi_io_vec[0].bv_page;
wait_on_page_locked(page);
if (!PageUptodate(page) || PageError(page))
ret = -EIO;
put_page(page);
bio_put(bio);
bio = next_bio;
}
*bio_chain = NULL;
return ret;
}
/*
* Saving part
*/
static int mark_swapfiles(sector_t start, unsigned int flags)
{
int error;
bio_read_page(swsusp_resume_block, swsusp_header, NULL);
if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
!memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
memcpy(swsusp_header->sig,SWSUSP_SIG, 10);
swsusp_header->image = start;
swsusp_header->flags = flags;
error = bio_write_page(swsusp_resume_block,
swsusp_header, NULL);
} else {
printk(KERN_ERR "swsusp: Swap header not found!\n");
error = -ENODEV;
}
return error;
}
/**
* swsusp_swap_check - check if the resume device is a swap device
* and get its index (if so)
*/
static int swsusp_swap_check(void) /* This is called before saving image */
{
int res;
res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
&resume_bdev);
if (res < 0)
return res;
root_swap = res;
res = blkdev_get(resume_bdev, FMODE_WRITE, O_RDWR);
if (res)
return res;
res = set_blocksize(resume_bdev, PAGE_SIZE);
if (res < 0)
blkdev_put(resume_bdev);
return res;
}
/**
* write_page - Write one page to given swap location.
* @buf: Address we're writing.
* @offset: Offset of the swap page we're writing to.
* @bio_chain: Link the next write BIO here
*/
static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
{
void *src;
if (!offset)
return -ENOSPC;
if (bio_chain) {
src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
if (src) {
memcpy(src, buf, PAGE_SIZE);
} else {
WARN_ON_ONCE(1);
bio_chain = NULL; /* Go synchronous */
src = buf;
}
} else {
src = buf;
}
return bio_write_page(offset, src, bio_chain);
}
/*
* The swap map is a data structure used for keeping track of each page
* written to a swap partition. It consists of many swap_map_page
* structures that contain each an array of MAP_PAGE_SIZE swap entries.
* These structures are stored on the swap and linked together with the
* help of the .next_swap member.
*
* The swap map is created during suspend. The swap map pages are
* allocated and populated one at a time, so we only need one memory
* page to set up the entire structure.
*
* During resume we also only need to use one swap_map_page structure
* at a time.
*/
#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
struct swap_map_page {
sector_t entries[MAP_PAGE_ENTRIES];
sector_t next_swap;
};
/**
* The swap_map_handle structure is used for handling swap in
* a file-alike way
*/
struct swap_map_handle {
struct swap_map_page *cur;
sector_t cur_swap;
unsigned int k;
};
static void release_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur)
free_page((unsigned long)handle->cur);
handle->cur = NULL;
}
static int get_swap_writer(struct swap_map_handle *handle)
{
handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
if (!handle->cur)
return -ENOMEM;
handle->cur_swap = alloc_swapdev_block(root_swap);
if (!handle->cur_swap) {
release_swap_writer(handle);
return -ENOSPC;
}
handle->k = 0;
return 0;
}
static int swap_write_page(struct swap_map_handle *handle, void *buf,
struct bio **bio_chain)
{
int error = 0;
sector_t offset;
if (!handle->cur)
return -EINVAL;
offset = alloc_swapdev_block(root_swap);
error = write_page(buf, offset, bio_chain);
if (error)
return error;
handle->cur->entries[handle->k++] = offset;
if (handle->k >= MAP_PAGE_ENTRIES) {
error = wait_on_bio_chain(bio_chain);
if (error)
goto out;
offset = alloc_swapdev_block(root_swap);
if (!offset)
return -ENOSPC;
handle->cur->next_swap = offset;
error = write_page(handle->cur, handle->cur_swap, NULL);
if (error)
goto out;
memset(handle->cur, 0, PAGE_SIZE);
handle->cur_swap = offset;
handle->k = 0;
}
out:
return error;
}
static int flush_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur && handle->cur_swap)
return write_page(handle->cur, handle->cur_swap, NULL);
else
return -EINVAL;
}
/**
* save_image - save the suspend image data
*/
static int save_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_write)
{
unsigned int m;
int ret;
int error = 0;
int nr_pages;
int err2;
struct bio *bio;
struct timeval start;
struct timeval stop;
printk("Saving image data pages (%u pages) ... ", nr_to_write);
m = nr_to_write / 100;
if (!m)
m = 1;
nr_pages = 0;
bio = NULL;
do_gettimeofday(&start);
do {
ret = snapshot_read_next(snapshot, PAGE_SIZE);
if (ret > 0) {
error = swap_write_page(handle, data_of(*snapshot),
&bio);
if (error)
break;
if (!(nr_pages % m))
printk("\b\b\b\b%3d%%", nr_pages / m);
nr_pages++;
}
} while (ret > 0);
err2 = wait_on_bio_chain(&bio);
do_gettimeofday(&stop);
if (!error)
error = err2;
if (!error)
printk("\b\b\b\bdone\n");
swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
return error;
}
/**
* enough_swap - Make sure we have enough swap to save the image.
*
* Returns TRUE or FALSE after checking the total amount of swap
* space avaiable from the resume partition.
*/
static int enough_swap(unsigned int nr_pages)
{
unsigned int free_swap = count_swap_pages(root_swap, 1);
pr_debug("swsusp: free swap pages: %u\n", free_swap);
return free_swap > nr_pages + PAGES_FOR_IO;
}
/**
* swsusp_write - Write entire image and metadata.
* @flags: flags to pass to the "boot" kernel in the image header
*
* It is important _NOT_ to umount filesystems at this point. We want
* them synced (in case something goes wrong) but we DO not want to mark
* filesystem clean: it is not. (And it does not matter, if we resume
* correctly, we'll mark system clean, anyway.)
*/
int swsusp_write(unsigned int flags)
{
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
int error;
error = swsusp_swap_check();
if (error) {
printk(KERN_ERR "swsusp: Cannot find swap device, try "
"swapon -a.\n");
return error;
}
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_read_next(&snapshot, PAGE_SIZE);
if (error < PAGE_SIZE) {
if (error >= 0)
error = -EFAULT;
goto out;
}
header = (struct swsusp_info *)data_of(snapshot);
if (!enough_swap(header->pages)) {
printk(KERN_ERR "swsusp: Not enough free swap\n");
error = -ENOSPC;
goto out;
}
error = get_swap_writer(&handle);
if (!error) {
sector_t start = handle.cur_swap;
error = swap_write_page(&handle, header, NULL);
if (!error)
error = save_image(&handle, &snapshot,
header->pages - 1);
if (!error) {
flush_swap_writer(&handle);
printk("S");
error = mark_swapfiles(start, flags);
printk("|\n");
}
}
if (error)
free_all_swap_pages(root_swap);
release_swap_writer(&handle);
out:
swsusp_close();
return error;
}
/**
* The following functions allow us to read data using a swap map
* in a file-alike way
*/
static void release_swap_reader(struct swap_map_handle *handle)
{
if (handle->cur)
free_page((unsigned long)handle->cur);
handle->cur = NULL;
}
static int get_swap_reader(struct swap_map_handle *handle, sector_t start)
{
int error;
if (!start)
return -EINVAL;
handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH);
if (!handle->cur)
return -ENOMEM;
error = bio_read_page(start, handle->cur, NULL);
if (error) {
release_swap_reader(handle);
return error;
}
handle->k = 0;
return 0;
}
static int swap_read_page(struct swap_map_handle *handle, void *buf,
struct bio **bio_chain)
{
sector_t offset;
int error;
if (!handle->cur)
return -EINVAL;
offset = handle->cur->entries[handle->k];
if (!offset)
return -EFAULT;
error = bio_read_page(offset, buf, bio_chain);
if (error)
return error;
if (++handle->k >= MAP_PAGE_ENTRIES) {
error = wait_on_bio_chain(bio_chain);
handle->k = 0;
offset = handle->cur->next_swap;
if (!offset)
release_swap_reader(handle);
else if (!error)
error = bio_read_page(offset, handle->cur, NULL);
}
return error;
}
/**
* load_image - load the image using the swap map handle
* @handle and the snapshot handle @snapshot
* (assume there are @nr_pages pages to load)
*/
static int load_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_read)
{
unsigned int m;
int error = 0;
struct timeval start;
struct timeval stop;
struct bio *bio;
int err2;
unsigned nr_pages;
printk("Loading image data pages (%u pages) ... ", nr_to_read);
m = nr_to_read / 100;
if (!m)
m = 1;
nr_pages = 0;
bio = NULL;
do_gettimeofday(&start);
for ( ; ; ) {
error = snapshot_write_next(snapshot, PAGE_SIZE);
if (error <= 0)
break;
error = swap_read_page(handle, data_of(*snapshot), &bio);
if (error)
break;
if (snapshot->sync_read)
error = wait_on_bio_chain(&bio);
if (error)
break;
if (!(nr_pages % m))
printk("\b\b\b\b%3d%%", nr_pages / m);
nr_pages++;
}
err2 = wait_on_bio_chain(&bio);
do_gettimeofday(&stop);
if (!error)
error = err2;
if (!error) {
printk("\b\b\b\bdone\n");
snapshot_write_finalize(snapshot);
if (!snapshot_image_loaded(snapshot))
error = -ENODATA;
}
swsusp_show_speed(&start, &stop, nr_to_read, "Read");
return error;
}
/**
* swsusp_read - read the hibernation image.
* @flags_p: flags passed by the "frozen" kernel in the image header should
* be written into this memeory location
*/
int swsusp_read(unsigned int *flags_p)
{
int error;
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
*flags_p = swsusp_header->flags;
if (IS_ERR(resume_bdev)) {
pr_debug("swsusp: block device not initialised\n");
return PTR_ERR(resume_bdev);
}
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_write_next(&snapshot, PAGE_SIZE);
if (error < PAGE_SIZE)
return error < 0 ? error : -EFAULT;
header = (struct swsusp_info *)data_of(snapshot);
error = get_swap_reader(&handle, swsusp_header->image);
if (!error)
error = swap_read_page(&handle, header, NULL);
if (!error)
error = load_image(&handle, &snapshot, header->pages - 1);
release_swap_reader(&handle);
blkdev_put(resume_bdev);
if (!error)
pr_debug("swsusp: Reading resume file was successful\n");
else
pr_debug("swsusp: Error %d resuming\n", error);
return error;
}
/**
* swsusp_check - Check for swsusp signature in the resume device
*/
int swsusp_check(void)
{
int error;
resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
if (!IS_ERR(resume_bdev)) {
set_blocksize(resume_bdev, PAGE_SIZE);
memset(swsusp_header, 0, PAGE_SIZE);
error = bio_read_page(swsusp_resume_block,
swsusp_header, NULL);
if (error)
return error;
if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) {
memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
/* Reset swap signature now */
error = bio_write_page(swsusp_resume_block,
swsusp_header, NULL);
} else {
return -EINVAL;
}
if (error)
blkdev_put(resume_bdev);
else
pr_debug("swsusp: Signature found, resuming\n");
} else {
error = PTR_ERR(resume_bdev);
}
if (error)
pr_debug("swsusp: Error %d check for resume file\n", error);
return error;
}
/**
* swsusp_close - close swap device.
*/
void swsusp_close(void)
{
if (IS_ERR(resume_bdev)) {
pr_debug("swsusp: block device not initialised\n");
return;
}
blkdev_put(resume_bdev);
}
static int swsusp_header_init(void)
{
swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
if (!swsusp_header)
panic("Could not allocate memory for swsusp_header\n");
return 0;
}
core_initcall(swsusp_header_init);