alistair23-linux/arch/x86/kernel/hw_breakpoint.c
Paul Gortmaker 186f43608a x86/kernel: Audit and remove any unnecessary uses of module.h
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends.  That changed
when we forked out support for the latter into the export.h file.

This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig.  The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.

Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed.  Build testing
revealed some implicit header usage that was fixed up accordingly.

Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-14 15:06:41 +02:00

547 lines
13 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2007 Alan Stern
* Copyright (C) 2009 IBM Corporation
* Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
*
* Authors: Alan Stern <stern@rowland.harvard.edu>
* K.Prasad <prasad@linux.vnet.ibm.com>
* Frederic Weisbecker <fweisbec@gmail.com>
*/
/*
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
* using the CPU's debug registers.
*/
#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>
#include <linux/irqflags.h>
#include <linux/notifier.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/percpu.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <asm/hw_breakpoint.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <asm/user.h>
/* Per cpu debug control register value */
DEFINE_PER_CPU(unsigned long, cpu_dr7);
EXPORT_PER_CPU_SYMBOL(cpu_dr7);
/* Per cpu debug address registers values */
static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
/*
* Stores the breakpoints currently in use on each breakpoint address
* register for each cpus
*/
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
static inline unsigned long
__encode_dr7(int drnum, unsigned int len, unsigned int type)
{
unsigned long bp_info;
bp_info = (len | type) & 0xf;
bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
return bp_info;
}
/*
* Encode the length, type, Exact, and Enable bits for a particular breakpoint
* as stored in debug register 7.
*/
unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
{
return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
}
/*
* Decode the length and type bits for a particular breakpoint as
* stored in debug register 7. Return the "enabled" status.
*/
int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
{
int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
*len = (bp_info & 0xc) | 0x40;
*type = (bp_info & 0x3) | 0x80;
return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
}
/*
* Install a perf counter breakpoint.
*
* We seek a free debug address register and use it for this
* breakpoint. Eventually we enable it in the debug control register.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
int arch_install_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
unsigned long *dr7;
int i;
for (i = 0; i < HBP_NUM; i++) {
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
if (!*slot) {
*slot = bp;
break;
}
}
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
return -EBUSY;
set_debugreg(info->address, i);
__this_cpu_write(cpu_debugreg[i], info->address);
dr7 = this_cpu_ptr(&cpu_dr7);
*dr7 |= encode_dr7(i, info->len, info->type);
set_debugreg(*dr7, 7);
if (info->mask)
set_dr_addr_mask(info->mask, i);
return 0;
}
/*
* Uninstall the breakpoint contained in the given counter.
*
* First we search the debug address register it uses and then we disable
* it.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
unsigned long *dr7;
int i;
for (i = 0; i < HBP_NUM; i++) {
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
if (*slot == bp) {
*slot = NULL;
break;
}
}
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
return;
dr7 = this_cpu_ptr(&cpu_dr7);
*dr7 &= ~__encode_dr7(i, info->len, info->type);
set_debugreg(*dr7, 7);
if (info->mask)
set_dr_addr_mask(0, i);
}
/*
* Check for virtual address in kernel space.
*/
int arch_check_bp_in_kernelspace(struct perf_event *bp)
{
unsigned int len;
unsigned long va;
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
va = info->address;
len = bp->attr.bp_len;
/*
* We don't need to worry about va + len - 1 overflowing:
* we already require that va is aligned to a multiple of len.
*/
return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
}
int arch_bp_generic_fields(int x86_len, int x86_type,
int *gen_len, int *gen_type)
{
/* Type */
switch (x86_type) {
case X86_BREAKPOINT_EXECUTE:
if (x86_len != X86_BREAKPOINT_LEN_X)
return -EINVAL;
*gen_type = HW_BREAKPOINT_X;
*gen_len = sizeof(long);
return 0;
case X86_BREAKPOINT_WRITE:
*gen_type = HW_BREAKPOINT_W;
break;
case X86_BREAKPOINT_RW:
*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
break;
default:
return -EINVAL;
}
/* Len */
switch (x86_len) {
case X86_BREAKPOINT_LEN_1:
*gen_len = HW_BREAKPOINT_LEN_1;
break;
case X86_BREAKPOINT_LEN_2:
*gen_len = HW_BREAKPOINT_LEN_2;
break;
case X86_BREAKPOINT_LEN_4:
*gen_len = HW_BREAKPOINT_LEN_4;
break;
#ifdef CONFIG_X86_64
case X86_BREAKPOINT_LEN_8:
*gen_len = HW_BREAKPOINT_LEN_8;
break;
#endif
default:
return -EINVAL;
}
return 0;
}
static int arch_build_bp_info(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
info->address = bp->attr.bp_addr;
/* Type */
switch (bp->attr.bp_type) {
case HW_BREAKPOINT_W:
info->type = X86_BREAKPOINT_WRITE;
break;
case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
info->type = X86_BREAKPOINT_RW;
break;
case HW_BREAKPOINT_X:
/*
* We don't allow kernel breakpoints in places that are not
* acceptable for kprobes. On non-kprobes kernels, we don't
* allow kernel breakpoints at all.
*/
if (bp->attr.bp_addr >= TASK_SIZE_MAX) {
#ifdef CONFIG_KPROBES
if (within_kprobe_blacklist(bp->attr.bp_addr))
return -EINVAL;
#else
return -EINVAL;
#endif
}
info->type = X86_BREAKPOINT_EXECUTE;
/*
* x86 inst breakpoints need to have a specific undefined len.
* But we still need to check userspace is not trying to setup
* an unsupported length, to get a range breakpoint for example.
*/
if (bp->attr.bp_len == sizeof(long)) {
info->len = X86_BREAKPOINT_LEN_X;
return 0;
}
default:
return -EINVAL;
}
/* Len */
info->mask = 0;
switch (bp->attr.bp_len) {
case HW_BREAKPOINT_LEN_1:
info->len = X86_BREAKPOINT_LEN_1;
break;
case HW_BREAKPOINT_LEN_2:
info->len = X86_BREAKPOINT_LEN_2;
break;
case HW_BREAKPOINT_LEN_4:
info->len = X86_BREAKPOINT_LEN_4;
break;
#ifdef CONFIG_X86_64
case HW_BREAKPOINT_LEN_8:
info->len = X86_BREAKPOINT_LEN_8;
break;
#endif
default:
/* AMD range breakpoint */
if (!is_power_of_2(bp->attr.bp_len))
return -EINVAL;
if (bp->attr.bp_addr & (bp->attr.bp_len - 1))
return -EINVAL;
if (!boot_cpu_has(X86_FEATURE_BPEXT))
return -EOPNOTSUPP;
/*
* It's impossible to use a range breakpoint to fake out
* user vs kernel detection because bp_len - 1 can't
* have the high bit set. If we ever allow range instruction
* breakpoints, then we'll have to check for kprobe-blacklisted
* addresses anywhere in the range.
*/
info->mask = bp->attr.bp_len - 1;
info->len = X86_BREAKPOINT_LEN_1;
}
return 0;
}
/*
* Validate the arch-specific HW Breakpoint register settings
*/
int arch_validate_hwbkpt_settings(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
unsigned int align;
int ret;
ret = arch_build_bp_info(bp);
if (ret)
return ret;
switch (info->len) {
case X86_BREAKPOINT_LEN_1:
align = 0;
if (info->mask)
align = info->mask;
break;
case X86_BREAKPOINT_LEN_2:
align = 1;
break;
case X86_BREAKPOINT_LEN_4:
align = 3;
break;
#ifdef CONFIG_X86_64
case X86_BREAKPOINT_LEN_8:
align = 7;
break;
#endif
default:
WARN_ON_ONCE(1);
}
/*
* Check that the low-order bits of the address are appropriate
* for the alignment implied by len.
*/
if (info->address & align)
return -EINVAL;
return 0;
}
/*
* Dump the debug register contents to the user.
* We can't dump our per cpu values because it
* may contain cpu wide breakpoint, something that
* doesn't belong to the current task.
*
* TODO: include non-ptrace user breakpoints (perf)
*/
void aout_dump_debugregs(struct user *dump)
{
int i;
int dr7 = 0;
struct perf_event *bp;
struct arch_hw_breakpoint *info;
struct thread_struct *thread = &current->thread;
for (i = 0; i < HBP_NUM; i++) {
bp = thread->ptrace_bps[i];
if (bp && !bp->attr.disabled) {
dump->u_debugreg[i] = bp->attr.bp_addr;
info = counter_arch_bp(bp);
dr7 |= encode_dr7(i, info->len, info->type);
} else {
dump->u_debugreg[i] = 0;
}
}
dump->u_debugreg[4] = 0;
dump->u_debugreg[5] = 0;
dump->u_debugreg[6] = current->thread.debugreg6;
dump->u_debugreg[7] = dr7;
}
EXPORT_SYMBOL_GPL(aout_dump_debugregs);
/*
* Release the user breakpoints used by ptrace
*/
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
{
int i;
struct thread_struct *t = &tsk->thread;
for (i = 0; i < HBP_NUM; i++) {
unregister_hw_breakpoint(t->ptrace_bps[i]);
t->ptrace_bps[i] = NULL;
}
t->debugreg6 = 0;
t->ptrace_dr7 = 0;
}
void hw_breakpoint_restore(void)
{
set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
set_debugreg(current->thread.debugreg6, 6);
set_debugreg(__this_cpu_read(cpu_dr7), 7);
}
EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
/*
* Handle debug exception notifications.
*
* Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
*
* NOTIFY_DONE returned if one of the following conditions is true.
* i) When the causative address is from user-space and the exception
* is a valid one, i.e. not triggered as a result of lazy debug register
* switching
* ii) When there are more bits than trap<n> set in DR6 register (such
* as BD, BS or BT) indicating that more than one debug condition is
* met and requires some more action in do_debug().
*
* NOTIFY_STOP returned for all other cases
*
*/
static int hw_breakpoint_handler(struct die_args *args)
{
int i, cpu, rc = NOTIFY_STOP;
struct perf_event *bp;
unsigned long dr7, dr6;
unsigned long *dr6_p;
/* The DR6 value is pointed by args->err */
dr6_p = (unsigned long *)ERR_PTR(args->err);
dr6 = *dr6_p;
/* If it's a single step, TRAP bits are random */
if (dr6 & DR_STEP)
return NOTIFY_DONE;
/* Do an early return if no trap bits are set in DR6 */
if ((dr6 & DR_TRAP_BITS) == 0)
return NOTIFY_DONE;
get_debugreg(dr7, 7);
/* Disable breakpoints during exception handling */
set_debugreg(0UL, 7);
/*
* Assert that local interrupts are disabled
* Reset the DRn bits in the virtualized register value.
* The ptrace trigger routine will add in whatever is needed.
*/
current->thread.debugreg6 &= ~DR_TRAP_BITS;
cpu = get_cpu();
/* Handle all the breakpoints that were triggered */
for (i = 0; i < HBP_NUM; ++i) {
if (likely(!(dr6 & (DR_TRAP0 << i))))
continue;
/*
* The counter may be concurrently released but that can only
* occur from a call_rcu() path. We can then safely fetch
* the breakpoint, use its callback, touch its counter
* while we are in an rcu_read_lock() path.
*/
rcu_read_lock();
bp = per_cpu(bp_per_reg[i], cpu);
/*
* Reset the 'i'th TRAP bit in dr6 to denote completion of
* exception handling
*/
(*dr6_p) &= ~(DR_TRAP0 << i);
/*
* bp can be NULL due to lazy debug register switching
* or due to concurrent perf counter removing.
*/
if (!bp) {
rcu_read_unlock();
break;
}
perf_bp_event(bp, args->regs);
/*
* Set up resume flag to avoid breakpoint recursion when
* returning back to origin.
*/
if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
args->regs->flags |= X86_EFLAGS_RF;
rcu_read_unlock();
}
/*
* Further processing in do_debug() is needed for a) user-space
* breakpoints (to generate signals) and b) when the system has
* taken exception due to multiple causes
*/
if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
(dr6 & (~DR_TRAP_BITS)))
rc = NOTIFY_DONE;
set_debugreg(dr7, 7);
put_cpu();
return rc;
}
/*
* Handle debug exception notifications.
*/
int hw_breakpoint_exceptions_notify(
struct notifier_block *unused, unsigned long val, void *data)
{
if (val != DIE_DEBUG)
return NOTIFY_DONE;
return hw_breakpoint_handler(data);
}
void hw_breakpoint_pmu_read(struct perf_event *bp)
{
/* TODO */
}