alistair23-linux/drivers/mtd/devices/mtd_dataflash.c
Linus Torvalds 02f0d3f758 MTD updates for 4.4-rc1:
Core
 
   * WARN (in some cases) when a struct mtd_info is registered multiple times;
     in the past this was "supported", but it's still error prone for future
     development. There's only one ugly case of this left in the tree (that
     we're aware of) and the owners are aware of the problems there.
 
   * fix potential deadlock in the blkdev removal path
     NOTE: the (potential) deadlock was introduced in a for-stable patch. This
     one is also marked for -stable.
 
   * ioctl(BLKPG) compat_ioctl support; resolves issues with 32-bit user space
     vs. 64-bit kernel space
 
   * Set MTD parent device correctly throughout the tree, so the tree structure
     appears correctly in sysfs; many drivers were missing this (soft)
     requirement
 
   * Move device tree partitions (ofpart) into a dedicated 'partitions' subnode;
     this helps to disambiguate whether a node is a partition or some other
     auxiliary data
 
   * Improve error handling for partitioning failures
 
  NAND
 
   * General: Increase timeout period, for corner-case systems with
     less-than-accurate jiffies
 
   * Fix OF-based autoloading of several NAND drivers when built as modules
 
   * pxa3xx_nand:
     - Rework timing configuration to be more dynamic
     - Refactor PM support
 
   * brcmnand: prepare for NorthStar 2 support (ARM64, 16-bit NAND chips)
 
   * sunxi_nand: refactoring and a few bug fixes
 
   * vf610: new NAND driver
 
   * FSMC: add SW BCH support; support common NAND DT bindings
 
   * lpc32xx_slc: refactor and improve timing calculations logic
 
   * denali: support for rev 5.1
 
  SPI NOR
 
   * Layering improvements
 
   * Added Winbond lock/unlock support
 
   * Added mtd_is_locked() (i.e., ioctl(MEMISLOCKED)) support
 
   * Increase full-chip-erase timeout linearly with flash size
 
   * fsl-quadspi: fix compile for non-ARM architectures
 
   * New flash support
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWPPj0AAoJEFySrpd9RFgtJEgP/RnfXRHBX51cUl4r8XrxiGtz
 zlH5zFOCYWEOtlGjoD25wp+A5RRjWi62At6KmLJZncf0clJ65fyKHjt/JEg6YuI6
 DUTMepTwyC2Wh7Ux1ZEH3KOnl64xh5p+Wf7Tl4yUr0DCd26VEwE9o7tPRlahv9nx
 OhGCWS+uSsxW0Q2wDLCypFzXsnDBeoGxDO7VCIzle4d3aJ4PCcQIXINlr6ZYpocT
 VTTadPCMsmYq6AgV5W3KYGYLj62ITiN2YxdJRacg+QkKLfl21u2wVy9Ahk/oj5TG
 bV0DHiz6ky1F2K/bvJibcRFABiYup9UXIo1IzwLloSxEJ/GfennMC29xn9K/0gid
 e2kO/Ajh/bihgJXzoAoZD/40YJK40X5VW9rQZgo482sMBGLmJOzZiOHOIEXaVohs
 djQ7sbCwPmLwqp7C+6WTn8frp6ntIe9iXdmjDuR/WlPP0Sh5rI3cUeBQrJXEYxwc
 aYt1Zxkst6gEMPQJ/S2TiKwWm0BxVWEUEjKmt9FPWOaQnwmoeju0Y/6jIvs1TQKM
 vO8cmS17QyPUWT2kGIDmZ51KayY26uDC8/NA2t1HDYCiFbpDp61kgu2wyoBUTg7q
 YIAvjtnwOaG9qk0SLfZu4FEgNi4a/bC1bxGxChsi+S2krpNQAeMlPY394cf6OdsE
 j+CV/Ko0DguO26bO0MWr
 =UzSW
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-20151106' of git://git.infradead.org/linux-mtd

Pull MTD updates from Brian Norris:
 "Core:

   - WARN (in some cases) when a struct mtd_info is registered multiple
     times; in the past this was "supported", but it's still error prone
     for future development.  There's only one ugly case of this left in
     the tree (that we're aware of) and the owners are aware of the
     problems there.

   - fix potential deadlock in the blkdev removal path NOTE: the
     (potential) deadlock was introduced in a for-stable patch.  This
     one is also marked for -stable.

   - ioctl(BLKPG) compat_ioctl support; resolves issues with 32-bit user
     space vs 64-bit kernel space

   - Set MTD parent device correctly throughout the tree, so the tree
     structure appears correctly in sysfs; many drivers were missing
     this (soft) requirement

   - Move device tree partitions (ofpart) into a dedicated 'partitions'
     subnode; this helps to disambiguate whether a node is a partition
     or some other auxiliary data

   - Improve error handling for partitioning failures

  NAND:

   - General: Increase timeout period, for corner-case systems with
     less-than-accurate jiffies

   - Fix OF-based autoloading of several NAND drivers when built as
     modules

   - pxa3xx_nand:
      - Rework timing configuration to be more dynamic
      - Refactor PM support

   - brcmnand: prepare for NorthStar 2 support (ARM64, 16-bit NAND
     chips)

   - sunxi_nand: refactoring and a few bug fixes

   - vf610: new NAND driver

   - FSMC: add SW BCH support; support common NAND DT bindings

   - lpc32xx_slc: refactor and improve timing calculations logic

   - denali: support for rev 5.1

  SPI NOR:

   - Layering improvements

   - Added Winbond lock/unlock support

   - Added mtd_is_locked() (i.e., ioctl(MEMISLOCKED)) support

   - Increase full-chip-erase timeout linearly with flash size

   - fsl-quadspi: fix compile for non-ARM architectures

   - New flash support"

* tag 'for-linus-20151106' of git://git.infradead.org/linux-mtd: (169 commits)
  mtd: don't WARN about overloaded users of mtd->reboot_notifier.notifier_call
  mtd: nand: sunxi: avoid retrieving data before ECC pass
  mtd: nand: sunxi: fix sunxi_nfc_hw_ecc_read/write_chunk()
  mtd: blkdevs: fix potential deadlock + lockdep warnings
  mtd: ofpart: move ofpart partitions to a dedicated dt node
  doc: dt: mtd: support partitions in a special 'partitions' subnode
  mtd: brcmnand: Force 8bit mode before doing nand_scan_ident()
  mtd: brcmnand: factor out CFG and CFG_EXT bitfields
  mtd: mtdpart: Do not fail mtd probe when parsing partitions fails
  mtd: fsl-quadspi: fix macro collision problems with READ/WRITE
  mtd: warn when registering the same master many times
  mtd: fixup corner case error handling in mtd_device_parse_register()
  mtd: tests: Replace timeval with ktime_t
  mtd: fsmc_nand: Add BCH4 SW ECC support for SPEAr600
  mtd: nand: vf610_nfc: use nand_check_erased_ecc_chunk() helper
  mtd: nand: increase ready wait timeout and report timeouts
  mtd: docg3: off by one in doc_register_sysfs()
  mtd: pxa3xx_nand: clean up the pxa3xx timings
  mtd: pxa3xx_nand: rework flash detection and timing setup
  mtd: pxa3xx_nand: add helpers to setup the timings
  ...
2015-11-06 11:50:24 -08:00

928 lines
24 KiB
C

/*
* Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
*
* Largely derived from at91_dataflash.c:
* Copyright (C) 2003-2005 SAN People (Pty) Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
/*
* DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
* each chip, which may be used for double buffered I/O; but this driver
* doesn't (yet) use these for any kind of i/o overlap or prefetching.
*
* Sometimes DataFlash is packaged in MMC-format cards, although the
* MMC stack can't (yet?) distinguish between MMC and DataFlash
* protocols during enumeration.
*/
/* reads can bypass the buffers */
#define OP_READ_CONTINUOUS 0xE8
#define OP_READ_PAGE 0xD2
/* group B requests can run even while status reports "busy" */
#define OP_READ_STATUS 0xD7 /* group B */
/* move data between host and buffer */
#define OP_READ_BUFFER1 0xD4 /* group B */
#define OP_READ_BUFFER2 0xD6 /* group B */
#define OP_WRITE_BUFFER1 0x84 /* group B */
#define OP_WRITE_BUFFER2 0x87 /* group B */
/* erasing flash */
#define OP_ERASE_PAGE 0x81
#define OP_ERASE_BLOCK 0x50
/* move data between buffer and flash */
#define OP_TRANSFER_BUF1 0x53
#define OP_TRANSFER_BUF2 0x55
#define OP_MREAD_BUFFER1 0xD4
#define OP_MREAD_BUFFER2 0xD6
#define OP_MWERASE_BUFFER1 0x83
#define OP_MWERASE_BUFFER2 0x86
#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
/* write to buffer, then write-erase to flash */
#define OP_PROGRAM_VIA_BUF1 0x82
#define OP_PROGRAM_VIA_BUF2 0x85
/* compare buffer to flash */
#define OP_COMPARE_BUF1 0x60
#define OP_COMPARE_BUF2 0x61
/* read flash to buffer, then write-erase to flash */
#define OP_REWRITE_VIA_BUF1 0x58
#define OP_REWRITE_VIA_BUF2 0x59
/* newer chips report JEDEC manufacturer and device IDs; chip
* serial number and OTP bits; and per-sector writeprotect.
*/
#define OP_READ_ID 0x9F
#define OP_READ_SECURITY 0x77
#define OP_WRITE_SECURITY_REVC 0x9A
#define OP_WRITE_SECURITY 0x9B /* revision D */
struct dataflash {
uint8_t command[4];
char name[24];
unsigned short page_offset; /* offset in flash address */
unsigned int page_size; /* of bytes per page */
struct mutex lock;
struct spi_device *spi;
struct mtd_info mtd;
};
#ifdef CONFIG_OF
static const struct of_device_id dataflash_dt_ids[] = {
{ .compatible = "atmel,at45", },
{ .compatible = "atmel,dataflash", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dataflash_dt_ids);
#endif
/* ......................................................................... */
/*
* Return the status of the DataFlash device.
*/
static inline int dataflash_status(struct spi_device *spi)
{
/* NOTE: at45db321c over 25 MHz wants to write
* a dummy byte after the opcode...
*/
return spi_w8r8(spi, OP_READ_STATUS);
}
/*
* Poll the DataFlash device until it is READY.
* This usually takes 5-20 msec or so; more for sector erase.
*/
static int dataflash_waitready(struct spi_device *spi)
{
int status;
for (;;) {
status = dataflash_status(spi);
if (status < 0) {
pr_debug("%s: status %d?\n",
dev_name(&spi->dev), status);
status = 0;
}
if (status & (1 << 7)) /* RDY/nBSY */
return status;
msleep(3);
}
}
/* ......................................................................... */
/*
* Erase pages of flash.
*/
static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct dataflash *priv = mtd->priv;
struct spi_device *spi = priv->spi;
struct spi_transfer x = { };
struct spi_message msg;
unsigned blocksize = priv->page_size << 3;
uint8_t *command;
uint32_t rem;
pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
dev_name(&spi->dev), (long long)instr->addr,
(long long)instr->len);
div_u64_rem(instr->len, priv->page_size, &rem);
if (rem)
return -EINVAL;
div_u64_rem(instr->addr, priv->page_size, &rem);
if (rem)
return -EINVAL;
spi_message_init(&msg);
x.tx_buf = command = priv->command;
x.len = 4;
spi_message_add_tail(&x, &msg);
mutex_lock(&priv->lock);
while (instr->len > 0) {
unsigned int pageaddr;
int status;
int do_block;
/* Calculate flash page address; use block erase (for speed) if
* we're at a block boundary and need to erase the whole block.
*/
pageaddr = div_u64(instr->addr, priv->page_size);
do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
pageaddr = pageaddr << priv->page_offset;
command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
command[1] = (uint8_t)(pageaddr >> 16);
command[2] = (uint8_t)(pageaddr >> 8);
command[3] = 0;
pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
do_block ? "block" : "page",
command[0], command[1], command[2], command[3],
pageaddr);
status = spi_sync(spi, &msg);
(void) dataflash_waitready(spi);
if (status < 0) {
printk(KERN_ERR "%s: erase %x, err %d\n",
dev_name(&spi->dev), pageaddr, status);
/* REVISIT: can retry instr->retries times; or
* giveup and instr->fail_addr = instr->addr;
*/
continue;
}
if (do_block) {
instr->addr += blocksize;
instr->len -= blocksize;
} else {
instr->addr += priv->page_size;
instr->len -= priv->page_size;
}
}
mutex_unlock(&priv->lock);
/* Inform MTD subsystem that erase is complete */
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
/*
* Read from the DataFlash device.
* from : Start offset in flash device
* len : Amount to read
* retlen : About of data actually read
* buf : Buffer containing the data
*/
static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct dataflash *priv = mtd->priv;
struct spi_transfer x[2] = { };
struct spi_message msg;
unsigned int addr;
uint8_t *command;
int status;
pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
(unsigned)from, (unsigned)(from + len));
/* Calculate flash page/byte address */
addr = (((unsigned)from / priv->page_size) << priv->page_offset)
+ ((unsigned)from % priv->page_size);
command = priv->command;
pr_debug("READ: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
spi_message_init(&msg);
x[0].tx_buf = command;
x[0].len = 8;
spi_message_add_tail(&x[0], &msg);
x[1].rx_buf = buf;
x[1].len = len;
spi_message_add_tail(&x[1], &msg);
mutex_lock(&priv->lock);
/* Continuous read, max clock = f(car) which may be less than
* the peak rate available. Some chips support commands with
* fewer "don't care" bytes. Both buffers stay unchanged.
*/
command[0] = OP_READ_CONTINUOUS;
command[1] = (uint8_t)(addr >> 16);
command[2] = (uint8_t)(addr >> 8);
command[3] = (uint8_t)(addr >> 0);
/* plus 4 "don't care" bytes */
status = spi_sync(priv->spi, &msg);
mutex_unlock(&priv->lock);
if (status >= 0) {
*retlen = msg.actual_length - 8;
status = 0;
} else
pr_debug("%s: read %x..%x --> %d\n",
dev_name(&priv->spi->dev),
(unsigned)from, (unsigned)(from + len),
status);
return status;
}
/*
* Write to the DataFlash device.
* to : Start offset in flash device
* len : Amount to write
* retlen : Amount of data actually written
* buf : Buffer containing the data
*/
static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf)
{
struct dataflash *priv = mtd->priv;
struct spi_device *spi = priv->spi;
struct spi_transfer x[2] = { };
struct spi_message msg;
unsigned int pageaddr, addr, offset, writelen;
size_t remaining = len;
u_char *writebuf = (u_char *) buf;
int status = -EINVAL;
uint8_t *command;
pr_debug("%s: write 0x%x..0x%x\n",
dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
spi_message_init(&msg);
x[0].tx_buf = command = priv->command;
x[0].len = 4;
spi_message_add_tail(&x[0], &msg);
pageaddr = ((unsigned)to / priv->page_size);
offset = ((unsigned)to % priv->page_size);
if (offset + len > priv->page_size)
writelen = priv->page_size - offset;
else
writelen = len;
mutex_lock(&priv->lock);
while (remaining > 0) {
pr_debug("write @ %i:%i len=%i\n",
pageaddr, offset, writelen);
/* REVISIT:
* (a) each page in a sector must be rewritten at least
* once every 10K sibling erase/program operations.
* (b) for pages that are already erased, we could
* use WRITE+MWRITE not PROGRAM for ~30% speedup.
* (c) WRITE to buffer could be done while waiting for
* a previous MWRITE/MWERASE to complete ...
* (d) error handling here seems to be mostly missing.
*
* Two persistent bits per page, plus a per-sector counter,
* could support (a) and (b) ... we might consider using
* the second half of sector zero, which is just one block,
* to track that state. (On AT91, that sector should also
* support boot-from-DataFlash.)
*/
addr = pageaddr << priv->page_offset;
/* (1) Maybe transfer partial page to Buffer1 */
if (writelen != priv->page_size) {
command[0] = OP_TRANSFER_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = 0;
pr_debug("TRANSFER: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
status = spi_sync(spi, &msg);
if (status < 0)
pr_debug("%s: xfer %u -> %d\n",
dev_name(&spi->dev), addr, status);
(void) dataflash_waitready(priv->spi);
}
/* (2) Program full page via Buffer1 */
addr += offset;
command[0] = OP_PROGRAM_VIA_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = (addr & 0x000000FF);
pr_debug("PROGRAM: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
x[1].tx_buf = writebuf;
x[1].len = writelen;
spi_message_add_tail(x + 1, &msg);
status = spi_sync(spi, &msg);
spi_transfer_del(x + 1);
if (status < 0)
pr_debug("%s: pgm %u/%u -> %d\n",
dev_name(&spi->dev), addr, writelen, status);
(void) dataflash_waitready(priv->spi);
#ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
/* (3) Compare to Buffer1 */
addr = pageaddr << priv->page_offset;
command[0] = OP_COMPARE_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = 0;
pr_debug("COMPARE: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
status = spi_sync(spi, &msg);
if (status < 0)
pr_debug("%s: compare %u -> %d\n",
dev_name(&spi->dev), addr, status);
status = dataflash_waitready(priv->spi);
/* Check result of the compare operation */
if (status & (1 << 6)) {
printk(KERN_ERR "%s: compare page %u, err %d\n",
dev_name(&spi->dev), pageaddr, status);
remaining = 0;
status = -EIO;
break;
} else
status = 0;
#endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
remaining = remaining - writelen;
pageaddr++;
offset = 0;
writebuf += writelen;
*retlen += writelen;
if (remaining > priv->page_size)
writelen = priv->page_size;
else
writelen = remaining;
}
mutex_unlock(&priv->lock);
return status;
}
/* ......................................................................... */
#ifdef CONFIG_MTD_DATAFLASH_OTP
static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *info)
{
/* Report both blocks as identical: bytes 0..64, locked.
* Unless the user block changed from all-ones, we can't
* tell whether it's still writable; so we assume it isn't.
*/
info->start = 0;
info->length = 64;
info->locked = 1;
*retlen = sizeof(*info);
return 0;
}
static ssize_t otp_read(struct spi_device *spi, unsigned base,
uint8_t *buf, loff_t off, size_t len)
{
struct spi_message m;
size_t l;
uint8_t *scratch;
struct spi_transfer t;
int status;
if (off > 64)
return -EINVAL;
if ((off + len) > 64)
len = 64 - off;
spi_message_init(&m);
l = 4 + base + off + len;
scratch = kzalloc(l, GFP_KERNEL);
if (!scratch)
return -ENOMEM;
/* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
* IN: ignore 4 bytes, data bytes 0..N (max 127)
*/
scratch[0] = OP_READ_SECURITY;
memset(&t, 0, sizeof t);
t.tx_buf = scratch;
t.rx_buf = scratch;
t.len = l;
spi_message_add_tail(&t, &m);
dataflash_waitready(spi);
status = spi_sync(spi, &m);
if (status >= 0) {
memcpy(buf, scratch + 4 + base + off, len);
status = len;
}
kfree(scratch);
return status;
}
static int dataflash_read_fact_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct dataflash *priv = mtd->priv;
int status;
/* 64 bytes, from 0..63 ... start at 64 on-chip */
mutex_lock(&priv->lock);
status = otp_read(priv->spi, 64, buf, from, len);
mutex_unlock(&priv->lock);
if (status < 0)
return status;
*retlen = status;
return 0;
}
static int dataflash_read_user_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct dataflash *priv = mtd->priv;
int status;
/* 64 bytes, from 0..63 ... start at 0 on-chip */
mutex_lock(&priv->lock);
status = otp_read(priv->spi, 0, buf, from, len);
mutex_unlock(&priv->lock);
if (status < 0)
return status;
*retlen = status;
return 0;
}
static int dataflash_write_user_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct spi_message m;
const size_t l = 4 + 64;
uint8_t *scratch;
struct spi_transfer t;
struct dataflash *priv = mtd->priv;
int status;
if (from >= 64) {
/*
* Attempting to write beyond the end of OTP memory,
* no data can be written.
*/
*retlen = 0;
return 0;
}
/* Truncate the write to fit into OTP memory. */
if ((from + len) > 64)
len = 64 - from;
/* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
* IN: ignore all
*/
scratch = kzalloc(l, GFP_KERNEL);
if (!scratch)
return -ENOMEM;
scratch[0] = OP_WRITE_SECURITY;
memcpy(scratch + 4 + from, buf, len);
spi_message_init(&m);
memset(&t, 0, sizeof t);
t.tx_buf = scratch;
t.len = l;
spi_message_add_tail(&t, &m);
/* Write the OTP bits, if they've not yet been written.
* This modifies SRAM buffer1.
*/
mutex_lock(&priv->lock);
dataflash_waitready(priv->spi);
status = spi_sync(priv->spi, &m);
mutex_unlock(&priv->lock);
kfree(scratch);
if (status >= 0) {
status = 0;
*retlen = len;
}
return status;
}
static char *otp_setup(struct mtd_info *device, char revision)
{
device->_get_fact_prot_info = dataflash_get_otp_info;
device->_read_fact_prot_reg = dataflash_read_fact_otp;
device->_get_user_prot_info = dataflash_get_otp_info;
device->_read_user_prot_reg = dataflash_read_user_otp;
/* rev c parts (at45db321c and at45db1281 only!) use a
* different write procedure; not (yet?) implemented.
*/
if (revision > 'c')
device->_write_user_prot_reg = dataflash_write_user_otp;
return ", OTP";
}
#else
static char *otp_setup(struct mtd_info *device, char revision)
{
return " (OTP)";
}
#endif
/* ......................................................................... */
/*
* Register DataFlash device with MTD subsystem.
*/
static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
int pagesize, int pageoffset, char revision)
{
struct dataflash *priv;
struct mtd_info *device;
struct mtd_part_parser_data ppdata;
struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
char *otp_tag = "";
int err = 0;
priv = kzalloc(sizeof *priv, GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_init(&priv->lock);
priv->spi = spi;
priv->page_size = pagesize;
priv->page_offset = pageoffset;
/* name must be usable with cmdlinepart */
sprintf(priv->name, "spi%d.%d-%s",
spi->master->bus_num, spi->chip_select,
name);
device = &priv->mtd;
device->name = (pdata && pdata->name) ? pdata->name : priv->name;
device->size = nr_pages * pagesize;
device->erasesize = pagesize;
device->writesize = pagesize;
device->type = MTD_DATAFLASH;
device->flags = MTD_WRITEABLE;
device->_erase = dataflash_erase;
device->_read = dataflash_read;
device->_write = dataflash_write;
device->priv = priv;
device->dev.parent = &spi->dev;
if (revision >= 'c')
otp_tag = otp_setup(device, revision);
dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
name, (long long)((device->size + 1023) >> 10),
pagesize, otp_tag);
spi_set_drvdata(spi, priv);
ppdata.of_node = spi->dev.of_node;
err = mtd_device_parse_register(device, NULL, &ppdata,
pdata ? pdata->parts : NULL,
pdata ? pdata->nr_parts : 0);
if (!err)
return 0;
kfree(priv);
return err;
}
static inline int add_dataflash(struct spi_device *spi, char *name,
int nr_pages, int pagesize, int pageoffset)
{
return add_dataflash_otp(spi, name, nr_pages, pagesize,
pageoffset, 0);
}
struct flash_info {
char *name;
/* JEDEC id has a high byte of zero plus three data bytes:
* the manufacturer id, then a two byte device id.
*/
uint32_t jedec_id;
/* The size listed here is what works with OP_ERASE_PAGE. */
unsigned nr_pages;
uint16_t pagesize;
uint16_t pageoffset;
uint16_t flags;
#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
};
static struct flash_info dataflash_data[] = {
/*
* NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
* one with IS_POW2PS and the other without. The entry with the
* non-2^N byte page size can't name exact chip revisions without
* losing backwards compatibility for cmdlinepart.
*
* These newer chips also support 128-byte security registers (with
* 64 bytes one-time-programmable) and software write-protection.
*/
{ "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
{ "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
{ "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
{ "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
{ "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
{ "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
{ "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
{ "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
{ "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
{ "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
{ "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
};
static struct flash_info *jedec_probe(struct spi_device *spi)
{
int tmp;
uint8_t code = OP_READ_ID;
uint8_t id[3];
uint32_t jedec;
struct flash_info *info;
int status;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*
* If the vendor ID isn't Atmel's (0x1f), assume this call failed.
* That's not an error; only rev C and newer chips handle it, and
* only Atmel sells these chips.
*/
tmp = spi_write_then_read(spi, &code, 1, id, 3);
if (tmp < 0) {
pr_debug("%s: error %d reading JEDEC ID\n",
dev_name(&spi->dev), tmp);
return ERR_PTR(tmp);
}
if (id[0] != 0x1f)
return NULL;
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
for (tmp = 0, info = dataflash_data;
tmp < ARRAY_SIZE(dataflash_data);
tmp++, info++) {
if (info->jedec_id == jedec) {
pr_debug("%s: OTP, sector protect%s\n",
dev_name(&spi->dev),
(info->flags & SUP_POW2PS)
? ", binary pagesize" : ""
);
if (info->flags & SUP_POW2PS) {
status = dataflash_status(spi);
if (status < 0) {
pr_debug("%s: status error %d\n",
dev_name(&spi->dev), status);
return ERR_PTR(status);
}
if (status & 0x1) {
if (info->flags & IS_POW2PS)
return info;
} else {
if (!(info->flags & IS_POW2PS))
return info;
}
} else
return info;
}
}
/*
* Treat other chips as errors ... we won't know the right page
* size (it might be binary) even when we can tell which density
* class is involved (legacy chip id scheme).
*/
dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
return ERR_PTR(-ENODEV);
}
/*
* Detect and initialize DataFlash device, using JEDEC IDs on newer chips
* or else the ID code embedded in the status bits:
*
* Device Density ID code #Pages PageSize Offset
* AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
* AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
* AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
* AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
* AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
* AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
* AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
* AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
*/
static int dataflash_probe(struct spi_device *spi)
{
int status;
struct flash_info *info;
/*
* Try to detect dataflash by JEDEC ID.
* If it succeeds we know we have either a C or D part.
* D will support power of 2 pagesize option.
* Both support the security register, though with different
* write procedures.
*/
info = jedec_probe(spi);
if (IS_ERR(info))
return PTR_ERR(info);
if (info != NULL)
return add_dataflash_otp(spi, info->name, info->nr_pages,
info->pagesize, info->pageoffset,
(info->flags & SUP_POW2PS) ? 'd' : 'c');
/*
* Older chips support only legacy commands, identifing
* capacity using bits in the status byte.
*/
status = dataflash_status(spi);
if (status <= 0 || status == 0xff) {
pr_debug("%s: status error %d\n",
dev_name(&spi->dev), status);
if (status == 0 || status == 0xff)
status = -ENODEV;
return status;
}
/* if there's a device there, assume it's dataflash.
* board setup should have set spi->max_speed_max to
* match f(car) for continuous reads, mode 0 or 3.
*/
switch (status & 0x3c) {
case 0x0c: /* 0 0 1 1 x x */
status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
break;
case 0x14: /* 0 1 0 1 x x */
status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
break;
case 0x1c: /* 0 1 1 1 x x */
status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
break;
case 0x24: /* 1 0 0 1 x x */
status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
break;
case 0x2c: /* 1 0 1 1 x x */
status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
break;
case 0x34: /* 1 1 0 1 x x */
status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
break;
case 0x38: /* 1 1 1 x x x */
case 0x3c:
status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
break;
/* obsolete AT45DB1282 not (yet?) supported */
default:
dev_info(&spi->dev, "unsupported device (%x)\n",
status & 0x3c);
status = -ENODEV;
}
if (status < 0)
pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
status);
return status;
}
static int dataflash_remove(struct spi_device *spi)
{
struct dataflash *flash = spi_get_drvdata(spi);
int status;
pr_debug("%s: remove\n", dev_name(&spi->dev));
status = mtd_device_unregister(&flash->mtd);
if (status == 0)
kfree(flash);
return status;
}
static struct spi_driver dataflash_driver = {
.driver = {
.name = "mtd_dataflash",
.of_match_table = of_match_ptr(dataflash_dt_ids),
},
.probe = dataflash_probe,
.remove = dataflash_remove,
/* FIXME: investigate suspend and resume... */
};
module_spi_driver(dataflash_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Andrew Victor, David Brownell");
MODULE_DESCRIPTION("MTD DataFlash driver");
MODULE_ALIAS("spi:mtd_dataflash");