alistair23-linux/fs/xfs/xfs_file.c
Jan Kara c0b2462597 dax: pass detailed error code from dax_iomap_fault()
Ext4 needs to pass through error from its iomap handler to the page
fault handler so that it can properly detect ENOSPC and force
transaction commit and retry the fault (and block allocation). Add
argument to dax_iomap_fault() for passing such error.

Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-07 16:38:43 -05:00

1169 lines
30 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_iomap.h"
#include "xfs_reflink.h"
#include <linux/dcache.h>
#include <linux/falloc.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/mman.h>
static const struct vm_operations_struct xfs_file_vm_ops;
/*
* Clear the specified ranges to zero through either the pagecache or DAX.
* Holes and unwritten extents will be left as-is as they already are zeroed.
*/
int
xfs_zero_range(
struct xfs_inode *ip,
xfs_off_t pos,
xfs_off_t count,
bool *did_zero)
{
return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
}
int
xfs_update_prealloc_flags(
struct xfs_inode *ip,
enum xfs_prealloc_flags flags)
{
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
0, 0, 0, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
if (!(flags & XFS_PREALLOC_INVISIBLE)) {
VFS_I(ip)->i_mode &= ~S_ISUID;
if (VFS_I(ip)->i_mode & S_IXGRP)
VFS_I(ip)->i_mode &= ~S_ISGID;
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
}
if (flags & XFS_PREALLOC_SET)
ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
if (flags & XFS_PREALLOC_CLEAR)
ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
if (flags & XFS_PREALLOC_SYNC)
xfs_trans_set_sync(tp);
return xfs_trans_commit(tp);
}
/*
* Fsync operations on directories are much simpler than on regular files,
* as there is no file data to flush, and thus also no need for explicit
* cache flush operations, and there are no non-transaction metadata updates
* on directories either.
*/
STATIC int
xfs_dir_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct xfs_inode *ip = XFS_I(file->f_mapping->host);
struct xfs_mount *mp = ip->i_mount;
xfs_lsn_t lsn = 0;
trace_xfs_dir_fsync(ip);
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip))
lsn = ip->i_itemp->ili_last_lsn;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!lsn)
return 0;
return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
}
STATIC int
xfs_file_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
int error = 0;
int log_flushed = 0;
xfs_lsn_t lsn = 0;
trace_xfs_file_fsync(ip);
error = file_write_and_wait_range(file, start, end);
if (error)
return error;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
xfs_iflags_clear(ip, XFS_ITRUNCATED);
/*
* If we have an RT and/or log subvolume we need to make sure to flush
* the write cache the device used for file data first. This is to
* ensure newly written file data make it to disk before logging the new
* inode size in case of an extending write.
*/
if (XFS_IS_REALTIME_INODE(ip))
xfs_blkdev_issue_flush(mp->m_rtdev_targp);
else if (mp->m_logdev_targp != mp->m_ddev_targp)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
/*
* All metadata updates are logged, which means that we just have to
* flush the log up to the latest LSN that touched the inode. If we have
* concurrent fsync/fdatasync() calls, we need them to all block on the
* log force before we clear the ili_fsync_fields field. This ensures
* that we don't get a racing sync operation that does not wait for the
* metadata to hit the journal before returning. If we race with
* clearing the ili_fsync_fields, then all that will happen is the log
* force will do nothing as the lsn will already be on disk. We can't
* race with setting ili_fsync_fields because that is done under
* XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
* until after the ili_fsync_fields is cleared.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip)) {
if (!datasync ||
(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
lsn = ip->i_itemp->ili_last_lsn;
}
if (lsn) {
error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
ip->i_itemp->ili_fsync_fields = 0;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
/*
* If we only have a single device, and the log force about was
* a no-op we might have to flush the data device cache here.
* This can only happen for fdatasync/O_DSYNC if we were overwriting
* an already allocated file and thus do not have any metadata to
* commit.
*/
if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
mp->m_logdev_targp == mp->m_ddev_targp)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
return error;
}
STATIC ssize_t
xfs_file_dio_aio_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
size_t count = iov_iter_count(to);
ssize_t ret;
trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
if (!count)
return 0; /* skip atime */
file_accessed(iocb->ki_filp);
xfs_ilock(ip, XFS_IOLOCK_SHARED);
ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
static noinline ssize_t
xfs_file_dax_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
size_t count = iov_iter_count(to);
ssize_t ret = 0;
trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
if (!count)
return 0; /* skip atime */
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
return -EAGAIN;
} else {
xfs_ilock(ip, XFS_IOLOCK_SHARED);
}
ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
file_accessed(iocb->ki_filp);
return ret;
}
STATIC ssize_t
xfs_file_buffered_aio_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
ssize_t ret;
trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
return -EAGAIN;
} else {
xfs_ilock(ip, XFS_IOLOCK_SHARED);
}
ret = generic_file_read_iter(iocb, to);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
STATIC ssize_t
xfs_file_read_iter(
struct kiocb *iocb,
struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct xfs_mount *mp = XFS_I(inode)->i_mount;
ssize_t ret = 0;
XFS_STATS_INC(mp, xs_read_calls);
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (IS_DAX(inode))
ret = xfs_file_dax_read(iocb, to);
else if (iocb->ki_flags & IOCB_DIRECT)
ret = xfs_file_dio_aio_read(iocb, to);
else
ret = xfs_file_buffered_aio_read(iocb, to);
if (ret > 0)
XFS_STATS_ADD(mp, xs_read_bytes, ret);
return ret;
}
/*
* Zero any on disk space between the current EOF and the new, larger EOF.
*
* This handles the normal case of zeroing the remainder of the last block in
* the file and the unusual case of zeroing blocks out beyond the size of the
* file. This second case only happens with fixed size extents and when the
* system crashes before the inode size was updated but after blocks were
* allocated.
*
* Expects the iolock to be held exclusive, and will take the ilock internally.
*/
int /* error (positive) */
xfs_zero_eof(
struct xfs_inode *ip,
xfs_off_t offset, /* starting I/O offset */
xfs_fsize_t isize, /* current inode size */
bool *did_zeroing)
{
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ASSERT(offset > isize);
trace_xfs_zero_eof(ip, isize, offset - isize);
return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
}
/*
* Common pre-write limit and setup checks.
*
* Called with the iolocked held either shared and exclusive according to
* @iolock, and returns with it held. Might upgrade the iolock to exclusive
* if called for a direct write beyond i_size.
*/
STATIC ssize_t
xfs_file_aio_write_checks(
struct kiocb *iocb,
struct iov_iter *from,
int *iolock)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t error = 0;
size_t count = iov_iter_count(from);
bool drained_dio = false;
restart:
error = generic_write_checks(iocb, from);
if (error <= 0)
return error;
error = xfs_break_layouts(inode, iolock);
if (error)
return error;
/*
* For changing security info in file_remove_privs() we need i_rwsem
* exclusively.
*/
if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
xfs_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
xfs_ilock(ip, *iolock);
goto restart;
}
/*
* If the offset is beyond the size of the file, we need to zero any
* blocks that fall between the existing EOF and the start of this
* write. If zeroing is needed and we are currently holding the
* iolock shared, we need to update it to exclusive which implies
* having to redo all checks before.
*
* We need to serialise against EOF updates that occur in IO
* completions here. We want to make sure that nobody is changing the
* size while we do this check until we have placed an IO barrier (i.e.
* hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
* The spinlock effectively forms a memory barrier once we have the
* XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
* and hence be able to correctly determine if we need to run zeroing.
*/
spin_lock(&ip->i_flags_lock);
if (iocb->ki_pos > i_size_read(inode)) {
spin_unlock(&ip->i_flags_lock);
if (!drained_dio) {
if (*iolock == XFS_IOLOCK_SHARED) {
xfs_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
xfs_ilock(ip, *iolock);
iov_iter_reexpand(from, count);
}
/*
* We now have an IO submission barrier in place, but
* AIO can do EOF updates during IO completion and hence
* we now need to wait for all of them to drain. Non-AIO
* DIO will have drained before we are given the
* XFS_IOLOCK_EXCL, and so for most cases this wait is a
* no-op.
*/
inode_dio_wait(inode);
drained_dio = true;
goto restart;
}
error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
if (error)
return error;
} else
spin_unlock(&ip->i_flags_lock);
/*
* Updating the timestamps will grab the ilock again from
* xfs_fs_dirty_inode, so we have to call it after dropping the
* lock above. Eventually we should look into a way to avoid
* the pointless lock roundtrip.
*/
if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
error = file_update_time(file);
if (error)
return error;
}
/*
* If we're writing the file then make sure to clear the setuid and
* setgid bits if the process is not being run by root. This keeps
* people from modifying setuid and setgid binaries.
*/
if (!IS_NOSEC(inode))
return file_remove_privs(file);
return 0;
}
static int
xfs_dio_write_end_io(
struct kiocb *iocb,
ssize_t size,
unsigned flags)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct xfs_inode *ip = XFS_I(inode);
loff_t offset = iocb->ki_pos;
int error = 0;
trace_xfs_end_io_direct_write(ip, offset, size);
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
if (size <= 0)
return size;
if (flags & IOMAP_DIO_COW) {
error = xfs_reflink_end_cow(ip, offset, size);
if (error)
return error;
}
/*
* Unwritten conversion updates the in-core isize after extent
* conversion but before updating the on-disk size. Updating isize any
* earlier allows a racing dio read to find unwritten extents before
* they are converted.
*/
if (flags & IOMAP_DIO_UNWRITTEN)
return xfs_iomap_write_unwritten(ip, offset, size, true);
/*
* We need to update the in-core inode size here so that we don't end up
* with the on-disk inode size being outside the in-core inode size. We
* have no other method of updating EOF for AIO, so always do it here
* if necessary.
*
* We need to lock the test/set EOF update as we can be racing with
* other IO completions here to update the EOF. Failing to serialise
* here can result in EOF moving backwards and Bad Things Happen when
* that occurs.
*/
spin_lock(&ip->i_flags_lock);
if (offset + size > i_size_read(inode)) {
i_size_write(inode, offset + size);
spin_unlock(&ip->i_flags_lock);
error = xfs_setfilesize(ip, offset, size);
} else {
spin_unlock(&ip->i_flags_lock);
}
return error;
}
/*
* xfs_file_dio_aio_write - handle direct IO writes
*
* Lock the inode appropriately to prepare for and issue a direct IO write.
* By separating it from the buffered write path we remove all the tricky to
* follow locking changes and looping.
*
* If there are cached pages or we're extending the file, we need IOLOCK_EXCL
* until we're sure the bytes at the new EOF have been zeroed and/or the cached
* pages are flushed out.
*
* In most cases the direct IO writes will be done holding IOLOCK_SHARED
* allowing them to be done in parallel with reads and other direct IO writes.
* However, if the IO is not aligned to filesystem blocks, the direct IO layer
* needs to do sub-block zeroing and that requires serialisation against other
* direct IOs to the same block. In this case we need to serialise the
* submission of the unaligned IOs so that we don't get racing block zeroing in
* the dio layer. To avoid the problem with aio, we also need to wait for
* outstanding IOs to complete so that unwritten extent conversion is completed
* before we try to map the overlapping block. This is currently implemented by
* hitting it with a big hammer (i.e. inode_dio_wait()).
*
* Returns with locks held indicated by @iolock and errors indicated by
* negative return values.
*/
STATIC ssize_t
xfs_file_dio_aio_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t ret = 0;
int unaligned_io = 0;
int iolock;
size_t count = iov_iter_count(from);
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
/* DIO must be aligned to device logical sector size */
if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
return -EINVAL;
/*
* Don't take the exclusive iolock here unless the I/O is unaligned to
* the file system block size. We don't need to consider the EOF
* extension case here because xfs_file_aio_write_checks() will relock
* the inode as necessary for EOF zeroing cases and fill out the new
* inode size as appropriate.
*/
if ((iocb->ki_pos & mp->m_blockmask) ||
((iocb->ki_pos + count) & mp->m_blockmask)) {
unaligned_io = 1;
/*
* We can't properly handle unaligned direct I/O to reflink
* files yet, as we can't unshare a partial block.
*/
if (xfs_is_reflink_inode(ip)) {
trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
return -EREMCHG;
}
iolock = XFS_IOLOCK_EXCL;
} else {
iolock = XFS_IOLOCK_SHARED;
}
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, iolock))
return -EAGAIN;
} else {
xfs_ilock(ip, iolock);
}
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
count = iov_iter_count(from);
/*
* If we are doing unaligned IO, wait for all other IO to drain,
* otherwise demote the lock if we had to take the exclusive lock
* for other reasons in xfs_file_aio_write_checks.
*/
if (unaligned_io) {
/* If we are going to wait for other DIO to finish, bail */
if (iocb->ki_flags & IOCB_NOWAIT) {
if (atomic_read(&inode->i_dio_count))
return -EAGAIN;
} else {
inode_dio_wait(inode);
}
} else if (iolock == XFS_IOLOCK_EXCL) {
xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
iolock = XFS_IOLOCK_SHARED;
}
trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
out:
xfs_iunlock(ip, iolock);
/*
* No fallback to buffered IO on errors for XFS, direct IO will either
* complete fully or fail.
*/
ASSERT(ret < 0 || ret == count);
return ret;
}
static noinline ssize_t
xfs_file_dax_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct inode *inode = iocb->ki_filp->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
int iolock = XFS_IOLOCK_EXCL;
ssize_t ret, error = 0;
size_t count;
loff_t pos;
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!xfs_ilock_nowait(ip, iolock))
return -EAGAIN;
} else {
xfs_ilock(ip, iolock);
}
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
pos = iocb->ki_pos;
count = iov_iter_count(from);
trace_xfs_file_dax_write(ip, count, pos);
ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
i_size_write(inode, iocb->ki_pos);
error = xfs_setfilesize(ip, pos, ret);
}
out:
xfs_iunlock(ip, iolock);
return error ? error : ret;
}
STATIC ssize_t
xfs_file_buffered_aio_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
int enospc = 0;
int iolock;
if (iocb->ki_flags & IOCB_NOWAIT)
return -EOPNOTSUPP;
write_retry:
iolock = XFS_IOLOCK_EXCL;
xfs_ilock(ip, iolock);
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
if (likely(ret >= 0))
iocb->ki_pos += ret;
/*
* If we hit a space limit, try to free up some lingering preallocated
* space before returning an error. In the case of ENOSPC, first try to
* write back all dirty inodes to free up some of the excess reserved
* metadata space. This reduces the chances that the eofblocks scan
* waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
* also behaves as a filter to prevent too many eofblocks scans from
* running at the same time.
*/
if (ret == -EDQUOT && !enospc) {
xfs_iunlock(ip, iolock);
enospc = xfs_inode_free_quota_eofblocks(ip);
if (enospc)
goto write_retry;
enospc = xfs_inode_free_quota_cowblocks(ip);
if (enospc)
goto write_retry;
iolock = 0;
} else if (ret == -ENOSPC && !enospc) {
struct xfs_eofblocks eofb = {0};
enospc = 1;
xfs_flush_inodes(ip->i_mount);
xfs_iunlock(ip, iolock);
eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
xfs_icache_free_eofblocks(ip->i_mount, &eofb);
xfs_icache_free_cowblocks(ip->i_mount, &eofb);
goto write_retry;
}
current->backing_dev_info = NULL;
out:
if (iolock)
xfs_iunlock(ip, iolock);
return ret;
}
STATIC ssize_t
xfs_file_write_iter(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
size_t ocount = iov_iter_count(from);
XFS_STATS_INC(ip->i_mount, xs_write_calls);
if (ocount == 0)
return 0;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
if (IS_DAX(inode))
ret = xfs_file_dax_write(iocb, from);
else if (iocb->ki_flags & IOCB_DIRECT) {
/*
* Allow a directio write to fall back to a buffered
* write *only* in the case that we're doing a reflink
* CoW. In all other directio scenarios we do not
* allow an operation to fall back to buffered mode.
*/
ret = xfs_file_dio_aio_write(iocb, from);
if (ret == -EREMCHG)
goto buffered;
} else {
buffered:
ret = xfs_file_buffered_aio_write(iocb, from);
}
if (ret > 0) {
XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
/* Handle various SYNC-type writes */
ret = generic_write_sync(iocb, ret);
}
return ret;
}
#define XFS_FALLOC_FL_SUPPORTED \
(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
STATIC long
xfs_file_fallocate(
struct file *file,
int mode,
loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct xfs_inode *ip = XFS_I(inode);
long error;
enum xfs_prealloc_flags flags = 0;
uint iolock = XFS_IOLOCK_EXCL;
loff_t new_size = 0;
bool do_file_insert = false;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (mode & ~XFS_FALLOC_FL_SUPPORTED)
return -EOPNOTSUPP;
xfs_ilock(ip, iolock);
error = xfs_break_layouts(inode, &iolock);
if (error)
goto out_unlock;
xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
iolock |= XFS_MMAPLOCK_EXCL;
if (mode & FALLOC_FL_PUNCH_HOLE) {
error = xfs_free_file_space(ip, offset, len);
if (error)
goto out_unlock;
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
unsigned int blksize_mask = i_blocksize(inode) - 1;
if (offset & blksize_mask || len & blksize_mask) {
error = -EINVAL;
goto out_unlock;
}
/*
* There is no need to overlap collapse range with EOF,
* in which case it is effectively a truncate operation
*/
if (offset + len >= i_size_read(inode)) {
error = -EINVAL;
goto out_unlock;
}
new_size = i_size_read(inode) - len;
error = xfs_collapse_file_space(ip, offset, len);
if (error)
goto out_unlock;
} else if (mode & FALLOC_FL_INSERT_RANGE) {
unsigned int blksize_mask = i_blocksize(inode) - 1;
new_size = i_size_read(inode) + len;
if (offset & blksize_mask || len & blksize_mask) {
error = -EINVAL;
goto out_unlock;
}
/* check the new inode size does not wrap through zero */
if (new_size > inode->i_sb->s_maxbytes) {
error = -EFBIG;
goto out_unlock;
}
/* Offset should be less than i_size */
if (offset >= i_size_read(inode)) {
error = -EINVAL;
goto out_unlock;
}
do_file_insert = true;
} else {
flags |= XFS_PREALLOC_SET;
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
offset + len > i_size_read(inode)) {
new_size = offset + len;
error = inode_newsize_ok(inode, new_size);
if (error)
goto out_unlock;
}
if (mode & FALLOC_FL_ZERO_RANGE)
error = xfs_zero_file_space(ip, offset, len);
else {
if (mode & FALLOC_FL_UNSHARE_RANGE) {
error = xfs_reflink_unshare(ip, offset, len);
if (error)
goto out_unlock;
}
error = xfs_alloc_file_space(ip, offset, len,
XFS_BMAPI_PREALLOC);
}
if (error)
goto out_unlock;
}
if (file->f_flags & O_DSYNC)
flags |= XFS_PREALLOC_SYNC;
error = xfs_update_prealloc_flags(ip, flags);
if (error)
goto out_unlock;
/* Change file size if needed */
if (new_size) {
struct iattr iattr;
iattr.ia_valid = ATTR_SIZE;
iattr.ia_size = new_size;
error = xfs_vn_setattr_size(file_dentry(file), &iattr);
if (error)
goto out_unlock;
}
/*
* Perform hole insertion now that the file size has been
* updated so that if we crash during the operation we don't
* leave shifted extents past EOF and hence losing access to
* the data that is contained within them.
*/
if (do_file_insert)
error = xfs_insert_file_space(ip, offset, len);
out_unlock:
xfs_iunlock(ip, iolock);
return error;
}
STATIC int
xfs_file_clone_range(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 len)
{
return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
len, false);
}
STATIC ssize_t
xfs_file_dedupe_range(
struct file *src_file,
u64 loff,
u64 len,
struct file *dst_file,
u64 dst_loff)
{
int error;
error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
len, true);
if (error)
return error;
return len;
}
STATIC int
xfs_file_open(
struct inode *inode,
struct file *file)
{
if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
return -EFBIG;
if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
return -EIO;
file->f_mode |= FMODE_NOWAIT;
return 0;
}
STATIC int
xfs_dir_open(
struct inode *inode,
struct file *file)
{
struct xfs_inode *ip = XFS_I(inode);
int mode;
int error;
error = xfs_file_open(inode, file);
if (error)
return error;
/*
* If there are any blocks, read-ahead block 0 as we're almost
* certain to have the next operation be a read there.
*/
mode = xfs_ilock_data_map_shared(ip);
if (ip->i_d.di_nextents > 0)
error = xfs_dir3_data_readahead(ip, 0, -1);
xfs_iunlock(ip, mode);
return error;
}
STATIC int
xfs_file_release(
struct inode *inode,
struct file *filp)
{
return xfs_release(XFS_I(inode));
}
STATIC int
xfs_file_readdir(
struct file *file,
struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
xfs_inode_t *ip = XFS_I(inode);
size_t bufsize;
/*
* The Linux API doesn't pass down the total size of the buffer
* we read into down to the filesystem. With the filldir concept
* it's not needed for correct information, but the XFS dir2 leaf
* code wants an estimate of the buffer size to calculate it's
* readahead window and size the buffers used for mapping to
* physical blocks.
*
* Try to give it an estimate that's good enough, maybe at some
* point we can change the ->readdir prototype to include the
* buffer size. For now we use the current glibc buffer size.
*/
bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
return xfs_readdir(NULL, ip, ctx, bufsize);
}
STATIC loff_t
xfs_file_llseek(
struct file *file,
loff_t offset,
int whence)
{
struct inode *inode = file->f_mapping->host;
if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
return -EIO;
switch (whence) {
default:
return generic_file_llseek(file, offset, whence);
case SEEK_HOLE:
offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
break;
case SEEK_DATA:
offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
break;
}
if (offset < 0)
return offset;
return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
}
/*
* Locking for serialisation of IO during page faults. This results in a lock
* ordering of:
*
* mmap_sem (MM)
* sb_start_pagefault(vfs, freeze)
* i_mmaplock (XFS - truncate serialisation)
* page_lock (MM)
* i_lock (XFS - extent map serialisation)
*/
static int
__xfs_filemap_fault(
struct vm_fault *vmf,
enum page_entry_size pe_size,
bool write_fault)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
struct xfs_inode *ip = XFS_I(inode);
int ret;
trace_xfs_filemap_fault(ip, pe_size, write_fault);
if (write_fault) {
sb_start_pagefault(inode->i_sb);
file_update_time(vmf->vma->vm_file);
}
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (IS_DAX(inode)) {
pfn_t pfn;
ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
if (ret & VM_FAULT_NEEDDSYNC)
ret = dax_finish_sync_fault(vmf, pe_size, pfn);
} else {
if (write_fault)
ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
else
ret = filemap_fault(vmf);
}
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (write_fault)
sb_end_pagefault(inode->i_sb);
return ret;
}
static int
xfs_filemap_fault(
struct vm_fault *vmf)
{
/* DAX can shortcut the normal fault path on write faults! */
return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
IS_DAX(file_inode(vmf->vma->vm_file)) &&
(vmf->flags & FAULT_FLAG_WRITE));
}
static int
xfs_filemap_huge_fault(
struct vm_fault *vmf,
enum page_entry_size pe_size)
{
if (!IS_DAX(file_inode(vmf->vma->vm_file)))
return VM_FAULT_FALLBACK;
/* DAX can shortcut the normal fault path on write faults! */
return __xfs_filemap_fault(vmf, pe_size,
(vmf->flags & FAULT_FLAG_WRITE));
}
static int
xfs_filemap_page_mkwrite(
struct vm_fault *vmf)
{
return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
}
/*
* pfn_mkwrite was originally intended to ensure we capture time stamp updates
* on write faults. In reality, it needs to serialise against truncate and
* prepare memory for writing so handle is as standard write fault.
*/
static int
xfs_filemap_pfn_mkwrite(
struct vm_fault *vmf)
{
return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
}
static const struct vm_operations_struct xfs_file_vm_ops = {
.fault = xfs_filemap_fault,
.huge_fault = xfs_filemap_huge_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = xfs_filemap_page_mkwrite,
.pfn_mkwrite = xfs_filemap_pfn_mkwrite,
};
STATIC int
xfs_file_mmap(
struct file *filp,
struct vm_area_struct *vma)
{
/*
* We don't support synchronous mappings for non-DAX files. At least
* until someone comes with a sensible use case.
*/
if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
return -EOPNOTSUPP;
file_accessed(filp);
vma->vm_ops = &xfs_file_vm_ops;
if (IS_DAX(file_inode(filp)))
vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
return 0;
}
const struct file_operations xfs_file_operations = {
.llseek = xfs_file_llseek,
.read_iter = xfs_file_read_iter,
.write_iter = xfs_file_write_iter,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.mmap = xfs_file_mmap,
.mmap_supported_flags = MAP_SYNC,
.open = xfs_file_open,
.release = xfs_file_release,
.fsync = xfs_file_fsync,
.get_unmapped_area = thp_get_unmapped_area,
.fallocate = xfs_file_fallocate,
.clone_file_range = xfs_file_clone_range,
.dedupe_file_range = xfs_file_dedupe_range,
};
const struct file_operations xfs_dir_file_operations = {
.open = xfs_dir_open,
.read = generic_read_dir,
.iterate_shared = xfs_file_readdir,
.llseek = generic_file_llseek,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.fsync = xfs_dir_fsync,
};