alistair23-linux/drivers/spi/spi-mxic.c
Pratyush Yadav caf72df48b
spi: spi-mem: allow specifying a command's extension
In xSPI mode, flashes expect 2-byte opcodes. The second byte is called
the "command extension". There can be 3 types of extensions in xSPI:
repeat, invert, and hex. When the extension type is "repeat", the same
opcode is sent twice. When it is "invert", the second byte is the
inverse of the opcode. When it is "hex" an additional opcode byte based
is sent with the command whose value can be anything.

So, make opcode a 16-bit value and add a 'nbytes', similar to how
multiple address widths are handled.

Some places use sizeof(op->cmd.opcode). Replace them with op->cmd.nbytes

The spi-mxic and spi-zynq-qspi drivers directly use op->cmd.opcode as a
buffer. Now that opcode is a 2-byte field, this can result in different
behaviour depending on if the machine is little endian or big endian.
Extract the opcode in a local 1-byte variable and use that as the buffer
instead. Both these drivers would reject multi-byte opcodes in their
supports_op() hook anyway, so we only need to worry about single-byte
opcodes for now.

The above two changes are put in this commit to keep the series
bisectable.

Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20200623183030.26591-3-p.yadav@ti.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-07-14 17:29:38 +01:00

619 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2018 Macronix International Co., Ltd.
//
// Authors:
// Mason Yang <masonccyang@mxic.com.tw>
// zhengxunli <zhengxunli@mxic.com.tw>
// Boris Brezillon <boris.brezillon@bootlin.com>
//
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
struct mxic_spi {
struct clk *ps_clk;
struct clk *send_clk;
struct clk *send_dly_clk;
void __iomem *regs;
u32 cur_speed_hz;
};
static int mxic_spi_clk_enable(struct mxic_spi *mxic)
{
int ret;
ret = clk_prepare_enable(mxic->send_clk);
if (ret)
return ret;
ret = clk_prepare_enable(mxic->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(mxic->send_clk);
return ret;
}
static void mxic_spi_clk_disable(struct mxic_spi *mxic)
{
clk_disable_unprepare(mxic->send_clk);
clk_disable_unprepare(mxic->send_dly_clk);
}
static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
mxic->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
mxic->regs + IDLY_CODE(1));
}
static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
{
int ret;
ret = clk_set_rate(mxic->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(mxic->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_spi_set_input_delay_dqs(mxic, 0xf);
/*
* Phase degree = 360 * freq * output-delay
* where output-delay is a constant value 1 ns in FPGA.
*
* Get Phase degree = 360 * freq * 1 ns
* = 360 * freq * 1 sec / 1000000000
* = 9 * freq / 25000000
*/
ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
if (ret)
return ret;
return 0;
}
static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
{
int ret;
if (mxic->cur_speed_hz == freq)
return 0;
mxic_spi_clk_disable(mxic);
ret = mxic_spi_clk_setup(mxic, freq);
if (ret)
return ret;
ret = mxic_spi_clk_enable(mxic);
if (ret)
return ret;
mxic->cur_speed_hz = freq;
return 0;
}
static void mxic_spi_hw_init(struct mxic_spi *mxic)
{
writel(0, mxic->regs + DATA_STROB);
writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
writel(0, mxic->regs + HC_EN);
writel(0, mxic->regs + LRD_CFG);
writel(0, mxic->regs + LRD_CTRL);
writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
mxic->regs + HC_CFG);
}
static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
writel(data, mxic->regs + TXD(nbytes % 4));
if (rxbuf) {
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
data = readl(mxic->regs + RXD);
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
} else {
readl(mxic->regs + RXD);
}
WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
pos += nbytes;
}
return 0;
}
static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->data.buswidth > 4 || op->addr.buswidth > 4 ||
op->dummy.buswidth > 4 || op->cmd.buswidth > 4)
return false;
if (op->data.nbytes && op->dummy.nbytes &&
op->data.buswidth != op->dummy.buswidth)
return false;
if (op->addr.nbytes > 7)
return false;
return spi_mem_default_supports_op(mem, op);
}
static int mxic_spi_mem_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
int nio = 1, i, ret;
u32 ss_ctrl;
u8 addr[8];
u8 opcode = op->cmd.opcode;
ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
if (ret)
return ret;
if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
nio = 4;
else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
nio = 2;
writel(HC_CFG_NIO(nio) |
HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
HC_CFG_MAN_CS_EN,
mxic->regs + HC_CFG);
writel(HC_EN_BIT, mxic->regs + HC_EN);
ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
if (op->addr.nbytes)
ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
if (op->dummy.nbytes)
ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
if (op->data.nbytes) {
ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
if (op->data.dir == SPI_MEM_DATA_IN)
ss_ctrl |= OP_READ;
}
writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
ret = mxic_spi_data_xfer(mxic, &opcode, NULL, 1);
if (ret)
goto out;
for (i = 0; i < op->addr.nbytes; i++)
addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(mxic,
op->data.dir == SPI_MEM_DATA_OUT ?
op->data.buf.out : NULL,
op->data.dir == SPI_MEM_DATA_IN ?
op->data.buf.in : NULL,
op->data.nbytes);
out:
writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
writel(0, mxic->regs + HC_EN);
return ret;
}
static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
.supports_op = mxic_spi_mem_supports_op,
.exec_op = mxic_spi_mem_exec_op,
};
static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
{
struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
if (!lvl) {
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
mxic->regs + HC_CFG);
writel(HC_EN_BIT, mxic->regs + HC_EN);
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
} else {
writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
writel(0, mxic->regs + HC_EN);
}
}
static int mxic_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct mxic_spi *mxic = spi_master_get_devdata(master);
unsigned int busw = OP_BUSW_1;
int ret;
if (t->rx_buf && t->tx_buf) {
if (((spi->mode & SPI_TX_QUAD) &&
!(spi->mode & SPI_RX_QUAD)) ||
((spi->mode & SPI_TX_DUAL) &&
!(spi->mode & SPI_RX_DUAL)))
return -ENOTSUPP;
}
ret = mxic_spi_set_freq(mxic, t->speed_hz);
if (ret)
return ret;
if (t->tx_buf) {
if (spi->mode & SPI_TX_QUAD)
busw = OP_BUSW_4;
else if (spi->mode & SPI_TX_DUAL)
busw = OP_BUSW_2;
} else if (t->rx_buf) {
if (spi->mode & SPI_RX_QUAD)
busw = OP_BUSW_4;
else if (spi->mode & SPI_RX_DUAL)
busw = OP_BUSW_2;
}
writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
mxic->regs + SS_CTRL(0));
ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
if (ret)
return ret;
spi_finalize_current_transfer(master);
return 0;
}
static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mxic_spi *mxic = spi_master_get_devdata(master);
mxic_spi_clk_disable(mxic);
clk_disable_unprepare(mxic->ps_clk);
return 0;
}
static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mxic_spi *mxic = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(mxic->ps_clk);
if (ret) {
dev_err(dev, "Cannot enable ps_clock.\n");
return ret;
}
return mxic_spi_clk_enable(mxic);
}
static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
mxic_spi_runtime_resume, NULL)
};
static int mxic_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct resource *res;
struct mxic_spi *mxic;
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
mxic = spi_master_get_devdata(master);
master->dev.of_node = pdev->dev.of_node;
mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
if (IS_ERR(mxic->ps_clk))
return PTR_ERR(mxic->ps_clk);
mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
if (IS_ERR(mxic->send_clk))
return PTR_ERR(mxic->send_clk);
mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
if (IS_ERR(mxic->send_dly_clk))
return PTR_ERR(mxic->send_dly_clk);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
mxic->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mxic->regs))
return PTR_ERR(mxic->regs);
pm_runtime_enable(&pdev->dev);
master->auto_runtime_pm = true;
master->num_chipselect = 1;
master->mem_ops = &mxic_spi_mem_ops;
master->set_cs = mxic_spi_set_cs;
master->transfer_one = mxic_spi_transfer_one;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->mode_bits = SPI_CPOL | SPI_CPHA |
SPI_RX_DUAL | SPI_TX_DUAL |
SPI_RX_QUAD | SPI_TX_QUAD;
mxic_spi_hw_init(mxic);
ret = spi_register_master(master);
if (ret) {
dev_err(&pdev->dev, "spi_register_master failed\n");
goto err_put_master;
}
return 0;
err_put_master:
spi_master_put(master);
pm_runtime_disable(&pdev->dev);
return ret;
}
static int mxic_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
spi_unregister_master(master);
return 0;
}
static const struct of_device_id mxic_spi_of_ids[] = {
{ .compatible = "mxicy,mx25f0a-spi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
static struct platform_driver mxic_spi_driver = {
.probe = mxic_spi_probe,
.remove = mxic_spi_remove,
.driver = {
.name = "mxic-spi",
.of_match_table = mxic_spi_of_ids,
.pm = &mxic_spi_dev_pm_ops,
},
};
module_platform_driver(mxic_spi_driver);
MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
MODULE_DESCRIPTION("MX25F0A SPI controller driver");
MODULE_LICENSE("GPL v2");