alistair23-linux/arch/arm/kernel/perf_event.c
Jon Hunter 2ac29a14a8 ARM: PMU: fix runtime PM enable
Commit 7be2958 (ARM: PMU: Add runtime PM Support) updated the ARM PMU code to
use runtime PM which was prototyped and validated on the OMAP devices. In this
commit, there is no call pm_runtime_enable() and for OMAP devices
pm_runtime_enable() is currently being called from the OMAP PMU code when the
PMU device is created. However, there are two problems with this:

1. For any other ARM device wishing to use runtime PM for PMU they will need
   to call pm_runtime_enable() for runtime PM to work.
2. When booting with device-tree and using device-tree to create the PMU
   device, pm_runtime_enable() needs to be called from within the ARM PERF
   driver as we are no longer calling any device specific code to create the
   device. Hence, PMU does not work on OMAP devices that use the runtime PM
   callbacks when using device-tree to create the PMU device.

Therefore,  call pm_runtime_enable() directly from the ARM PMU driver when
registering the device. For platforms that do not use runtime PM,
pm_runtime_enable() does nothing and for platforms that do use runtime PM but
may not require it specifically for PMU, this will just add a little overhead
when initialising and uninitialising the PMU device.

Tested with PERF on OMAP2420, OMAP3430 and OMAP4460.

Acked-by: Kevin Hilman <khilman@ti.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2012-11-09 11:37:26 +00:00

643 lines
15 KiB
C

#undef DEBUG
/*
* ARM performance counter support.
*
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
* Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
*
* This code is based on the sparc64 perf event code, which is in turn based
* on the x86 code. Callchain code is based on the ARM OProfile backtrace
* code.
*/
#define pr_fmt(fmt) "hw perfevents: " fmt
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/uaccess.h>
#include <asm/irq_regs.h>
#include <asm/pmu.h>
#include <asm/stacktrace.h>
static int
armpmu_map_cache_event(const unsigned (*cache_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX],
u64 config)
{
unsigned int cache_type, cache_op, cache_result, ret;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
if (ret == CACHE_OP_UNSUPPORTED)
return -ENOENT;
return ret;
}
static int
armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
{
int mapping = (*event_map)[config];
return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
}
static int
armpmu_map_raw_event(u32 raw_event_mask, u64 config)
{
return (int)(config & raw_event_mask);
}
int
armpmu_map_event(struct perf_event *event,
const unsigned (*event_map)[PERF_COUNT_HW_MAX],
const unsigned (*cache_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX],
u32 raw_event_mask)
{
u64 config = event->attr.config;
switch (event->attr.type) {
case PERF_TYPE_HARDWARE:
return armpmu_map_hw_event(event_map, config);
case PERF_TYPE_HW_CACHE:
return armpmu_map_cache_event(cache_map, config);
case PERF_TYPE_RAW:
return armpmu_map_raw_event(raw_event_mask, config);
}
return -ENOENT;
}
int armpmu_event_set_period(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int ret = 0;
/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
if (unlikely(period != hwc->last_period))
left = period - (hwc->last_period - left);
if (unlikely(left <= -period)) {
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (left > (s64)armpmu->max_period)
left = armpmu->max_period;
local64_set(&hwc->prev_count, (u64)-left);
armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
perf_event_update_userpage(event);
return ret;
}
u64 armpmu_event_update(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u64 delta, prev_raw_count, new_raw_count;
again:
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = armpmu->read_counter(event);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
return new_raw_count;
}
static void
armpmu_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Don't read disabled counters! */
if (hwc->idx < 0)
return;
armpmu_event_update(event);
}
static void
armpmu_stop(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
/*
* ARM pmu always has to update the counter, so ignore
* PERF_EF_UPDATE, see comments in armpmu_start().
*/
if (!(hwc->state & PERF_HES_STOPPED)) {
armpmu->disable(event);
armpmu_event_update(event);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
}
static void armpmu_start(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
/*
* ARM pmu always has to reprogram the period, so ignore
* PERF_EF_RELOAD, see the comment below.
*/
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
/*
* Set the period again. Some counters can't be stopped, so when we
* were stopped we simply disabled the IRQ source and the counter
* may have been left counting. If we don't do this step then we may
* get an interrupt too soon or *way* too late if the overflow has
* happened since disabling.
*/
armpmu_event_set_period(event);
armpmu->enable(event);
}
static void
armpmu_del(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *hw_events = armpmu->get_hw_events();
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
WARN_ON(idx < 0);
armpmu_stop(event, PERF_EF_UPDATE);
hw_events->events[idx] = NULL;
clear_bit(idx, hw_events->used_mask);
perf_event_update_userpage(event);
}
static int
armpmu_add(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *hw_events = armpmu->get_hw_events();
struct hw_perf_event *hwc = &event->hw;
int idx;
int err = 0;
perf_pmu_disable(event->pmu);
/* If we don't have a space for the counter then finish early. */
idx = armpmu->get_event_idx(hw_events, event);
if (idx < 0) {
err = idx;
goto out;
}
/*
* If there is an event in the counter we are going to use then make
* sure it is disabled.
*/
event->hw.idx = idx;
armpmu->disable(event);
hw_events->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
armpmu_start(event, PERF_EF_RELOAD);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
out:
perf_pmu_enable(event->pmu);
return err;
}
static int
validate_event(struct pmu_hw_events *hw_events,
struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct pmu *leader_pmu = event->group_leader->pmu;
if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
return 1;
return armpmu->get_event_idx(hw_events, event) >= 0;
}
static int
validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct pmu_hw_events fake_pmu;
DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
/*
* Initialise the fake PMU. We only need to populate the
* used_mask for the purposes of validation.
*/
memset(fake_used_mask, 0, sizeof(fake_used_mask));
fake_pmu.used_mask = fake_used_mask;
if (!validate_event(&fake_pmu, leader))
return -EINVAL;
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
if (!validate_event(&fake_pmu, sibling))
return -EINVAL;
}
if (!validate_event(&fake_pmu, event))
return -EINVAL;
return 0;
}
static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
{
struct arm_pmu *armpmu = (struct arm_pmu *) dev;
struct platform_device *plat_device = armpmu->plat_device;
struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
if (plat && plat->handle_irq)
return plat->handle_irq(irq, dev, armpmu->handle_irq);
else
return armpmu->handle_irq(irq, dev);
}
static void
armpmu_release_hardware(struct arm_pmu *armpmu)
{
armpmu->free_irq(armpmu);
pm_runtime_put_sync(&armpmu->plat_device->dev);
}
static int
armpmu_reserve_hardware(struct arm_pmu *armpmu)
{
int err;
struct platform_device *pmu_device = armpmu->plat_device;
if (!pmu_device)
return -ENODEV;
pm_runtime_get_sync(&pmu_device->dev);
err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
if (err) {
armpmu_release_hardware(armpmu);
return err;
}
return 0;
}
static void
hw_perf_event_destroy(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
atomic_t *active_events = &armpmu->active_events;
struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
armpmu_release_hardware(armpmu);
mutex_unlock(pmu_reserve_mutex);
}
}
static int
event_requires_mode_exclusion(struct perf_event_attr *attr)
{
return attr->exclude_idle || attr->exclude_user ||
attr->exclude_kernel || attr->exclude_hv;
}
static int
__hw_perf_event_init(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int mapping, err;
mapping = armpmu->map_event(event);
if (mapping < 0) {
pr_debug("event %x:%llx not supported\n", event->attr.type,
event->attr.config);
return mapping;
}
/*
* We don't assign an index until we actually place the event onto
* hardware. Use -1 to signify that we haven't decided where to put it
* yet. For SMP systems, each core has it's own PMU so we can't do any
* clever allocation or constraints checking at this point.
*/
hwc->idx = -1;
hwc->config_base = 0;
hwc->config = 0;
hwc->event_base = 0;
/*
* Check whether we need to exclude the counter from certain modes.
*/
if ((!armpmu->set_event_filter ||
armpmu->set_event_filter(hwc, &event->attr)) &&
event_requires_mode_exclusion(&event->attr)) {
pr_debug("ARM performance counters do not support "
"mode exclusion\n");
return -EOPNOTSUPP;
}
/*
* Store the event encoding into the config_base field.
*/
hwc->config_base |= (unsigned long)mapping;
if (!hwc->sample_period) {
/*
* For non-sampling runs, limit the sample_period to half
* of the counter width. That way, the new counter value
* is far less likely to overtake the previous one unless
* you have some serious IRQ latency issues.
*/
hwc->sample_period = armpmu->max_period >> 1;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
err = 0;
if (event->group_leader != event) {
err = validate_group(event);
if (err)
return -EINVAL;
}
return err;
}
static int armpmu_event_init(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
int err = 0;
atomic_t *active_events = &armpmu->active_events;
/* does not support taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
if (armpmu->map_event(event) == -ENOENT)
return -ENOENT;
event->destroy = hw_perf_event_destroy;
if (!atomic_inc_not_zero(active_events)) {
mutex_lock(&armpmu->reserve_mutex);
if (atomic_read(active_events) == 0)
err = armpmu_reserve_hardware(armpmu);
if (!err)
atomic_inc(active_events);
mutex_unlock(&armpmu->reserve_mutex);
}
if (err)
return err;
err = __hw_perf_event_init(event);
if (err)
hw_perf_event_destroy(event);
return err;
}
static void armpmu_enable(struct pmu *pmu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
struct pmu_hw_events *hw_events = armpmu->get_hw_events();
int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
if (enabled)
armpmu->start(armpmu);
}
static void armpmu_disable(struct pmu *pmu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
armpmu->stop(armpmu);
}
#ifdef CONFIG_PM_RUNTIME
static int armpmu_runtime_resume(struct device *dev)
{
struct arm_pmu_platdata *plat = dev_get_platdata(dev);
if (plat && plat->runtime_resume)
return plat->runtime_resume(dev);
return 0;
}
static int armpmu_runtime_suspend(struct device *dev)
{
struct arm_pmu_platdata *plat = dev_get_platdata(dev);
if (plat && plat->runtime_suspend)
return plat->runtime_suspend(dev);
return 0;
}
#endif
const struct dev_pm_ops armpmu_dev_pm_ops = {
SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
};
static void __init armpmu_init(struct arm_pmu *armpmu)
{
atomic_set(&armpmu->active_events, 0);
mutex_init(&armpmu->reserve_mutex);
armpmu->pmu = (struct pmu) {
.pmu_enable = armpmu_enable,
.pmu_disable = armpmu_disable,
.event_init = armpmu_event_init,
.add = armpmu_add,
.del = armpmu_del,
.start = armpmu_start,
.stop = armpmu_stop,
.read = armpmu_read,
};
}
int armpmu_register(struct arm_pmu *armpmu, int type)
{
armpmu_init(armpmu);
pm_runtime_enable(&armpmu->plat_device->dev);
pr_info("enabled with %s PMU driver, %d counters available\n",
armpmu->name, armpmu->num_events);
return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
}
/*
* Callchain handling code.
*/
/*
* The registers we're interested in are at the end of the variable
* length saved register structure. The fp points at the end of this
* structure so the address of this struct is:
* (struct frame_tail *)(xxx->fp)-1
*
* This code has been adapted from the ARM OProfile support.
*/
struct frame_tail {
struct frame_tail __user *fp;
unsigned long sp;
unsigned long lr;
} __attribute__((packed));
/*
* Get the return address for a single stackframe and return a pointer to the
* next frame tail.
*/
static struct frame_tail __user *
user_backtrace(struct frame_tail __user *tail,
struct perf_callchain_entry *entry)
{
struct frame_tail buftail;
/* Also check accessibility of one struct frame_tail beyond */
if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
return NULL;
if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
return NULL;
perf_callchain_store(entry, buftail.lr);
/*
* Frame pointers should strictly progress back up the stack
* (towards higher addresses).
*/
if (tail + 1 >= buftail.fp)
return NULL;
return buftail.fp - 1;
}
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
struct frame_tail __user *tail;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
/* We don't support guest os callchain now */
return;
}
tail = (struct frame_tail __user *)regs->ARM_fp - 1;
while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
tail && !((unsigned long)tail & 0x3))
tail = user_backtrace(tail, entry);
}
/*
* Gets called by walk_stackframe() for every stackframe. This will be called
* whist unwinding the stackframe and is like a subroutine return so we use
* the PC.
*/
static int
callchain_trace(struct stackframe *fr,
void *data)
{
struct perf_callchain_entry *entry = data;
perf_callchain_store(entry, fr->pc);
return 0;
}
void
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
struct stackframe fr;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
/* We don't support guest os callchain now */
return;
}
fr.fp = regs->ARM_fp;
fr.sp = regs->ARM_sp;
fr.lr = regs->ARM_lr;
fr.pc = regs->ARM_pc;
walk_stackframe(&fr, callchain_trace, entry);
}
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
return perf_guest_cbs->get_guest_ip();
return instruction_pointer(regs);
}
unsigned long perf_misc_flags(struct pt_regs *regs)
{
int misc = 0;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
if (perf_guest_cbs->is_user_mode())
misc |= PERF_RECORD_MISC_GUEST_USER;
else
misc |= PERF_RECORD_MISC_GUEST_KERNEL;
} else {
if (user_mode(regs))
misc |= PERF_RECORD_MISC_USER;
else
misc |= PERF_RECORD_MISC_KERNEL;
}
return misc;
}