alistair23-linux/arch/powerpc/kvm/e500_mmu_host.c
Dan Williams ba049e93ae kvm: rename pfn_t to kvm_pfn_t
To date, we have implemented two I/O usage models for persistent memory,
PMEM (a persistent "ram disk") and DAX (mmap persistent memory into
userspace).  This series adds a third, DAX-GUP, that allows DAX mappings
to be the target of direct-i/o.  It allows userspace to coordinate
DMA/RDMA from/to persistent memory.

The implementation leverages the ZONE_DEVICE mm-zone that went into
4.3-rc1 (also discussed at kernel summit) to flag pages that are owned
and dynamically mapped by a device driver.  The pmem driver, after
mapping a persistent memory range into the system memmap via
devm_memremap_pages(), arranges for DAX to distinguish pfn-only versus
page-backed pmem-pfns via flags in the new pfn_t type.

The DAX code, upon seeing a PFN_DEV+PFN_MAP flagged pfn, flags the
resulting pte(s) inserted into the process page tables with a new
_PAGE_DEVMAP flag.  Later, when get_user_pages() is walking ptes it keys
off _PAGE_DEVMAP to pin the device hosting the page range active.
Finally, get_page() and put_page() are modified to take references
against the device driver established page mapping.

Finally, this need for "struct page" for persistent memory requires
memory capacity to store the memmap array.  Given the memmap array for a
large pool of persistent may exhaust available DRAM introduce a
mechanism to allocate the memmap from persistent memory.  The new
"struct vmem_altmap *" parameter to devm_memremap_pages() enables
arch_add_memory() to use reserved pmem capacity rather than the page
allocator.

This patch (of 18):

The core has developed a need for a "pfn_t" type [1].  Move the existing
pfn_t in KVM to kvm_pfn_t [2].

[1]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002199.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002218.html

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00

814 lines
21 KiB
C

/*
* Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
* Scott Wood, scottwood@freescale.com
* Ashish Kalra, ashish.kalra@freescale.com
* Varun Sethi, varun.sethi@freescale.com
* Alexander Graf, agraf@suse.de
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>
#include "e500.h"
#include "timing.h"
#include "e500_mmu_host.h"
#include "trace_booke.h"
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
static inline unsigned int tlb1_max_shadow_size(void)
{
/* reserve one entry for magic page */
return host_tlb_params[1].entries - tlbcam_index - 1;
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
#ifndef CONFIG_KVM_BOOKE_HV
if (!usermode) {
/* Guest is in supervisor mode,
* so we need to translate guest
* supervisor permissions into user permissions. */
mas3 &= ~E500_TLB_USER_PERM_MASK;
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
}
mas3 |= E500_TLB_SUPER_PERM_MASK;
#endif
return mas3;
}
/*
* writing shadow tlb entry to host TLB
*/
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
uint32_t mas0,
uint32_t lpid)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, stlbe->mas1);
mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
#endif
asm volatile("isync; tlbwe" : : : "memory");
#ifdef CONFIG_KVM_BOOKE_HV
/* Must clear mas8 for other host tlbwe's */
mtspr(SPRN_MAS8, 0);
isync();
#endif
local_irq_restore(flags);
trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
stlbe->mas2, stlbe->mas7_3);
}
/*
* Acquire a mas0 with victim hint, as if we just took a TLB miss.
*
* We don't care about the address we're searching for, other than that it's
* in the right set and is not present in the TLB. Using a zero PID and a
* userspace address means we don't have to set and then restore MAS5, or
* calculate a proper MAS6 value.
*/
static u32 get_host_mas0(unsigned long eaddr)
{
unsigned long flags;
u32 mas0;
u32 mas4;
local_irq_save(flags);
mtspr(SPRN_MAS6, 0);
mas4 = mfspr(SPRN_MAS4);
mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
mas0 = mfspr(SPRN_MAS0);
mtspr(SPRN_MAS4, mas4);
local_irq_restore(flags);
return mas0;
}
/* sesel is for tlb1 only */
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
{
u32 mas0;
if (tlbsel == 0) {
mas0 = get_host_mas0(stlbe->mas2);
__write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
} else {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(sesel)),
vcpu_e500->vcpu.kvm->arch.lpid);
}
}
/* sesel is for tlb1 only */
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe,
int stlbsel, int sesel)
{
int stid;
preempt_disable();
stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
stlbe->mas1 |= MAS1_TID(stid);
write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
preempt_enable();
}
#ifdef CONFIG_KVM_E500V2
/* XXX should be a hook in the gva2hpa translation */
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
kvm_pfn_t pfn;
pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
magic.mas8 = 0;
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
preempt_enable();
}
#endif
void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
/* Don't bother with unmapped entries */
if (!(ref->flags & E500_TLB_VALID)) {
WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
"%s: flags %x\n", __func__, ref->flags);
WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
}
if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
int hw_tlb_indx;
unsigned long flags;
local_irq_save(flags);
while (tmp) {
hw_tlb_indx = __ilog2_u64(tmp & -tmp);
mtspr(SPRN_MAS0,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
mtspr(SPRN_MAS1, 0);
asm volatile("tlbwe");
vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
tmp &= tmp - 1;
}
mb();
vcpu_e500->g2h_tlb1_map[esel] = 0;
ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
local_irq_restore(flags);
}
if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
/*
* TLB1 entry is backed by 4k pages. This should happen
* rarely and is not worth optimizing. Invalidate everything.
*/
kvmppc_e500_tlbil_all(vcpu_e500);
ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
}
/*
* If TLB entry is still valid then it's a TLB0 entry, and thus
* backed by at most one host tlbe per shadow pid
*/
if (ref->flags & E500_TLB_VALID)
kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
/* Mark the TLB as not backed by the host anymore */
ref->flags = 0;
}
static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
{
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
kvm_pfn_t pfn, unsigned int wimg)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
/* Use guest supplied MAS2_G and MAS2_E */
ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
/* Mark the page accessed */
kvm_set_pfn_accessed(pfn);
if (tlbe_is_writable(gtlbe))
kvm_set_pfn_dirty(pfn);
}
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
{
if (ref->flags & E500_TLB_VALID) {
/* FIXME: don't log bogus pfn for TLB1 */
trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
ref->flags = 0;
}
}
static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
{
if (vcpu_e500->g2h_tlb1_map)
memset(vcpu_e500->g2h_tlb1_map, 0,
sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
if (vcpu_e500->h2g_tlb1_rmap)
memset(vcpu_e500->h2g_tlb1_rmap, 0,
sizeof(unsigned int) * host_tlb_params[1].entries);
}
static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int tlbsel;
int i;
for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->gtlb_priv[tlbsel][i].ref;
kvmppc_e500_ref_release(ref);
}
}
}
void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_e500_tlbil_all(vcpu_e500);
clear_tlb_privs(vcpu_e500);
clear_tlb1_bitmap(vcpu_e500);
}
/* TID must be supplied by the caller */
static void kvmppc_e500_setup_stlbe(
struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe,
int tsize, struct tlbe_ref *ref, u64 gvaddr,
struct kvm_book3e_206_tlb_entry *stlbe)
{
kvm_pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
BUG_ON(!(ref->flags & E500_TLB_VALID));
/* Force IPROT=0 for all guest mappings. */
stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
}
static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
struct tlbe_ref *ref)
{
struct kvm_memory_slot *slot;
unsigned long pfn = 0; /* silence GCC warning */
unsigned long hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
int ret = 0;
unsigned long mmu_seq;
struct kvm *kvm = vcpu_e500->vcpu.kvm;
unsigned long tsize_pages = 0;
pte_t *ptep;
unsigned int wimg = 0;
pgd_t *pgdir;
unsigned long flags;
/* used to check for invalidations in progress */
mmu_seq = kvm->mmu_notifier_seq;
smp_rmb();
/*
* Translate guest physical to true physical, acquiring
* a page reference if it is normal, non-reserved memory.
*
* gfn_to_memslot() must succeed because otherwise we wouldn't
* have gotten this far. Eventually we should just pass the slot
* pointer through from the first lookup.
*/
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
*/
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
if (start < slot_start)
start = slot_start;
if (end > slot_end)
end = slot_end;
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
/*
* Now find the largest tsize (up to what the guest
* requested) that will cover gfn, stay within the
* range, and for which gfn and pfn are mutually
* aligned.
*/
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
unsigned long gfn_start, gfn_end;
tsize_pages = 1UL << (tsize - 2);
gfn_start = gfn & ~(tsize_pages - 1);
gfn_end = gfn_start + tsize_pages;
if (gfn_start + pfn - gfn < start)
continue;
if (gfn_end + pfn - gfn > end)
continue;
if ((gfn & (tsize_pages - 1)) !=
(pfn & (tsize_pages - 1)))
continue;
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
pfn &= ~(tsize_pages - 1);
break;
}
} else if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_HUGETLB)) {
unsigned long psize = vma_kernel_pagesize(vma);
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Take the largest page size that satisfies both host
* and guest mapping
*/
tsize = min(__ilog2(psize) - 10, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
}
up_read(&current->mm->mmap_sem);
}
if (likely(!pfnmap)) {
tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
pfn = gfn_to_pfn_memslot(slot, gfn);
if (is_error_noslot_pfn(pfn)) {
if (printk_ratelimit())
pr_err("%s: real page not found for gfn %lx\n",
__func__, (long)gfn);
return -EINVAL;
}
/* Align guest and physical address to page map boundaries */
pfn &= ~(tsize_pages - 1);
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
}
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq)) {
ret = -EAGAIN;
goto out;
}
pgdir = vcpu_e500->vcpu.arch.pgdir;
/*
* We are just looking at the wimg bits, so we don't
* care much about the trans splitting bit.
* We are holding kvm->mmu_lock so a notifier invalidate
* can't run hence pfn won't change.
*/
local_irq_save(flags);
ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL, NULL);
if (ptep) {
pte_t pte = READ_ONCE(*ptep);
if (pte_present(pte)) {
wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
MAS2_WIMGE_MASK;
local_irq_restore(flags);
} else {
local_irq_restore(flags);
pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
__func__, (long)gfn, pfn);
ret = -EINVAL;
goto out;
}
}
kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
ref, gvaddr, stlbe);
/* Clear i-cache for new pages */
kvmppc_mmu_flush_icache(pfn);
out:
spin_unlock(&kvm->mmu_lock);
/* Drop refcount on page, so that mmu notifiers can clear it */
kvm_release_pfn_clean(pfn);
return ret;
}
/* XXX only map the one-one case, for now use TLB0 */
static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
struct kvm_book3e_206_tlb_entry *stlbe)
{
struct kvm_book3e_206_tlb_entry *gtlbe;
struct tlbe_ref *ref;
int stlbsel = 0;
int sesel = 0;
int r;
gtlbe = get_entry(vcpu_e500, 0, esel);
ref = &vcpu_e500->gtlb_priv[0][esel].ref;
r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
gtlbe, 0, stlbe, ref);
if (r)
return r;
write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
return 0;
}
static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
struct tlbe_ref *ref,
int esel)
{
unsigned int sesel = vcpu_e500->host_tlb1_nv++;
if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
vcpu_e500->host_tlb1_nv = 0;
if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
}
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
WARN_ON(!(ref->flags & E500_TLB_VALID));
return sesel;
}
/* Caller must ensure that the specified guest TLB entry is safe to insert into
* the shadow TLB. */
/* For both one-one and one-to-many */
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe, int esel)
{
struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
int sesel;
int r;
r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
ref);
if (r)
return r;
/* Use TLB0 when we can only map a page with 4k */
if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
return 0;
}
/* Otherwise map into TLB1 */
sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
return 0;
}
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
unsigned int index)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe_priv *priv;
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel = tlbsel_of(index);
int esel = esel_of(index);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
switch (tlbsel) {
case 0:
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
/* Triggers after clear_tlb_privs or on initial mapping */
if (!(priv->ref.flags & E500_TLB_VALID)) {
kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
} else {
kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
&priv->ref, eaddr, &stlbe);
write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
}
break;
case 1: {
gfn_t gfn = gpaddr >> PAGE_SHIFT;
kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
esel);
break;
}
default:
BUG();
break;
}
}
#ifdef CONFIG_KVM_BOOKE_HV
int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
u32 *instr)
{
gva_t geaddr;
hpa_t addr;
hfn_t pfn;
hva_t eaddr;
u32 mas1, mas2, mas3;
u64 mas7_mas3;
struct page *page;
unsigned int addr_space, psize_shift;
bool pr;
unsigned long flags;
/* Search TLB for guest pc to get the real address */
geaddr = kvmppc_get_pc(vcpu);
addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
local_irq_save(flags);
mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
asm volatile("tlbsx 0, %[geaddr]\n" : :
[geaddr] "r" (geaddr));
mtspr(SPRN_MAS5, 0);
mtspr(SPRN_MAS8, 0);
mas1 = mfspr(SPRN_MAS1);
mas2 = mfspr(SPRN_MAS2);
mas3 = mfspr(SPRN_MAS3);
#ifdef CONFIG_64BIT
mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
#else
mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
#endif
local_irq_restore(flags);
/*
* If the TLB entry for guest pc was evicted, return to the guest.
* There are high chances to find a valid TLB entry next time.
*/
if (!(mas1 & MAS1_VALID))
return EMULATE_AGAIN;
/*
* Another thread may rewrite the TLB entry in parallel, don't
* execute from the address if the execute permission is not set
*/
pr = vcpu->arch.shared->msr & MSR_PR;
if (unlikely((pr && !(mas3 & MAS3_UX)) ||
(!pr && !(mas3 & MAS3_SX)))) {
pr_err_ratelimited(
"%s: Instruction emulation from guest address %08lx without execute permission\n",
__func__, geaddr);
return EMULATE_AGAIN;
}
/*
* The real address will be mapped by a cacheable, memory coherent,
* write-back page. Check for mismatches when LRAT is used.
*/
if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
pr_err_ratelimited(
"%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
__func__, geaddr);
return EMULATE_AGAIN;
}
/* Get pfn */
psize_shift = MAS1_GET_TSIZE(mas1) + 10;
addr = (mas7_mas3 & (~0ULL << psize_shift)) |
(geaddr & ((1ULL << psize_shift) - 1ULL));
pfn = addr >> PAGE_SHIFT;
/* Guard against emulation from devices area */
if (unlikely(!page_is_ram(pfn))) {
pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
__func__, addr);
return EMULATE_AGAIN;
}
/* Map a page and get guest's instruction */
page = pfn_to_page(pfn);
eaddr = (unsigned long)kmap_atomic(page);
*instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
kunmap_atomic((u32 *)eaddr);
return EMULATE_DONE;
}
#else
int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
u32 *instr)
{
return EMULATE_AGAIN;
}
#endif
/************* MMU Notifiers *************/
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
trace_kvm_unmap_hva(hva);
/*
* Flush all shadow tlb entries everywhere. This is slow, but
* we are 100% sure that we catch the to be unmapped page
*/
kvm_flush_remote_tlbs(kvm);
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
/* kvm_unmap_hva flushes everything anyways */
kvm_unmap_hva(kvm, start);
return 0;
}
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
/* XXX could be more clever ;) */
return 0;
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
/* XXX could be more clever ;) */
return 0;
}
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
/* The page will get remapped properly on its next fault */
kvm_unmap_hva(kvm, hva);
}
/*****************************************/
int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
/*
* This should never happen on real e500 hardware, but is
* architecturally possible -- e.g. in some weird nested
* virtualization case.
*/
if (host_tlb_params[0].entries == 0 ||
host_tlb_params[1].entries == 0) {
pr_err("%s: need to know host tlb size\n", __func__);
return -ENODEV;
}
host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
TLBnCFG_ASSOC_SHIFT;
host_tlb_params[1].ways = host_tlb_params[1].entries;
if (!is_power_of_2(host_tlb_params[0].entries) ||
!is_power_of_2(host_tlb_params[0].ways) ||
host_tlb_params[0].entries < host_tlb_params[0].ways ||
host_tlb_params[0].ways == 0) {
pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
__func__, host_tlb_params[0].entries,
host_tlb_params[0].ways);
return -ENODEV;
}
host_tlb_params[0].sets =
host_tlb_params[0].entries / host_tlb_params[0].ways;
host_tlb_params[1].sets = 1;
vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->h2g_tlb1_rmap)
return -EINVAL;
return 0;
}
void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kfree(vcpu_e500->h2g_tlb1_rmap);
}