alistair23-linux/drivers/hwmon/pmbus_core.c
Guenter Roeck f450c1504d hwmon: (pmbus) Use long variables for register to data conversions
Using integer variable types for register to data conversions can cause
overflows especially for power calculations, which are in microwatt.
Use long variables instead.

Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Cc: stable@kernel.org # 2.6.39+
2011-07-12 06:45:45 -07:00

1568 lines
40 KiB
C

/*
* Hardware monitoring driver for PMBus devices
*
* Copyright (c) 2010, 2011 Ericsson AB.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/delay.h>
#include <linux/i2c/pmbus.h>
#include "pmbus.h"
/*
* Constants needed to determine number of sensors, booleans, and labels.
*/
#define PMBUS_MAX_INPUT_SENSORS 11 /* 6*volt, 3*curr, 2*power */
#define PMBUS_VOUT_SENSORS_PER_PAGE 5 /* input, min, max, lcrit,
crit */
#define PMBUS_IOUT_SENSORS_PER_PAGE 4 /* input, min, max, crit */
#define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */
#define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */
#define PMBUS_MAX_SENSORS_PER_TEMP 5 /* input, min, max, lcrit,
crit */
#define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm,
lcrit_alarm, crit_alarm;
c: alarm, crit_alarm;
p: crit_alarm */
#define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm,
lcrit_alarm, crit_alarm */
#define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm,
crit_alarm */
#define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */
#define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */
#define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm,
lcrit_alarm, crit_alarm */
#define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */
/*
* status, status_vout, status_iout, status_fans, status_fan34, and status_temp
* are paged. status_input is unpaged.
*/
#define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1)
/*
* Index into status register array, per status register group
*/
#define PB_STATUS_BASE 0
#define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
#define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
#define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
#define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
#define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
#define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1)
struct pmbus_sensor {
char name[I2C_NAME_SIZE]; /* sysfs sensor name */
struct sensor_device_attribute attribute;
u8 page; /* page number */
u8 reg; /* register */
enum pmbus_sensor_classes class; /* sensor class */
bool update; /* runtime sensor update needed */
int data; /* Sensor data.
Negative if there was a read error */
};
struct pmbus_boolean {
char name[I2C_NAME_SIZE]; /* sysfs boolean name */
struct sensor_device_attribute attribute;
};
struct pmbus_label {
char name[I2C_NAME_SIZE]; /* sysfs label name */
struct sensor_device_attribute attribute;
char label[I2C_NAME_SIZE]; /* label */
};
struct pmbus_data {
struct device *hwmon_dev;
u32 flags; /* from platform data */
int exponent; /* linear mode: exponent for output voltages */
const struct pmbus_driver_info *info;
int max_attributes;
int num_attributes;
struct attribute **attributes;
struct attribute_group group;
/*
* Sensors cover both sensor and limit registers.
*/
int max_sensors;
int num_sensors;
struct pmbus_sensor *sensors;
/*
* Booleans are used for alarms.
* Values are determined from status registers.
*/
int max_booleans;
int num_booleans;
struct pmbus_boolean *booleans;
/*
* Labels are used to map generic names (e.g., "in1")
* to PMBus specific names (e.g., "vin" or "vout1").
*/
int max_labels;
int num_labels;
struct pmbus_label *labels;
struct mutex update_lock;
bool valid;
unsigned long last_updated; /* in jiffies */
/*
* A single status register covers multiple attributes,
* so we keep them all together.
*/
u8 status[PB_NUM_STATUS_REG];
u8 currpage;
};
int pmbus_set_page(struct i2c_client *client, u8 page)
{
struct pmbus_data *data = i2c_get_clientdata(client);
int rv = 0;
int newpage;
if (page != data->currpage) {
rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
if (newpage != page)
rv = -EINVAL;
else
data->currpage = page;
}
return rv;
}
EXPORT_SYMBOL_GPL(pmbus_set_page);
static int pmbus_write_byte(struct i2c_client *client, u8 page, u8 value)
{
int rv;
rv = pmbus_set_page(client, page);
if (rv < 0)
return rv;
return i2c_smbus_write_byte(client, value);
}
static int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg,
u16 word)
{
int rv;
rv = pmbus_set_page(client, page);
if (rv < 0)
return rv;
return i2c_smbus_write_word_data(client, reg, word);
}
int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
{
int rv;
rv = pmbus_set_page(client, page);
if (rv < 0)
return rv;
return i2c_smbus_read_word_data(client, reg);
}
EXPORT_SYMBOL_GPL(pmbus_read_word_data);
static int pmbus_read_byte_data(struct i2c_client *client, u8 page, u8 reg)
{
int rv;
rv = pmbus_set_page(client, page);
if (rv < 0)
return rv;
return i2c_smbus_read_byte_data(client, reg);
}
static void pmbus_clear_fault_page(struct i2c_client *client, int page)
{
pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
}
void pmbus_clear_faults(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
int i;
for (i = 0; i < data->info->pages; i++)
pmbus_clear_fault_page(client, i);
}
EXPORT_SYMBOL_GPL(pmbus_clear_faults);
static int pmbus_check_status_cml(struct i2c_client *client, int page)
{
int status, status2;
status = pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
if (status < 0 || (status & PB_STATUS_CML)) {
status2 = pmbus_read_byte_data(client, page, PMBUS_STATUS_CML);
if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
return -EINVAL;
}
return 0;
}
bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
{
int rv;
struct pmbus_data *data = i2c_get_clientdata(client);
rv = pmbus_read_byte_data(client, page, reg);
if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
rv = pmbus_check_status_cml(client, page);
pmbus_clear_fault_page(client, page);
return rv >= 0;
}
EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
{
int rv;
struct pmbus_data *data = i2c_get_clientdata(client);
rv = pmbus_read_word_data(client, page, reg);
if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
rv = pmbus_check_status_cml(client, page);
pmbus_clear_fault_page(client, page);
return rv >= 0;
}
EXPORT_SYMBOL_GPL(pmbus_check_word_register);
const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
return data->info;
}
EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
/*
* _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
* a device specific mapping funcion exists and calls it if necessary.
*/
static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
{
struct pmbus_data *data = i2c_get_clientdata(client);
const struct pmbus_driver_info *info = data->info;
int status;
if (info->read_byte_data) {
status = info->read_byte_data(client, page, reg);
if (status != -ENODATA)
return status;
}
return pmbus_read_byte_data(client, page, reg);
}
static struct pmbus_data *pmbus_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct pmbus_data *data = i2c_get_clientdata(client);
const struct pmbus_driver_info *info = data->info;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
int i;
for (i = 0; i < info->pages; i++)
data->status[PB_STATUS_BASE + i]
= pmbus_read_byte_data(client, i,
PMBUS_STATUS_BYTE);
for (i = 0; i < info->pages; i++) {
if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
continue;
data->status[PB_STATUS_VOUT_BASE + i]
= _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
}
for (i = 0; i < info->pages; i++) {
if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
continue;
data->status[PB_STATUS_IOUT_BASE + i]
= _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
}
for (i = 0; i < info->pages; i++) {
if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
continue;
data->status[PB_STATUS_TEMP_BASE + i]
= _pmbus_read_byte_data(client, i,
PMBUS_STATUS_TEMPERATURE);
}
for (i = 0; i < info->pages; i++) {
if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
continue;
data->status[PB_STATUS_FAN_BASE + i]
= _pmbus_read_byte_data(client, i,
PMBUS_STATUS_FAN_12);
}
for (i = 0; i < info->pages; i++) {
if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
continue;
data->status[PB_STATUS_FAN34_BASE + i]
= _pmbus_read_byte_data(client, i,
PMBUS_STATUS_FAN_34);
}
if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
data->status[PB_STATUS_INPUT_BASE]
= _pmbus_read_byte_data(client, 0,
PMBUS_STATUS_INPUT);
for (i = 0; i < data->num_sensors; i++) {
struct pmbus_sensor *sensor = &data->sensors[i];
if (!data->valid || sensor->update)
sensor->data
= pmbus_read_word_data(client, sensor->page,
sensor->reg);
}
pmbus_clear_faults(client);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
/*
* Convert linear sensor values to milli- or micro-units
* depending on sensor type.
*/
static long pmbus_reg2data_linear(struct pmbus_data *data,
struct pmbus_sensor *sensor)
{
s16 exponent;
s32 mantissa;
long val;
if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
exponent = data->exponent;
mantissa = (u16) sensor->data;
} else { /* LINEAR11 */
exponent = (sensor->data >> 11) & 0x001f;
mantissa = sensor->data & 0x07ff;
if (exponent > 0x0f)
exponent |= 0xffe0; /* sign extend exponent */
if (mantissa > 0x03ff)
mantissa |= 0xfffff800; /* sign extend mantissa */
}
val = mantissa;
/* scale result to milli-units for all sensors except fans */
if (sensor->class != PSC_FAN)
val = val * 1000L;
/* scale result to micro-units for power sensors */
if (sensor->class == PSC_POWER)
val = val * 1000L;
if (exponent >= 0)
val <<= exponent;
else
val >>= -exponent;
return val;
}
/*
* Convert direct sensor values to milli- or micro-units
* depending on sensor type.
*/
static long pmbus_reg2data_direct(struct pmbus_data *data,
struct pmbus_sensor *sensor)
{
long val = (s16) sensor->data;
long m, b, R;
m = data->info->m[sensor->class];
b = data->info->b[sensor->class];
R = data->info->R[sensor->class];
if (m == 0)
return 0;
/* X = 1/m * (Y * 10^-R - b) */
R = -R;
/* scale result to milli-units for everything but fans */
if (sensor->class != PSC_FAN) {
R += 3;
b *= 1000;
}
/* scale result to micro-units for power sensors */
if (sensor->class == PSC_POWER) {
R += 3;
b *= 1000;
}
while (R > 0) {
val *= 10;
R--;
}
while (R < 0) {
val = DIV_ROUND_CLOSEST(val, 10);
R++;
}
return (val - b) / m;
}
static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
{
long val;
if (data->info->direct[sensor->class])
val = pmbus_reg2data_direct(data, sensor);
else
val = pmbus_reg2data_linear(data, sensor);
return val;
}
#define MAX_MANTISSA (1023 * 1000)
#define MIN_MANTISSA (511 * 1000)
static u16 pmbus_data2reg_linear(struct pmbus_data *data,
enum pmbus_sensor_classes class, long val)
{
s16 exponent = 0, mantissa;
bool negative = false;
/* simple case */
if (val == 0)
return 0;
if (class == PSC_VOLTAGE_OUT) {
/* LINEAR16 does not support negative voltages */
if (val < 0)
return 0;
/*
* For a static exponents, we don't have a choice
* but to adjust the value to it.
*/
if (data->exponent < 0)
val <<= -data->exponent;
else
val >>= data->exponent;
val = DIV_ROUND_CLOSEST(val, 1000);
return val & 0xffff;
}
if (val < 0) {
negative = true;
val = -val;
}
/* Power is in uW. Convert to mW before converting. */
if (class == PSC_POWER)
val = DIV_ROUND_CLOSEST(val, 1000L);
/*
* For simplicity, convert fan data to milli-units
* before calculating the exponent.
*/
if (class == PSC_FAN)
val = val * 1000;
/* Reduce large mantissa until it fits into 10 bit */
while (val >= MAX_MANTISSA && exponent < 15) {
exponent++;
val >>= 1;
}
/* Increase small mantissa to improve precision */
while (val < MIN_MANTISSA && exponent > -15) {
exponent--;
val <<= 1;
}
/* Convert mantissa from milli-units to units */
mantissa = DIV_ROUND_CLOSEST(val, 1000);
/* Ensure that resulting number is within range */
if (mantissa > 0x3ff)
mantissa = 0x3ff;
/* restore sign */
if (negative)
mantissa = -mantissa;
/* Convert to 5 bit exponent, 11 bit mantissa */
return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
}
static u16 pmbus_data2reg_direct(struct pmbus_data *data,
enum pmbus_sensor_classes class, long val)
{
long m, b, R;
m = data->info->m[class];
b = data->info->b[class];
R = data->info->R[class];
/* Power is in uW. Adjust R and b. */
if (class == PSC_POWER) {
R -= 3;
b *= 1000;
}
/* Calculate Y = (m * X + b) * 10^R */
if (class != PSC_FAN) {
R -= 3; /* Adjust R and b for data in milli-units */
b *= 1000;
}
val = val * m + b;
while (R > 0) {
val *= 10;
R--;
}
while (R < 0) {
val = DIV_ROUND_CLOSEST(val, 10);
R++;
}
return val;
}
static u16 pmbus_data2reg(struct pmbus_data *data,
enum pmbus_sensor_classes class, long val)
{
u16 regval;
if (data->info->direct[class])
regval = pmbus_data2reg_direct(data, class, val);
else
regval = pmbus_data2reg_linear(data, class, val);
return regval;
}
/*
* Return boolean calculated from converted data.
* <index> defines a status register index and mask, and optionally
* two sensor indexes.
* The upper half-word references the two sensors,
* two sensor indices.
* The upper half-word references the two optional sensors,
* the lower half word references status register and mask.
* The function returns true if (status[reg] & mask) is true and,
* if specified, if v1 >= v2.
* To determine if an object exceeds upper limits, specify <v, limit>.
* To determine if an object exceeds lower limits, specify <limit, v>.
*
* For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
* index are set. s1 and s2 (the sensor index values) are zero in this case.
* The function returns true if (status[reg] & mask) is true.
*
* If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
* a specified limit has to be performed to determine the boolean result.
* In this case, the function returns true if v1 >= v2 (where v1 and v2 are
* sensor values referenced by sensor indices s1 and s2).
*
* To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
* To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
*
* If a negative value is stored in any of the referenced registers, this value
* reflects an error code which will be returned.
*/
static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
{
u8 s1 = (index >> 24) & 0xff;
u8 s2 = (index >> 16) & 0xff;
u8 reg = (index >> 8) & 0xff;
u8 mask = index & 0xff;
int status;
u8 regval;
status = data->status[reg];
if (status < 0)
return status;
regval = status & mask;
if (!s1 && !s2)
*val = !!regval;
else {
long v1, v2;
struct pmbus_sensor *sensor1, *sensor2;
sensor1 = &data->sensors[s1];
if (sensor1->data < 0)
return sensor1->data;
sensor2 = &data->sensors[s2];
if (sensor2->data < 0)
return sensor2->data;
v1 = pmbus_reg2data(data, sensor1);
v2 = pmbus_reg2data(data, sensor2);
*val = !!(regval && v1 >= v2);
}
return 0;
}
static ssize_t pmbus_show_boolean(struct device *dev,
struct device_attribute *da, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct pmbus_data *data = pmbus_update_device(dev);
int val;
int err;
err = pmbus_get_boolean(data, attr->index, &val);
if (err)
return err;
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static ssize_t pmbus_show_sensor(struct device *dev,
struct device_attribute *da, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct pmbus_data *data = pmbus_update_device(dev);
struct pmbus_sensor *sensor;
sensor = &data->sensors[attr->index];
if (sensor->data < 0)
return sensor->data;
return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
}
static ssize_t pmbus_set_sensor(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor *sensor = &data->sensors[attr->index];
ssize_t rv = count;
long val = 0;
int ret;
u16 regval;
if (strict_strtol(buf, 10, &val) < 0)
return -EINVAL;
mutex_lock(&data->update_lock);
regval = pmbus_data2reg(data, sensor->class, val);
ret = pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
if (ret < 0)
rv = ret;
else
data->sensors[attr->index].data = regval;
mutex_unlock(&data->update_lock);
return rv;
}
static ssize_t pmbus_show_label(struct device *dev,
struct device_attribute *da, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct pmbus_data *data = i2c_get_clientdata(client);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
return snprintf(buf, PAGE_SIZE, "%s\n",
data->labels[attr->index].label);
}
#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \
do { \
struct sensor_device_attribute *a \
= &data->_type##s[data->num_##_type##s].attribute; \
BUG_ON(data->num_attributes >= data->max_attributes); \
sysfs_attr_init(&a->dev_attr.attr); \
a->dev_attr.attr.name = _name; \
a->dev_attr.attr.mode = _mode; \
a->dev_attr.show = _show; \
a->dev_attr.store = _set; \
a->index = _idx; \
data->attributes[data->num_attributes] = &a->dev_attr.attr; \
data->num_attributes++; \
} while (0)
#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \
PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \
pmbus_show_##_type, NULL)
#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \
PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \
pmbus_show_##_type, pmbus_set_##_type)
static void pmbus_add_boolean(struct pmbus_data *data,
const char *name, const char *type, int seq,
int idx)
{
struct pmbus_boolean *boolean;
BUG_ON(data->num_booleans >= data->max_booleans);
boolean = &data->booleans[data->num_booleans];
snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
name, seq, type);
PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
data->num_booleans++;
}
static void pmbus_add_boolean_reg(struct pmbus_data *data,
const char *name, const char *type,
int seq, int reg, int bit)
{
pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
}
static void pmbus_add_boolean_cmp(struct pmbus_data *data,
const char *name, const char *type,
int seq, int i1, int i2, int reg, int mask)
{
pmbus_add_boolean(data, name, type, seq,
(i1 << 24) | (i2 << 16) | (reg << 8) | mask);
}
static void pmbus_add_sensor(struct pmbus_data *data,
const char *name, const char *type, int seq,
int page, int reg, enum pmbus_sensor_classes class,
bool update, bool readonly)
{
struct pmbus_sensor *sensor;
BUG_ON(data->num_sensors >= data->max_sensors);
sensor = &data->sensors[data->num_sensors];
snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
name, seq, type);
sensor->page = page;
sensor->reg = reg;
sensor->class = class;
sensor->update = update;
if (readonly)
PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
data->num_sensors);
else
PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
data->num_sensors);
data->num_sensors++;
}
static void pmbus_add_label(struct pmbus_data *data,
const char *name, int seq,
const char *lstring, int index)
{
struct pmbus_label *label;
BUG_ON(data->num_labels >= data->max_labels);
label = &data->labels[data->num_labels];
snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
if (!index)
strncpy(label->label, lstring, sizeof(label->label) - 1);
else
snprintf(label->label, sizeof(label->label), "%s%d", lstring,
index);
PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
data->num_labels++;
}
/*
* Determine maximum number of sensors, booleans, and labels.
* To keep things simple, only make a rough high estimate.
*/
static void pmbus_find_max_attr(struct i2c_client *client,
struct pmbus_data *data)
{
const struct pmbus_driver_info *info = data->info;
int page, max_sensors, max_booleans, max_labels;
max_sensors = PMBUS_MAX_INPUT_SENSORS;
max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
max_labels = PMBUS_MAX_INPUT_LABELS;
for (page = 0; page < info->pages; page++) {
if (info->func[page] & PMBUS_HAVE_VOUT) {
max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
max_labels++;
}
if (info->func[page] & PMBUS_HAVE_IOUT) {
max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
max_labels++;
}
if (info->func[page] & PMBUS_HAVE_POUT) {
max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
max_labels++;
}
if (info->func[page] & PMBUS_HAVE_FAN12) {
max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
}
if (info->func[page] & PMBUS_HAVE_FAN34) {
max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
}
if (info->func[page] & PMBUS_HAVE_TEMP) {
max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
}
if (info->func[page] & PMBUS_HAVE_TEMP2) {
max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
}
if (info->func[page] & PMBUS_HAVE_TEMP3) {
max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
}
}
data->max_sensors = max_sensors;
data->max_booleans = max_booleans;
data->max_labels = max_labels;
data->max_attributes = max_sensors + max_booleans + max_labels;
}
/*
* Search for attributes. Allocate sensors, booleans, and labels as needed.
*/
/*
* The pmbus_limit_attr structure describes a single limit attribute
* and its associated alarm attribute.
*/
struct pmbus_limit_attr {
u8 reg; /* Limit register */
const char *attr; /* Attribute name */
const char *alarm; /* Alarm attribute name */
u32 sbit; /* Alarm attribute status bit */
};
/*
* The pmbus_sensor_attr structure describes one sensor attribute. This
* description includes a reference to the associated limit attributes.
*/
struct pmbus_sensor_attr {
u8 reg; /* sensor register */
enum pmbus_sensor_classes class;/* sensor class */
const char *label; /* sensor label */
bool paged; /* true if paged sensor */
bool update; /* true if update needed */
bool compare; /* true if compare function needed */
u32 func; /* sensor mask */
u32 sfunc; /* sensor status mask */
int sbase; /* status base register */
u32 gbit; /* generic status bit */
const struct pmbus_limit_attr *limit;/* limit registers */
int nlimit; /* # of limit registers */
};
/*
* Add a set of limit attributes and, if supported, the associated
* alarm attributes.
*/
static bool pmbus_add_limit_attrs(struct i2c_client *client,
struct pmbus_data *data,
const struct pmbus_driver_info *info,
const char *name, int index, int page,
int cbase,
const struct pmbus_sensor_attr *attr)
{
const struct pmbus_limit_attr *l = attr->limit;
int nlimit = attr->nlimit;
bool have_alarm = false;
int i, cindex;
for (i = 0; i < nlimit; i++) {
if (pmbus_check_word_register(client, page, l->reg)) {
cindex = data->num_sensors;
pmbus_add_sensor(data, name, l->attr, index, page,
l->reg, attr->class, attr->update,
false);
if (info->func[page] & attr->sfunc) {
if (attr->compare) {
pmbus_add_boolean_cmp(data, name,
l->alarm, index,
cbase, cindex,
attr->sbase + page, l->sbit);
} else {
pmbus_add_boolean_reg(data, name,
l->alarm, index,
attr->sbase + page, l->sbit);
}
have_alarm = true;
}
}
l++;
}
return have_alarm;
}
static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
struct pmbus_data *data,
const struct pmbus_driver_info *info,
const char *name,
int index, int page,
const struct pmbus_sensor_attr *attr)
{
bool have_alarm;
int cbase = data->num_sensors;
if (attr->label)
pmbus_add_label(data, name, index, attr->label,
attr->paged ? page + 1 : 0);
pmbus_add_sensor(data, name, "input", index, page, attr->reg,
attr->class, true, true);
if (attr->sfunc) {
have_alarm = pmbus_add_limit_attrs(client, data, info, name,
index, page, cbase, attr);
/*
* Add generic alarm attribute only if there are no individual
* alarm attributes, and if there is a global alarm bit.
*/
if (!have_alarm && attr->gbit)
pmbus_add_boolean_reg(data, name, "alarm", index,
PB_STATUS_BASE + page,
attr->gbit);
}
}
static void pmbus_add_sensor_attrs(struct i2c_client *client,
struct pmbus_data *data,
const char *name,
const struct pmbus_sensor_attr *attrs,
int nattrs)
{
const struct pmbus_driver_info *info = data->info;
int index, i;
index = 1;
for (i = 0; i < nattrs; i++) {
int page, pages;
pages = attrs->paged ? info->pages : 1;
for (page = 0; page < pages; page++) {
if (!(info->func[page] & attrs->func))
continue;
pmbus_add_sensor_attrs_one(client, data, info, name,
index, page, attrs);
index++;
}
attrs++;
}
}
static const struct pmbus_limit_attr vin_limit_attrs[] = {
{
.reg = PMBUS_VIN_UV_WARN_LIMIT,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_VOLTAGE_UV_WARNING,
}, {
.reg = PMBUS_VIN_UV_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_VOLTAGE_UV_FAULT,
}, {
.reg = PMBUS_VIN_OV_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_VOLTAGE_OV_WARNING,
}, {
.reg = PMBUS_VIN_OV_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_VOLTAGE_OV_FAULT,
},
};
static const struct pmbus_limit_attr vout_limit_attrs[] = {
{
.reg = PMBUS_VOUT_UV_WARN_LIMIT,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_VOLTAGE_UV_WARNING,
}, {
.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_VOLTAGE_UV_FAULT,
}, {
.reg = PMBUS_VOUT_OV_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_VOLTAGE_OV_WARNING,
}, {
.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_VOLTAGE_OV_FAULT,
}
};
static const struct pmbus_sensor_attr voltage_attributes[] = {
{
.reg = PMBUS_READ_VIN,
.class = PSC_VOLTAGE_IN,
.label = "vin",
.func = PMBUS_HAVE_VIN,
.sfunc = PMBUS_HAVE_STATUS_INPUT,
.sbase = PB_STATUS_INPUT_BASE,
.gbit = PB_STATUS_VIN_UV,
.limit = vin_limit_attrs,
.nlimit = ARRAY_SIZE(vin_limit_attrs),
}, {
.reg = PMBUS_READ_VCAP,
.class = PSC_VOLTAGE_IN,
.label = "vcap",
.func = PMBUS_HAVE_VCAP,
}, {
.reg = PMBUS_READ_VOUT,
.class = PSC_VOLTAGE_OUT,
.label = "vout",
.paged = true,
.func = PMBUS_HAVE_VOUT,
.sfunc = PMBUS_HAVE_STATUS_VOUT,
.sbase = PB_STATUS_VOUT_BASE,
.gbit = PB_STATUS_VOUT_OV,
.limit = vout_limit_attrs,
.nlimit = ARRAY_SIZE(vout_limit_attrs),
}
};
/* Current attributes */
static const struct pmbus_limit_attr iin_limit_attrs[] = {
{
.reg = PMBUS_IIN_OC_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_IIN_OC_WARNING,
}, {
.reg = PMBUS_IIN_OC_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_IIN_OC_FAULT,
}
};
static const struct pmbus_limit_attr iout_limit_attrs[] = {
{
.reg = PMBUS_IOUT_OC_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_IOUT_OC_WARNING,
}, {
.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_IOUT_UC_FAULT,
}, {
.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_IOUT_OC_FAULT,
}
};
static const struct pmbus_sensor_attr current_attributes[] = {
{
.reg = PMBUS_READ_IIN,
.class = PSC_CURRENT_IN,
.label = "iin",
.func = PMBUS_HAVE_IIN,
.sfunc = PMBUS_HAVE_STATUS_INPUT,
.sbase = PB_STATUS_INPUT_BASE,
.limit = iin_limit_attrs,
.nlimit = ARRAY_SIZE(iin_limit_attrs),
}, {
.reg = PMBUS_READ_IOUT,
.class = PSC_CURRENT_OUT,
.label = "iout",
.paged = true,
.func = PMBUS_HAVE_IOUT,
.sfunc = PMBUS_HAVE_STATUS_IOUT,
.sbase = PB_STATUS_IOUT_BASE,
.gbit = PB_STATUS_IOUT_OC,
.limit = iout_limit_attrs,
.nlimit = ARRAY_SIZE(iout_limit_attrs),
}
};
/* Power attributes */
static const struct pmbus_limit_attr pin_limit_attrs[] = {
{
.reg = PMBUS_PIN_OP_WARN_LIMIT,
.attr = "max",
.alarm = "alarm",
.sbit = PB_PIN_OP_WARNING,
}
};
static const struct pmbus_limit_attr pout_limit_attrs[] = {
{
.reg = PMBUS_POUT_MAX,
.attr = "cap",
.alarm = "cap_alarm",
.sbit = PB_POWER_LIMITING,
}, {
.reg = PMBUS_POUT_OP_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_POUT_OP_WARNING,
}, {
.reg = PMBUS_POUT_OP_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_POUT_OP_FAULT,
}
};
static const struct pmbus_sensor_attr power_attributes[] = {
{
.reg = PMBUS_READ_PIN,
.class = PSC_POWER,
.label = "pin",
.func = PMBUS_HAVE_PIN,
.sfunc = PMBUS_HAVE_STATUS_INPUT,
.sbase = PB_STATUS_INPUT_BASE,
.limit = pin_limit_attrs,
.nlimit = ARRAY_SIZE(pin_limit_attrs),
}, {
.reg = PMBUS_READ_POUT,
.class = PSC_POWER,
.label = "pout",
.paged = true,
.func = PMBUS_HAVE_POUT,
.sfunc = PMBUS_HAVE_STATUS_IOUT,
.sbase = PB_STATUS_IOUT_BASE,
.limit = pout_limit_attrs,
.nlimit = ARRAY_SIZE(pout_limit_attrs),
}
};
/* Temperature atributes */
static const struct pmbus_limit_attr temp_limit_attrs[] = {
{
.reg = PMBUS_UT_WARN_LIMIT,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_TEMP_UT_WARNING,
}, {
.reg = PMBUS_UT_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_TEMP_UT_FAULT,
}, {
.reg = PMBUS_OT_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_TEMP_OT_WARNING,
}, {
.reg = PMBUS_OT_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_TEMP_OT_FAULT,
}
};
static const struct pmbus_sensor_attr temp_attributes[] = {
{
.reg = PMBUS_READ_TEMPERATURE_1,
.class = PSC_TEMPERATURE,
.paged = true,
.update = true,
.compare = true,
.func = PMBUS_HAVE_TEMP,
.sfunc = PMBUS_HAVE_STATUS_TEMP,
.sbase = PB_STATUS_TEMP_BASE,
.gbit = PB_STATUS_TEMPERATURE,
.limit = temp_limit_attrs,
.nlimit = ARRAY_SIZE(temp_limit_attrs),
}, {
.reg = PMBUS_READ_TEMPERATURE_2,
.class = PSC_TEMPERATURE,
.paged = true,
.update = true,
.compare = true,
.func = PMBUS_HAVE_TEMP2,
.sfunc = PMBUS_HAVE_STATUS_TEMP,
.sbase = PB_STATUS_TEMP_BASE,
.gbit = PB_STATUS_TEMPERATURE,
.limit = temp_limit_attrs,
.nlimit = ARRAY_SIZE(temp_limit_attrs),
}, {
.reg = PMBUS_READ_TEMPERATURE_3,
.class = PSC_TEMPERATURE,
.paged = true,
.update = true,
.compare = true,
.func = PMBUS_HAVE_TEMP3,
.sfunc = PMBUS_HAVE_STATUS_TEMP,
.sbase = PB_STATUS_TEMP_BASE,
.gbit = PB_STATUS_TEMPERATURE,
.limit = temp_limit_attrs,
.nlimit = ARRAY_SIZE(temp_limit_attrs),
}
};
static const int pmbus_fan_registers[] = {
PMBUS_READ_FAN_SPEED_1,
PMBUS_READ_FAN_SPEED_2,
PMBUS_READ_FAN_SPEED_3,
PMBUS_READ_FAN_SPEED_4
};
static const int pmbus_fan_config_registers[] = {
PMBUS_FAN_CONFIG_12,
PMBUS_FAN_CONFIG_12,
PMBUS_FAN_CONFIG_34,
PMBUS_FAN_CONFIG_34
};
static const int pmbus_fan_status_registers[] = {
PMBUS_STATUS_FAN_12,
PMBUS_STATUS_FAN_12,
PMBUS_STATUS_FAN_34,
PMBUS_STATUS_FAN_34
};
static const u32 pmbus_fan_flags[] = {
PMBUS_HAVE_FAN12,
PMBUS_HAVE_FAN12,
PMBUS_HAVE_FAN34,
PMBUS_HAVE_FAN34
};
static const u32 pmbus_fan_status_flags[] = {
PMBUS_HAVE_STATUS_FAN12,
PMBUS_HAVE_STATUS_FAN12,
PMBUS_HAVE_STATUS_FAN34,
PMBUS_HAVE_STATUS_FAN34
};
/* Fans */
static void pmbus_add_fan_attributes(struct i2c_client *client,
struct pmbus_data *data)
{
const struct pmbus_driver_info *info = data->info;
int index = 1;
int page;
for (page = 0; page < info->pages; page++) {
int f;
for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
int regval;
if (!(info->func[page] & pmbus_fan_flags[f]))
break;
if (!pmbus_check_word_register(client, page,
pmbus_fan_registers[f]))
break;
/*
* Skip fan if not installed.
* Each fan configuration register covers multiple fans,
* so we have to do some magic.
*/
regval = _pmbus_read_byte_data(client, page,
pmbus_fan_config_registers[f]);
if (regval < 0 ||
(!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
continue;
pmbus_add_sensor(data, "fan", "input", index, page,
pmbus_fan_registers[f], PSC_FAN, true,
true);
/*
* Each fan status register covers multiple fans,
* so we have to do some magic.
*/
if ((info->func[page] & pmbus_fan_status_flags[f]) &&
pmbus_check_byte_register(client,
page, pmbus_fan_status_registers[f])) {
int base;
if (f > 1) /* fan 3, 4 */
base = PB_STATUS_FAN34_BASE + page;
else
base = PB_STATUS_FAN_BASE + page;
pmbus_add_boolean_reg(data, "fan", "alarm",
index, base,
PB_FAN_FAN1_WARNING >> (f & 1));
pmbus_add_boolean_reg(data, "fan", "fault",
index, base,
PB_FAN_FAN1_FAULT >> (f & 1));
}
index++;
}
}
}
static void pmbus_find_attributes(struct i2c_client *client,
struct pmbus_data *data)
{
/* Voltage sensors */
pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
ARRAY_SIZE(voltage_attributes));
/* Current sensors */
pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
ARRAY_SIZE(current_attributes));
/* Power sensors */
pmbus_add_sensor_attrs(client, data, "power", power_attributes,
ARRAY_SIZE(power_attributes));
/* Temperature sensors */
pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
ARRAY_SIZE(temp_attributes));
/* Fans */
pmbus_add_fan_attributes(client, data);
}
/*
* Identify chip parameters.
* This function is called for all chips.
*/
static int pmbus_identify_common(struct i2c_client *client,
struct pmbus_data *data)
{
int vout_mode = -1, exponent;
if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
if (vout_mode >= 0 && vout_mode != 0xff) {
/*
* Not all chips support the VOUT_MODE command,
* so a failure to read it is not an error.
*/
switch (vout_mode >> 5) {
case 0: /* linear mode */
if (data->info->direct[PSC_VOLTAGE_OUT])
return -ENODEV;
exponent = vout_mode & 0x1f;
/* and sign-extend it */
if (exponent & 0x10)
exponent |= ~0x1f;
data->exponent = exponent;
break;
case 2: /* direct mode */
if (!data->info->direct[PSC_VOLTAGE_OUT])
return -ENODEV;
break;
default:
return -ENODEV;
}
}
/* Determine maximum number of sensors, booleans, and labels */
pmbus_find_max_attr(client, data);
pmbus_clear_fault_page(client, 0);
return 0;
}
int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
struct pmbus_driver_info *info)
{
const struct pmbus_platform_data *pdata = client->dev.platform_data;
struct pmbus_data *data;
int ret;
if (!info) {
dev_err(&client->dev, "Missing chip information");
return -ENODEV;
}
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
| I2C_FUNC_SMBUS_BYTE_DATA
| I2C_FUNC_SMBUS_WORD_DATA))
return -ENODEV;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
dev_err(&client->dev, "No memory to allocate driver data\n");
return -ENOMEM;
}
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
/* Bail out if PMBus status register does not exist. */
if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
dev_err(&client->dev, "PMBus status register not found\n");
ret = -ENODEV;
goto out_data;
}
if (pdata)
data->flags = pdata->flags;
data->info = info;
pmbus_clear_faults(client);
if (info->identify) {
ret = (*info->identify)(client, info);
if (ret < 0) {
dev_err(&client->dev, "Chip identification failed\n");
goto out_data;
}
}
if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
info->pages);
ret = -EINVAL;
goto out_data;
}
/*
* Bail out if more than one page was configured, but we can not
* select the highest page. This is an indication that the wrong
* chip type was selected. Better bail out now than keep
* returning errors later on.
*/
if (info->pages > 1 && pmbus_set_page(client, info->pages - 1) < 0) {
dev_err(&client->dev, "Failed to select page %d\n",
info->pages - 1);
ret = -EINVAL;
goto out_data;
}
ret = pmbus_identify_common(client, data);
if (ret < 0) {
dev_err(&client->dev, "Failed to identify chip capabilities\n");
goto out_data;
}
ret = -ENOMEM;
data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
GFP_KERNEL);
if (!data->sensors) {
dev_err(&client->dev, "No memory to allocate sensor data\n");
goto out_data;
}
data->booleans = kzalloc(sizeof(struct pmbus_boolean)
* data->max_booleans, GFP_KERNEL);
if (!data->booleans) {
dev_err(&client->dev, "No memory to allocate boolean data\n");
goto out_sensors;
}
data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
GFP_KERNEL);
if (!data->labels) {
dev_err(&client->dev, "No memory to allocate label data\n");
goto out_booleans;
}
data->attributes = kzalloc(sizeof(struct attribute *)
* data->max_attributes, GFP_KERNEL);
if (!data->attributes) {
dev_err(&client->dev, "No memory to allocate attribute data\n");
goto out_labels;
}
pmbus_find_attributes(client, data);
/*
* If there are no attributes, something is wrong.
* Bail out instead of trying to register nothing.
*/
if (!data->num_attributes) {
dev_err(&client->dev, "No attributes found\n");
ret = -ENODEV;
goto out_attributes;
}
/* Register sysfs hooks */
data->group.attrs = data->attributes;
ret = sysfs_create_group(&client->dev.kobj, &data->group);
if (ret) {
dev_err(&client->dev, "Failed to create sysfs entries\n");
goto out_attributes;
}
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
ret = PTR_ERR(data->hwmon_dev);
dev_err(&client->dev, "Failed to register hwmon device\n");
goto out_hwmon_device_register;
}
return 0;
out_hwmon_device_register:
sysfs_remove_group(&client->dev.kobj, &data->group);
out_attributes:
kfree(data->attributes);
out_labels:
kfree(data->labels);
out_booleans:
kfree(data->booleans);
out_sensors:
kfree(data->sensors);
out_data:
kfree(data);
return ret;
}
EXPORT_SYMBOL_GPL(pmbus_do_probe);
int pmbus_do_remove(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &data->group);
kfree(data->attributes);
kfree(data->labels);
kfree(data->booleans);
kfree(data->sensors);
kfree(data);
return 0;
}
EXPORT_SYMBOL_GPL(pmbus_do_remove);
MODULE_AUTHOR("Guenter Roeck");
MODULE_DESCRIPTION("PMBus core driver");
MODULE_LICENSE("GPL");