1
0
Fork 0
remarkable-linux-firmware/carl9170fw/carlfw/src/wlan.c

1212 lines
31 KiB
C

/*
* carl9170 firmware - used by the ar9170 wireless device
*
* Interface to the WLAN part of the chip
*
* Copyright (c) 2000-2005 ZyDAS Technology Corporation
* Copyright (c) 2007-2009 Atheros Communications, Inc.
* Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2009-2011 Christian Lamparter <chunkeey@googlemail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "carl9170.h"
#include "shared/phy.h"
#include "hostif.h"
#include "timer.h"
#include "wl.h"
#include "printf.h"
#include "rf.h"
#include "linux/ieee80211.h"
#include "wol.h"
static void wlan_txunstuck(unsigned int queue)
{
set_wlan_txq_dma_addr(queue, ((uint32_t) fw.wlan.tx_queue[queue].head) | 1);
}
#ifdef CONFIG_CARL9170FW_DMA_QUEUE_BUMP
static void wlan_txupdate(unsigned int queue)
{
set_wlan_txq_dma_addr(queue, ((uint32_t) fw.wlan.tx_queue[queue].head));
}
static void wlan_dma_bump(unsigned int qidx)
{
unsigned int offset = qidx;
uint32_t status, trigger;
status = get(AR9170_MAC_REG_DMA_STATUS) >> 12;
trigger = get(AR9170_MAC_REG_DMA_TRIGGER) >> 12;
while (offset != 0) {
status >>= 4;
trigger >>= 4;
offset--;
}
status &= 0xf;
trigger &= 0xf;
if ((trigger == 0xa) && (status == 0x8)) {
DBG("UNSTUCK");
wlan_txunstuck(qidx);
} else {
DBG("UPDATE");
wlan_txupdate(qidx);
}
}
#endif /* CONFIG_CARL9170FW_DMA_QUEUE_BUMP */
#ifdef CONFIG_CARL9170FW_DEBUG
static void wlan_dump_queue(unsigned int qidx)
{
struct dma_desc *desc;
struct carl9170_tx_superframe *super;
int entries = 0;
__for_each_desc(desc, &fw.wlan.tx_queue[qidx]) {
super = get_super(desc);
DBG("%d: %p s:%x c:%x tl:%x ds:%x n:%p l:%p ", entries, desc,
desc->status, desc->ctrl, desc->totalLen,
desc->dataSize, desc->nextAddr, desc->lastAddr);
DBG("c:%x tr:%d ri:%d l:%x m:%x p:%x fc:%x",
super->s.cookie, super->s.cnt, super->s.rix,
super->f.hdr.length, super->f.hdr.mac.set,
(unsigned int) le32_to_cpu(super->f.hdr.phy.set),
super->f.data.i3e.frame_control);
entries++;
}
desc = get_wlan_txq_addr(qidx);
DBG("Queue: %d: te:%d td:%d h:%p c:%p t:%p",
qidx, entries, queue_len(&fw.wlan.tx_queue[qidx]),
fw.wlan.tx_queue[qidx].head,
desc, fw.wlan.tx_queue[qidx].terminator);
DBG("HW: t:%x s:%x ac:%x c:%x",
(unsigned int) get(AR9170_MAC_REG_DMA_TRIGGER),
(unsigned int) get(AR9170_MAC_REG_DMA_STATUS),
(unsigned int) get(AR9170_MAC_REG_AMPDU_COUNT),
(unsigned int) get(AR9170_MAC_REG_DMA_TXQX_ADDR_CURR));
}
#endif /* CONFIG_CARL9170FW_DEBUG */
static void wlan_send_buffered_tx_status(void)
{
unsigned int len;
while (fw.wlan.tx_status_pending) {
len = min((unsigned int)fw.wlan.tx_status_pending,
CARL9170_RSP_TX_STATUS_NUM);
len = min(len, CARL9170_TX_STATUS_NUM - fw.wlan.tx_status_head_idx);
/*
* rather than memcpy each individual request into a large buffer,
* we _splice_ them all together.
*
* The only downside is however that we have to be careful around
* the edges of the tx_status_cache.
*
* Note:
* Each tx_status is about 2 bytes. However every command package
* must have a size which is a multiple of 4.
*/
send_cmd_to_host((len * sizeof(struct carl9170_tx_status) + 3) & ~3,
CARL9170_RSP_TXCOMP, len, (void *)
&fw.wlan.tx_status_cache[fw.wlan.tx_status_head_idx]);
fw.wlan.tx_status_pending -= len;
fw.wlan.tx_status_head_idx += len;
fw.wlan.tx_status_head_idx %= CARL9170_TX_STATUS_NUM;
}
}
static struct carl9170_tx_status *wlan_get_tx_status_buffer(void)
{
struct carl9170_tx_status *tmp;
tmp = &fw.wlan.tx_status_cache[fw.wlan.tx_status_tail_idx++];
fw.wlan.tx_status_tail_idx %= CARL9170_TX_STATUS_NUM;
if (fw.wlan.tx_status_pending == CARL9170_TX_STATUS_NUM)
wlan_send_buffered_tx_status();
fw.wlan.tx_status_pending++;
return tmp;
}
/* generate _aggregated_ tx_status for the host */
void wlan_tx_complete(struct carl9170_tx_superframe *super,
bool txs)
{
struct carl9170_tx_status *status;
status = wlan_get_tx_status_buffer();
/*
* The *unique* cookie and AC_ID is used by the driver for
* frame lookup.
*/
status->cookie = super->s.cookie;
status->queue = super->s.queue;
super->s.cookie = 0;
/*
* This field holds the number of tries of the rate in
* the rate index field (rix).
*/
status->rix = super->s.rix;
status->tries = super->s.cnt;
status->success = (txs) ? 1 : 0;
}
static bool wlan_tx_consume_retry(struct carl9170_tx_superframe *super)
{
/* check if this was the last possible retry with this rate */
if (unlikely(super->s.cnt >= super->s.ri[super->s.rix].tries)) {
/* end of the road - indicate tx failure */
if (unlikely(super->s.rix == CARL9170_TX_MAX_RETRY_RATES))
return false;
/* check if there are alternative rates available */
if (!super->s.rr[super->s.rix].set)
return false;
/* try next retry rate */
super->f.hdr.phy.set = super->s.rr[super->s.rix].set;
/* finally - mark the old rate as USED */
super->s.rix++;
/* update MAC flags */
super->f.hdr.mac.erp_prot = super->s.ri[super->s.rix].erp_prot;
super->f.hdr.mac.ampdu = super->s.ri[super->s.rix].ampdu;
/* reinitialize try counter */
super->s.cnt = 1;
} else {
/* just increase retry counter */
super->s.cnt++;
}
return true;
}
static inline u16 get_tid(struct ieee80211_hdr *hdr)
{
return (ieee80211_get_qos_ctl(hdr))[0] & IEEE80211_QOS_CTL_TID_MASK;
}
/* This function will only work on uint32_t-aligned pointers! */
static bool same_hdr(const void *_d0, const void *_d1)
{
const uint32_t *d0 = _d0;
const uint32_t *d1 = _d1;
/* BUG_ON((unsigned long)d0 & 3 || (unsigned long)d1 & 3)) */
return !((d0[0] ^ d1[0]) | /* FC + DU */
(d0[1] ^ d1[1]) | /* addr1 */
(d0[2] ^ d1[2]) | (d0[3] ^ d1[3]) | /* addr2 + addr3 */
(d0[4] ^ d1[4])); /* addr3 */
}
static inline bool same_aggr(struct ieee80211_hdr *a, struct ieee80211_hdr *b)
{
return (get_tid(a) == get_tid(b)) || same_hdr(a, b);
}
static void wlan_tx_ampdu_reset(unsigned int qidx)
{
fw.wlan.ampdu_prev[qidx] = NULL;
}
static void wlan_tx_ampdu_end(unsigned int qidx)
{
struct carl9170_tx_superframe *ht_prev = fw.wlan.ampdu_prev[qidx];
if (ht_prev)
ht_prev->f.hdr.mac.ba_end = 1;
wlan_tx_ampdu_reset(qidx);
}
static void wlan_tx_ampdu(struct carl9170_tx_superframe *super)
{
unsigned int qidx = super->s.queue;
struct carl9170_tx_superframe *ht_prev = fw.wlan.ampdu_prev[qidx];
if (super->f.hdr.mac.ampdu) {
if (ht_prev &&
!same_aggr(&super->f.data.i3e, &ht_prev->f.data.i3e))
ht_prev->f.hdr.mac.ba_end = 1;
else
super->f.hdr.mac.ba_end = 0;
fw.wlan.ampdu_prev[qidx] = super;
} else {
wlan_tx_ampdu_end(qidx);
}
}
/* for all tries */
static void __wlan_tx(struct dma_desc *desc)
{
struct carl9170_tx_superframe *super = get_super(desc);
if (unlikely(super->s.fill_in_tsf)) {
struct ieee80211_mgmt *mgmt = (void *) &super->f.data.i3e;
uint32_t *tsf = (uint32_t *) &mgmt->u.probe_resp.timestamp;
/*
* Truth be told: this is a hack.
*
* The *real* TSF is definitely going to be higher/older.
* But this hardware emulation code is head and shoulders
* above anything a driver can possibly do.
*
* (even, if it's got an accurate atomic clock source).
*/
read_tsf(tsf);
}
wlan_tx_ampdu(super);
#ifdef CONFIG_CARL9170FW_DEBUG
BUG_ON(fw.phy.psm.state != CARL9170_PSM_WAKE);
#endif /* CONFIG_CARL9170FW_DEBUG */
/* insert desc into the right queue */
dma_put(&fw.wlan.tx_queue[super->s.queue], desc);
}
static void wlan_assign_seq(struct ieee80211_hdr *hdr, unsigned int vif)
{
hdr->seq_ctrl &= cpu_to_le16(~IEEE80211_SCTL_SEQ);
hdr->seq_ctrl |= cpu_to_le16(fw.wlan.sequence[vif]);
if (ieee80211_is_first_frag(hdr->seq_ctrl))
fw.wlan.sequence[vif] += 0x10;
}
/* prepares frame for the first transmission */
static void _wlan_tx(struct dma_desc *desc)
{
struct carl9170_tx_superframe *super = get_super(desc);
if (unlikely(super->s.assign_seq))
wlan_assign_seq(&super->f.data.i3e, super->s.vif_id);
if (unlikely(super->s.ampdu_commit_density)) {
set(AR9170_MAC_REG_AMPDU_DENSITY,
MOD_VAL(AR9170_MAC_AMPDU_DENSITY,
get(AR9170_MAC_REG_AMPDU_DENSITY),
super->s.ampdu_density));
}
if (unlikely(super->s.ampdu_commit_factor)) {
set(AR9170_MAC_REG_AMPDU_FACTOR,
MOD_VAL(AR9170_MAC_AMPDU_FACTOR,
get(AR9170_MAC_REG_AMPDU_FACTOR),
8 << super->s.ampdu_factor));
}
}
/* propagate transmission status back to the driver */
static bool wlan_tx_status(struct dma_queue *queue,
struct dma_desc *desc)
{
struct carl9170_tx_superframe *super = get_super(desc);
unsigned int qidx = super->s.queue;
bool txfail = false, success;
success = true;
/* update hangcheck */
fw.wlan.last_super_num[qidx] = 0;
/*
* Note:
* There could be a corner case when the TXFAIL is set
* even though the frame was properly ACKed by the peer:
* a BlockAckReq with the immediate policy will cause
* the receiving peer to produce a BlockACK unfortunately
* the MAC in this chip seems to be expecting a legacy
* ACK and marks the BAR as failed!
*/
if (!!(desc->ctrl & AR9170_CTRL_FAIL)) {
txfail = !!(desc->ctrl & AR9170_CTRL_TXFAIL);
/* reset retry indicator flags */
desc->ctrl &= ~(AR9170_CTRL_TXFAIL | AR9170_CTRL_BAFAIL);
/*
* Note: wlan_tx_consume_retry will override the old
* phy [CCK,OFDM, HT, BW20/40, MCS...] and mac vectors
* [AMPDU,RTS/CTS,...] therefore be careful when they
* are used.
*/
if (wlan_tx_consume_retry(super)) {
/*
* retry for simple and aggregated 802.11 frames.
*
* Note: We must not mess up the original frame
* order.
*/
if (!super->f.hdr.mac.ampdu) {
/*
* 802.11 - 7.1.3.1.5.
* set "Retry Field" for consecutive attempts
*
* Note: For AMPDU see:
* 802.11n 9.9.1.6 "Retransmit Procedures"
*/
super->f.data.i3e.frame_control |=
cpu_to_le16(IEEE80211_FCTL_RETRY);
}
if (txfail) {
/* Normal TX Failure */
/* demise descriptor ownership back to the hardware */
dma_rearm(desc);
/*
* And this will get the queue going again.
* To understand why: you have to get the HW
* specs... But sadly I never saw them.
*/
wlan_txunstuck(qidx);
/* abort cycle - this is necessary due to HW design */
return false;
} else {
/* (HT-) BlockACK failure */
/*
* Unlink the failed attempt and put it into
* the retry queue. The caller routine must
* be aware of this so the frames don't get lost.
*/
#ifndef CONFIG_CARL9170FW_DEBUG
dma_unlink_head(queue);
#else /* CONFIG_CARL9170FW_DEBUG */
BUG_ON(dma_unlink_head(queue) != desc);
#endif /* CONFIG_CARL9170FW_DEBUG */
dma_put(&fw.wlan.tx_retry, desc);
return true;
}
} else {
/* out of frame attempts - discard frame */
success = false;
}
}
#ifndef CONFIG_CARL9170FW_DEBUG
dma_unlink_head(queue);
#else /* CONFIG_CARL9170FW_DEBUG */
BUG_ON(dma_unlink_head(queue) != desc);
#endif /* CONFIG_CARL9170FW_DEBUG */
if (txfail) {
/*
* Issue the queue bump,
* We need to do this in case this was the frame's last
* possible retry attempt and it unfortunately: it failed.
*/
wlan_txunstuck(qidx);
}
unhide_super(desc);
if (unlikely(super == fw.wlan.fw_desc_data)) {
fw.wlan.fw_desc = desc;
fw.wlan.fw_desc_available = 1;
if (fw.wlan.fw_desc_callback)
fw.wlan.fw_desc_callback(super, success);
return true;
}
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
if (unlikely(super->s.cab))
fw.wlan.cab_queue_len[super->s.vif_id]--;
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
wlan_tx_complete(super, success);
if (ieee80211_is_back_req(super->f.data.i3e.frame_control)) {
fw.wlan.queued_bar--;
}
/* recycle freed descriptors */
dma_reclaim(&fw.pta.down_queue, desc);
down_trigger();
return true;
}
static void handle_tx_completion(void)
{
struct dma_desc *desc;
int i;
for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) {
__while_desc_bits(desc, &fw.wlan.tx_queue[i], AR9170_OWN_BITS_SW) {
if (!wlan_tx_status(&fw.wlan.tx_queue[i], desc)) {
/* termination requested. */
break;
}
}
wlan_tx_ampdu_reset(i);
for_each_desc(desc, &fw.wlan.tx_retry)
__wlan_tx(desc);
wlan_tx_ampdu_end(i);
if (!queue_empty(&fw.wlan.tx_queue[i]))
wlan_trigger(BIT(i));
}
}
void __hot wlan_tx(struct dma_desc *desc)
{
struct carl9170_tx_superframe *super = DESC_PAYLOAD(desc);
if (ieee80211_is_back_req(super->f.data.i3e.frame_control)) {
fw.wlan.queued_bar++;
}
/* initialize rate control struct */
super->s.rix = 0;
super->s.cnt = 1;
hide_super(desc);
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
if (unlikely(super->s.cab)) {
fw.wlan.cab_queue_len[super->s.vif_id]++;
dma_put(&fw.wlan.cab_queue[super->s.vif_id], desc);
return;
}
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
_wlan_tx(desc);
__wlan_tx(desc);
wlan_trigger(BIT(super->s.queue));
}
void wlan_tx_fw(struct carl9170_tx_superdesc *super, fw_desc_callback_t cb)
{
if (!fw.wlan.fw_desc_available)
return;
fw.wlan.fw_desc_available = 0;
/* Format BlockAck */
fw.wlan.fw_desc->ctrl = AR9170_CTRL_FS_BIT | AR9170_CTRL_LS_BIT;
fw.wlan.fw_desc->status = AR9170_OWN_BITS_SW;
fw.wlan.fw_desc->totalLen = fw.wlan.fw_desc->dataSize = super->len;
fw.wlan.fw_desc_data = fw.wlan.fw_desc->dataAddr = super;
fw.wlan.fw_desc->nextAddr = fw.wlan.fw_desc->lastAddr =
fw.wlan.fw_desc;
fw.wlan.fw_desc_callback = cb;
wlan_tx(fw.wlan.fw_desc);
}
static void wlan_send_buffered_ba(void)
{
struct carl9170_tx_ba_superframe *baf = &dma_mem.reserved.ba.ba;
struct ieee80211_ba *ba = (struct ieee80211_ba *) &baf->f.ba;
struct carl9170_bar_ctx *ctx;
if (likely(!fw.wlan.queued_ba))
return;
/* there's no point to continue when the ba_desc is not available. */
if (!fw.wlan.fw_desc_available)
return;
ctx = &fw.wlan.ba_cache[fw.wlan.ba_head_idx];
fw.wlan.ba_head_idx++;
fw.wlan.ba_head_idx %= CONFIG_CARL9170FW_BACK_REQS_NUM;
fw.wlan.queued_ba--;
baf->s.len = sizeof(struct carl9170_tx_superdesc) +
sizeof(struct ar9170_tx_hwdesc) +
sizeof(struct ieee80211_ba);
baf->s.ri[0].tries = 1;
baf->s.cookie = 0;
baf->s.queue = AR9170_TXQ_VO;
baf->f.hdr.length = sizeof(struct ieee80211_ba) + FCS_LEN;
baf->f.hdr.mac.no_ack = 1;
baf->f.hdr.phy.modulation = 1; /* OFDM */
baf->f.hdr.phy.tx_power = 34; /* 17 dBm */
baf->f.hdr.phy.chains = 1;
baf->f.hdr.phy.mcs = AR9170_TXRX_PHY_RATE_OFDM_6M;
/* format outgoing BA */
ba->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
ba->duration = cpu_to_le16(0);
/* the BAR contains all necessary MACs. All we need is to swap them */
memcpy(ba->ra, ctx->ta, 6);
memcpy(ba->ta, ctx->ra, 6);
/*
* Unfortunately, we cannot look into the hardware's scoreboard.
* Therefore we have to proceed as described in 802.11n 9.10.7.5
* and send a null BlockAck.
*/
memset(ba->bitmap, 0x0, sizeof(ba->bitmap));
/*
* Both, the original firmare and ath9k set the NO ACK flag in
* the BA Ack Policy subfield.
*/
ba->control = ctx->control | cpu_to_le16(1);
ba->start_seq_num = ctx->start_seq_num;
wlan_tx_fw(&baf->s, NULL);
}
static struct carl9170_bar_ctx *wlan_get_bar_cache_buffer(void)
{
struct carl9170_bar_ctx *tmp;
tmp = &fw.wlan.ba_cache[fw.wlan.ba_tail_idx];
fw.wlan.ba_tail_idx++;
fw.wlan.ba_tail_idx %= CONFIG_CARL9170FW_BACK_REQS_NUM;
if (fw.wlan.queued_ba < CONFIG_CARL9170FW_BACK_REQS_NUM)
fw.wlan.queued_ba++;
return tmp;
}
static void handle_bar(struct dma_desc *desc __unused, struct ieee80211_hdr *hdr,
unsigned int len, unsigned int mac_err)
{
struct ieee80211_bar *bar;
struct carl9170_bar_ctx *ctx;
if (unlikely(mac_err)) {
/*
* This check does a number of things:
* 1. checks if the frame is in good nick
* 2. checks if the RA (MAC) matches
*/
return ;
}
if (unlikely(len < (sizeof(struct ieee80211_bar) + FCS_LEN))) {
/*
* Sneaky, corrupted BARs... but not with us!
*/
return ;
}
bar = (void *) hdr;
if ((bar->control & cpu_to_le16(IEEE80211_BAR_CTRL_MULTI_TID)) ||
!(bar->control & cpu_to_le16(IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA))) {
/* not implemented yet */
return ;
}
ctx = wlan_get_bar_cache_buffer();
memcpy(ctx->ra, bar->ra, 6);
memcpy(ctx->ta, bar->ta, 6);
ctx->control = bar->control;
ctx->start_seq_num = bar->start_seq_num;
}
static void wlan_check_rx_overrun(void)
{
uint32_t overruns, total;
fw.tally.rx_total += total = get(AR9170_MAC_REG_RX_TOTAL);
fw.tally.rx_overrun += overruns = get(AR9170_MAC_REG_RX_OVERRUN);
if (unlikely(overruns)) {
if (overruns == total) {
DBG("RX Overrun");
fw.wlan.mac_reset++;
}
wlan_trigger(AR9170_DMA_TRIGGER_RXQ);
}
}
static unsigned int wlan_rx_filter(struct dma_desc *desc)
{
struct ieee80211_hdr *hdr;
unsigned int data_len;
unsigned int rx_filter;
unsigned int mac_err;
data_len = ar9170_get_rx_mpdu_len(desc);
mac_err = ar9170_get_rx_macstatus_error(desc);
#define AR9170_RX_ERROR_BAD (AR9170_RX_ERROR_FCS | AR9170_RX_ERROR_PLCP)
if (unlikely(data_len < (4 + 6 + FCS_LEN) ||
desc->totalLen > CONFIG_CARL9170FW_RX_FRAME_LEN) ||
mac_err & AR9170_RX_ERROR_BAD) {
/*
* This frame is too damaged to do anything
* useful with it.
*/
return CARL9170_RX_FILTER_BAD;
}
rx_filter = 0;
if (mac_err & AR9170_RX_ERROR_WRONG_RA)
rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
if (mac_err & AR9170_RX_ERROR_DECRYPT)
rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
hdr = ar9170_get_rx_i3e(desc);
if (likely(ieee80211_is_data(hdr->frame_control))) {
rx_filter |= CARL9170_RX_FILTER_DATA;
} else if (ieee80211_is_ctl(hdr->frame_control)) {
switch (le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_BACK_REQ:
handle_bar(desc, hdr, data_len, mac_err);
rx_filter |= CARL9170_RX_FILTER_CTL_BACKR;
break;
case IEEE80211_STYPE_PSPOLL:
rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
break;
case IEEE80211_STYPE_BACK:
if (fw.wlan.queued_bar) {
/*
* Don't filter block acks when the application
* has queued BARs. This is because the firmware
* can't do the accouting and the application
* has to sort out if the BA belongs to any BARs.
*/
break;
}
/* otherwise fall through */
default:
rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
break;
}
} else {
/* ieee80211_is_mgmt */
rx_filter |= CARL9170_RX_FILTER_MGMT;
}
if (unlikely(fw.suspend_mode == CARL9170_HOST_SUSPENDED)) {
wol_rx(rx_filter, hdr, min(data_len,
(unsigned int)AR9170_BLOCK_SIZE));
}
#undef AR9170_RX_ERROR_BAD
return rx_filter;
}
static void handle_rx(void)
{
struct dma_desc *desc;
for_each_desc_not_bits(desc, &fw.wlan.rx_queue, AR9170_OWN_BITS_HW) {
if (!(wlan_rx_filter(desc) & fw.wlan.rx_filter)) {
dma_put(&fw.pta.up_queue, desc);
up_trigger();
} else {
dma_reclaim(&fw.wlan.rx_queue, desc);
wlan_trigger(AR9170_DMA_TRIGGER_RXQ);
}
}
}
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
void wlan_cab_flush_queue(const unsigned int vif)
{
struct dma_queue *cab_queue = &fw.wlan.cab_queue[vif];
struct dma_desc *desc;
/* move queued frames into the main tx queues */
for_each_desc(desc, cab_queue) {
struct carl9170_tx_superframe *super = get_super(desc);
if (!queue_empty(cab_queue)) {
/*
* Set MOREDATA flag for all,
* but the last queued frame.
* see: 802.11-2007 11.2.1.5 f)
*
* This is actually the reason to why
* we need to prevent the reentry.
*/
super->f.data.i3e.frame_control |=
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
} else {
super->f.data.i3e.frame_control &=
cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
}
/* ready to roll! */
_wlan_tx(desc);
__wlan_tx(desc);
wlan_trigger(BIT(super->s.queue));
}
}
static uint8_t *beacon_find_ie(uint8_t ie, void *addr,
const unsigned int len)
{
struct ieee80211_mgmt *mgmt = addr;
uint8_t *pos, *end;
pos = mgmt->u.beacon.variable;
end = (uint8_t *) ((unsigned long)mgmt + (len - FCS_LEN));
while (pos < end) {
if (pos + 2 + pos[1] > end)
return NULL;
if (pos[0] == ie)
return pos;
pos += pos[1] + 2;
}
return NULL;
}
void wlan_modify_beacon(const unsigned int vif,
const unsigned int addr, const unsigned int len)
{
uint8_t *_ie;
struct ieee80211_tim_ie *ie;
_ie = beacon_find_ie(WLAN_EID_TIM, (void *)addr, len);
if (likely(_ie)) {
ie = (struct ieee80211_tim_ie *) &_ie[2];
if (!queue_empty(&fw.wlan.cab_queue[vif]) && (ie->dtim_count == 0)) {
/* schedule DTIM transfer */
fw.wlan.cab_flush_trigger[vif] = CARL9170_CAB_TRIGGER_ARMED;
} else if ((fw.wlan.cab_queue_len[vif] == 0) && (fw.wlan.cab_flush_trigger[vif])) {
/* undo all chances to the beacon structure */
ie->bitmap_ctrl &= ~0x1;
fw.wlan.cab_flush_trigger[vif] = CARL9170_CAB_TRIGGER_EMPTY;
}
/* Triggered by CARL9170_CAB_TRIGGER_ARMED || CARL9170_CAB_TRIGGER_DEFER */
if (fw.wlan.cab_flush_trigger[vif]) {
/* Set the almighty Multicast Traffic Indication Bit. */
ie->bitmap_ctrl |= 0x1;
}
}
/*
* Ideally, the sequence number should be assigned by the TX arbiter
* hardware. But AFAIK that's not possible, so we have to go for the
* next best thing and write it into the beacon fifo during the open
* beacon update window.
*/
wlan_assign_seq((struct ieee80211_hdr *)addr, vif);
}
static void wlan_send_buffered_cab(void)
{
unsigned int i;
for (i = 0; i < CARL9170_INTF_NUM; i++) {
if (unlikely(fw.wlan.cab_flush_trigger[i] == CARL9170_CAB_TRIGGER_ARMED)) {
/*
* This is hardcoded into carl9170usb driver.
*
* The driver must set the PRETBTT event to beacon_interval -
* CARL9170_PRETBTT_KUS (usually 6) Kus.
*
* But still, we can only do so much about 802.11-2007 9.3.2.1 &
* 11.2.1.6. Let's hope the current solution is adequate enough.
*/
if (is_after_msecs(fw.wlan.cab_flush_time, (CARL9170_TBTT_DELTA))) {
wlan_cab_flush_queue(i);
/*
* This prevents the code from sending new BC/MC frames
* which were queued after the previous buffered traffic
* has been sent out... They will have to wait until the
* next DTIM beacon comes along.
*/
fw.wlan.cab_flush_trigger[i] = CARL9170_CAB_TRIGGER_DEFER;
}
}
}
}
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
static void handle_beacon_config(void)
{
uint32_t bcn_count;
bcn_count = get(AR9170_MAC_REG_BCN_COUNT);
send_cmd_to_host(4, CARL9170_RSP_BEACON_CONFIG, 0x00,
(uint8_t *) &bcn_count);
}
static void handle_pretbtt(void)
{
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
fw.wlan.cab_flush_time = get_clock_counter();
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
rf_psm();
send_cmd_to_host(4, CARL9170_RSP_PRETBTT, 0x00,
(uint8_t *) &fw.phy.psm.state);
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
}
static void handle_atim(void)
{
send_cmd_to_host(0, CARL9170_RSP_ATIM, 0x00, NULL);
}
#ifdef CONFIG_CARL9170FW_DEBUG
static void handle_qos(void)
{
/*
* What is the QoS Bit used for?
* Is it only an indicator for TXOP & Burst, or
* should we do something here?
*/
}
static void handle_radar(void)
{
send_cmd_to_host(0, CARL9170_RSP_RADAR, 0x00, NULL);
}
#endif /* CONFIG_CARL9170FW_DEBUG */
static void wlan_janitor(void)
{
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
wlan_send_buffered_cab();
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
wlan_send_buffered_tx_status();
wlan_send_buffered_ba();
wol_janitor();
}
void handle_wlan(void)
{
uint32_t intr;
intr = get(AR9170_MAC_REG_INT_CTRL);
/* ACK Interrupt */
set(AR9170_MAC_REG_INT_CTRL, intr);
#define HANDLER(intr, flag, func) \
do { \
if ((intr & flag) != 0) { \
func(); \
} \
} while (0)
intr |= fw.wlan.soft_int;
fw.wlan.soft_int = 0;
HANDLER(intr, AR9170_MAC_INT_PRETBTT, handle_pretbtt);
HANDLER(intr, AR9170_MAC_INT_ATIM, handle_atim);
HANDLER(intr, AR9170_MAC_INT_RXC, handle_rx);
HANDLER(intr, (AR9170_MAC_INT_TXC | AR9170_MAC_INT_RETRY_FAIL),
handle_tx_completion);
#ifdef CONFIG_CARL9170FW_DEBUG
HANDLER(intr, AR9170_MAC_INT_QOS, handle_qos);
HANDLER(intr, AR9170_MAC_INT_RADAR, handle_radar);
#endif /* CONFIG_CARL9170FW_DEBUG */
HANDLER(intr, AR9170_MAC_INT_CFG_BCN, handle_beacon_config);
if (unlikely(intr))
DBG("Unhandled Interrupt %x\n", (unsigned int) intr);
wlan_janitor();
#undef HANDLER
}
enum {
CARL9170FW_TX_MAC_BUMP = 4,
CARL9170FW_TX_MAC_DEBUG = 6,
CARL9170FW_TX_MAC_RESET = 7,
};
static void wlan_check_hang(void)
{
struct dma_desc *desc;
int i;
for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) {
if (queue_empty(&fw.wlan.tx_queue[i])) {
/* Nothing to do here... move along */
continue;
}
/* fetch the current DMA queue position */
desc = (struct dma_desc *)get_wlan_txq_addr(i);
/* Stuck frame detection */
if (unlikely(DESC_PAYLOAD(desc) == fw.wlan.last_super[i])) {
fw.wlan.last_super_num[i]++;
if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_RESET)) {
/*
* schedule MAC reset (aka OFF/ON => dead)
*
* This will almost certainly kill
* the device for good, but it's the
* recommended thing to do...
*/
fw.wlan.mac_reset++;
}
#ifdef CONFIG_CARL9170FW_DEBUG
if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_DEBUG)) {
/*
* Sigh, the queue is almost certainly
* dead. Dump the queue content to the
* user, maybe we find out why it got
* so stuck.
*/
wlan_dump_queue(i);
}
#endif /* CONFIG_CARL9170FW_DEBUG */
#ifdef CONFIG_CARL9170FW_DMA_QUEUE_BUMP
if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_BUMP)) {
/*
* Hrrm, bump the queue a bit.
* maybe this will get it going again.
*/
wlan_dma_bump(i);
wlan_trigger(BIT(i));
}
#endif /* CONFIG_CARL9170FW_DMA_QUEUE_BUMP */
} else {
/* Nothing stuck */
fw.wlan.last_super[i] = DESC_PAYLOAD(desc);
fw.wlan.last_super_num[i] = 0;
}
}
}
#ifdef CONFIG_CARL9170FW_FW_MAC_RESET
/*
* NB: Resetting the MAC is a two-edged sword.
* On most occasions, it does what it is supposed to do.
* But there is a chance that this will make it
* even worse and the radio dies silently.
*/
static void wlan_mac_reset(void)
{
uint32_t val;
uint32_t agg_wait_counter;
uint32_t agg_density;
uint32_t bcn_start_addr;
uint32_t rctl, rcth;
uint32_t cam_mode;
uint32_t ack_power;
uint32_t rts_cts_tpc;
uint32_t rts_cts_rate;
int i;
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
uint32_t rx_BB;
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
#ifdef CONFIG_CARL9170FW_NOISY_MAC_RESET
INFO("MAC RESET");
#endif /* CONFIG_CARL9170FW_NOISY_MAC_RESET */
/* Save aggregation parameters */
agg_wait_counter = get(AR9170_MAC_REG_AMPDU_FACTOR);
agg_density = get(AR9170_MAC_REG_AMPDU_DENSITY);
bcn_start_addr = get(AR9170_MAC_REG_BCN_ADDR);
cam_mode = get(AR9170_MAC_REG_CAM_MODE);
rctl = get(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_L);
rcth = get(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_H);
ack_power = get(AR9170_MAC_REG_ACK_TPC);
rts_cts_tpc = get(AR9170_MAC_REG_RTS_CTS_TPC);
rts_cts_rate = get(AR9170_MAC_REG_RTS_CTS_RATE);
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
/* 0x1c8960 write only */
rx_BB = get(AR9170_PHY_REG_SWITCH_CHAIN_0);
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
/* TX/RX must be stopped by now */
val = get(AR9170_MAC_REG_POWER_STATE_CTRL);
val |= AR9170_MAC_POWER_STATE_CTRL_RESET;
/*
* Manipulate CCA threshold to stop transmission
*
* set(AR9170_PHY_REG_CCA_THRESHOLD, 0x300);
*/
/*
* check Rx state in 0(idle) 9(disable)
*
* chState = (get(AR9170_MAC_REG_MISC_684) >> 16) & 0xf;
* while( (chState != 0) && (chState != 9)) {
* chState = (get(AR9170_MAC_REG_MISC_684) >> 16) & 0xf;
* }
*/
set(AR9170_MAC_REG_POWER_STATE_CTRL, val);
delay(2);
/* Restore aggregation parameters */
set(AR9170_MAC_REG_AMPDU_FACTOR, agg_wait_counter);
set(AR9170_MAC_REG_AMPDU_DENSITY, agg_density);
set(AR9170_MAC_REG_BCN_ADDR, bcn_start_addr);
set(AR9170_MAC_REG_CAM_MODE, cam_mode);
set(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_L, rctl);
set(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_H, rcth);
set(AR9170_MAC_REG_RTS_CTS_TPC, rts_cts_tpc);
set(AR9170_MAC_REG_ACK_TPC, ack_power);
set(AR9170_MAC_REG_RTS_CTS_RATE, rts_cts_rate);
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
set(AR9170_PHY_REG_SWITCH_CHAIN_2, rx_BB);
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
/*
* Manipulate CCA threshold to resume transmission
*
* set(AR9170_PHY_REG_CCA_THRESHOLD, 0x0);
*/
val = AR9170_DMA_TRIGGER_RXQ;
/* Reinitialize all WLAN TX DMA queues. */
for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) {
struct dma_desc *iter;
__for_each_desc_bits(iter, &fw.wlan.tx_queue[i], AR9170_OWN_BITS_SW);
/* kill the stuck frame */
if (!is_terminator(&fw.wlan.tx_queue[i], iter) &&
fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_RESET &&
fw.wlan.last_super[i] == DESC_PAYLOAD(iter)) {
struct carl9170_tx_superframe *super = get_super(iter);
iter->status = AR9170_OWN_BITS_SW;
/*
* Mark the frame as failed.
* The BAFAIL flag allows the frame to sail through
* wlan_tx_status without much "unstuck" trouble.
*/
iter->ctrl &= ~(AR9170_CTRL_FAIL);
iter->ctrl |= AR9170_CTRL_BAFAIL;
super->s.cnt = CARL9170_TX_MAX_RATE_TRIES;
super->s.rix = CARL9170_TX_MAX_RETRY_RATES;
fw.wlan.last_super_num[i] = 0;
fw.wlan.last_super[i] = NULL;
iter = iter->lastAddr->nextAddr;
}
set_wlan_txq_dma_addr(i, (uint32_t) iter);
if (!is_terminator(&fw.wlan.tx_queue[i], iter))
val |= BIT(i);
DBG("Q:%d l:%d h:%p t:%p cu:%p it:%p ct:%x st:%x\n", i, queue_len(&fw.wlan.tx_queue[i]),
fw.wlan.tx_queue[i].head, fw.wlan.tx_queue[i].terminator,
get_wlan_txq_addr(i), iter, iter->ctrl, iter->status);
}
fw.wlan.soft_int |= AR9170_MAC_INT_RXC | AR9170_MAC_INT_TXC |
AR9170_MAC_INT_RETRY_FAIL;
set(AR9170_MAC_REG_DMA_RXQ_ADDR, (uint32_t) fw.wlan.rx_queue.head);
wlan_trigger(val);
}
#else
static void wlan_mac_reset(void)
{
/* The driver takes care of reinitializing the device */
BUG("MAC RESET");
}
#endif /* CONFIG_CARL9170FW_FW_MAC_RESET */
void __cold wlan_timer(void)
{
unsigned int cached_mac_reset;
cached_mac_reset = fw.wlan.mac_reset;
/* TX Queue Hang check */
wlan_check_hang();
/* RX Overrun check */
wlan_check_rx_overrun();
if (unlikely(fw.wlan.mac_reset >= CARL9170_MAC_RESET_RESET)) {
wlan_mac_reset();
fw.wlan.mac_reset = CARL9170_MAC_RESET_OFF;
} else {
if (fw.wlan.mac_reset && cached_mac_reset == fw.wlan.mac_reset)
fw.wlan.mac_reset--;
}
}