1
0
Fork 0
remarkable-linux/drivers/char/ipmi/ipmi_watchdog.c

1393 lines
35 KiB
C
Raw Normal View History

/*
* ipmi_watchdog.c
*
* A watchdog timer based upon the IPMI interface.
*
* Author: MontaVista Software, Inc.
* Corey Minyard <minyard@mvista.com>
* source@mvista.com
*
* Copyright 2002 MontaVista Software Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <linux/mutex.h>
#include <linux/watchdog.h>
#include <linux/miscdevice.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/kdebug.h>
#include <linux/rwsem.h>
#include <linux/errno.h>
#include <linux/uaccess.h>
#include <linux/notifier.h>
#include <linux/nmi.h>
#include <linux/reboot.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <linux/sched/signal.h>
#ifdef CONFIG_X86
/*
* This is ugly, but I've determined that x86 is the only architecture
* that can reasonably support the IPMI NMI watchdog timeout at this
* time. If another architecture adds this capability somehow, it
* will have to be a somewhat different mechanism and I have no idea
* how it will work. So in the unlikely event that another
* architecture supports this, we can figure out a good generic
* mechanism for it at that time.
*/
#include <asm/kdebug.h>
#include <asm/nmi.h>
#define HAVE_DIE_NMI
#endif
#define PFX "IPMI Watchdog: "
/*
* The IPMI command/response information for the watchdog timer.
*/
/* values for byte 1 of the set command, byte 2 of the get response. */
#define WDOG_DONT_LOG (1 << 7)
#define WDOG_DONT_STOP_ON_SET (1 << 6)
#define WDOG_SET_TIMER_USE(byte, use) \
byte = ((byte) & 0xf8) | ((use) & 0x7)
#define WDOG_GET_TIMER_USE(byte) ((byte) & 0x7)
#define WDOG_TIMER_USE_BIOS_FRB2 1
#define WDOG_TIMER_USE_BIOS_POST 2
#define WDOG_TIMER_USE_OS_LOAD 3
#define WDOG_TIMER_USE_SMS_OS 4
#define WDOG_TIMER_USE_OEM 5
/* values for byte 2 of the set command, byte 3 of the get response. */
#define WDOG_SET_PRETIMEOUT_ACT(byte, use) \
byte = ((byte) & 0x8f) | (((use) & 0x7) << 4)
#define WDOG_GET_PRETIMEOUT_ACT(byte) (((byte) >> 4) & 0x7)
#define WDOG_PRETIMEOUT_NONE 0
#define WDOG_PRETIMEOUT_SMI 1
#define WDOG_PRETIMEOUT_NMI 2
#define WDOG_PRETIMEOUT_MSG_INT 3
/* Operations that can be performed on a pretimout. */
#define WDOG_PREOP_NONE 0
#define WDOG_PREOP_PANIC 1
/* Cause data to be available to read. Doesn't work in NMI mode. */
#define WDOG_PREOP_GIVE_DATA 2
/* Actions to perform on a full timeout. */
#define WDOG_SET_TIMEOUT_ACT(byte, use) \
byte = ((byte) & 0xf8) | ((use) & 0x7)
#define WDOG_GET_TIMEOUT_ACT(byte) ((byte) & 0x7)
#define WDOG_TIMEOUT_NONE 0
#define WDOG_TIMEOUT_RESET 1
#define WDOG_TIMEOUT_POWER_DOWN 2
#define WDOG_TIMEOUT_POWER_CYCLE 3
/*
* Byte 3 of the get command, byte 4 of the get response is the
* pre-timeout in seconds.
*/
/* Bits for setting byte 4 of the set command, byte 5 of the get response. */
#define WDOG_EXPIRE_CLEAR_BIOS_FRB2 (1 << 1)
#define WDOG_EXPIRE_CLEAR_BIOS_POST (1 << 2)
#define WDOG_EXPIRE_CLEAR_OS_LOAD (1 << 3)
#define WDOG_EXPIRE_CLEAR_SMS_OS (1 << 4)
#define WDOG_EXPIRE_CLEAR_OEM (1 << 5)
/*
* Setting/getting the watchdog timer value. This is for bytes 5 and
* 6 (the timeout time) of the set command, and bytes 6 and 7 (the
* timeout time) and 8 and 9 (the current countdown value) of the
* response. The timeout value is given in seconds (in the command it
* is 100ms intervals).
*/
#define WDOG_SET_TIMEOUT(byte1, byte2, val) \
(byte1) = (((val) * 10) & 0xff), (byte2) = (((val) * 10) >> 8)
#define WDOG_GET_TIMEOUT(byte1, byte2) \
(((byte1) | ((byte2) << 8)) / 10)
#define IPMI_WDOG_RESET_TIMER 0x22
#define IPMI_WDOG_SET_TIMER 0x24
#define IPMI_WDOG_GET_TIMER 0x25
#define IPMI_WDOG_TIMER_NOT_INIT_RESP 0x80
static DEFINE_MUTEX(ipmi_watchdog_mutex);
static bool nowayout = WATCHDOG_NOWAYOUT;
static ipmi_user_t watchdog_user;
static int watchdog_ifnum;
/* Default the timeout to 10 seconds. */
static int timeout = 10;
/* The pre-timeout is disabled by default. */
static int pretimeout;
/* Default timeout to set on panic */
static int panic_wdt_timeout = 255;
/* Default action is to reset the board on a timeout. */
static unsigned char action_val = WDOG_TIMEOUT_RESET;
static char action[16] = "reset";
static unsigned char preaction_val = WDOG_PRETIMEOUT_NONE;
static char preaction[16] = "pre_none";
static unsigned char preop_val = WDOG_PREOP_NONE;
static char preop[16] = "preop_none";
static DEFINE_SPINLOCK(ipmi_read_lock);
static char data_to_read;
static DECLARE_WAIT_QUEUE_HEAD(read_q);
static struct fasync_struct *fasync_q;
static char pretimeout_since_last_heartbeat;
static char expect_close;
static int ifnum_to_use = -1;
/* Parameters to ipmi_set_timeout */
#define IPMI_SET_TIMEOUT_NO_HB 0
#define IPMI_SET_TIMEOUT_HB_IF_NECESSARY 1
#define IPMI_SET_TIMEOUT_FORCE_HB 2
static int ipmi_set_timeout(int do_heartbeat);
static void ipmi_register_watchdog(int ipmi_intf);
static void ipmi_unregister_watchdog(int ipmi_intf);
/*
* If true, the driver will start running as soon as it is configured
* and ready.
*/
static int start_now;
static int set_param_timeout(const char *val, const struct kernel_param *kp)
{
char *endp;
int l;
int rv = 0;
if (!val)
return -EINVAL;
l = simple_strtoul(val, &endp, 0);
if (endp == val)
return -EINVAL;
*((int *)kp->arg) = l;
if (watchdog_user)
rv = ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
return rv;
}
static const struct kernel_param_ops param_ops_timeout = {
.set = set_param_timeout,
.get = param_get_int,
};
#define param_check_timeout param_check_int
typedef int (*action_fn)(const char *intval, char *outval);
static int action_op(const char *inval, char *outval);
static int preaction_op(const char *inval, char *outval);
static int preop_op(const char *inval, char *outval);
static void check_parms(void);
static int set_param_str(const char *val, const struct kernel_param *kp)
{
action_fn fn = (action_fn) kp->arg;
int rv = 0;
char valcp[16];
char *s;
strncpy(valcp, val, 16);
valcp[15] = '\0';
s = strstrip(valcp);
rv = fn(s, NULL);
if (rv)
goto out;
check_parms();
if (watchdog_user)
rv = ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
out:
return rv;
}
static int get_param_str(char *buffer, const struct kernel_param *kp)
{
action_fn fn = (action_fn) kp->arg;
int rv;
rv = fn(NULL, buffer);
if (rv)
return rv;
return strlen(buffer);
}
static int set_param_wdog_ifnum(const char *val, const struct kernel_param *kp)
{
int rv = param_set_int(val, kp);
if (rv)
return rv;
if ((ifnum_to_use < 0) || (ifnum_to_use == watchdog_ifnum))
return 0;
ipmi_unregister_watchdog(watchdog_ifnum);
ipmi_register_watchdog(ifnum_to_use);
return 0;
}
static const struct kernel_param_ops param_ops_wdog_ifnum = {
.set = set_param_wdog_ifnum,
.get = param_get_int,
};
#define param_check_wdog_ifnum param_check_int
static const struct kernel_param_ops param_ops_str = {
.set = set_param_str,
.get = get_param_str,
};
module_param(ifnum_to_use, wdog_ifnum, 0644);
MODULE_PARM_DESC(ifnum_to_use, "The interface number to use for the watchdog "
"timer. Setting to -1 defaults to the first registered "
"interface");
module_param(timeout, timeout, 0644);
MODULE_PARM_DESC(timeout, "Timeout value in seconds.");
module_param(pretimeout, timeout, 0644);
MODULE_PARM_DESC(pretimeout, "Pretimeout value in seconds.");
module_param(panic_wdt_timeout, timeout, 0644);
MODULE_PARM_DESC(timeout, "Timeout value on kernel panic in seconds.");
module_param_cb(action, &param_ops_str, action_op, 0644);
MODULE_PARM_DESC(action, "Timeout action. One of: "
"reset, none, power_cycle, power_off.");
module_param_cb(preaction, &param_ops_str, preaction_op, 0644);
MODULE_PARM_DESC(preaction, "Pretimeout action. One of: "
"pre_none, pre_smi, pre_nmi, pre_int.");
module_param_cb(preop, &param_ops_str, preop_op, 0644);
MODULE_PARM_DESC(preop, "Pretimeout driver operation. One of: "
"preop_none, preop_panic, preop_give_data.");
module_param(start_now, int, 0444);
MODULE_PARM_DESC(start_now, "Set to 1 to start the watchdog as"
"soon as the driver is loaded.");
module_param(nowayout, bool, 0644);
MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started "
"(default=CONFIG_WATCHDOG_NOWAYOUT)");
/* Default state of the timer. */
static unsigned char ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
/* If shutting down via IPMI, we ignore the heartbeat. */
static int ipmi_ignore_heartbeat;
/* Is someone using the watchdog? Only one user is allowed. */
static unsigned long ipmi_wdog_open;
/*
* If set to 1, the heartbeat command will set the state to reset and
* start the timer. The timer doesn't normally run when the driver is
* first opened until the heartbeat is set the first time, this
* variable is used to accomplish this.
*/
static int ipmi_start_timer_on_heartbeat;
/* IPMI version of the BMC. */
static unsigned char ipmi_version_major;
static unsigned char ipmi_version_minor;
/* If a pretimeout occurs, this is used to allow only one panic to happen. */
static atomic_t preop_panic_excl = ATOMIC_INIT(-1);
#ifdef HAVE_DIE_NMI
static int testing_nmi;
static int nmi_handler_registered;
#endif
static int ipmi_heartbeat(void);
/*
* We use a mutex to make sure that only one thing can send a set
* timeout at one time, because we only have one copy of the data.
* The mutex is claimed when the set_timeout is sent and freed
* when both messages are free.
*/
static atomic_t set_timeout_tofree = ATOMIC_INIT(0);
static DEFINE_MUTEX(set_timeout_lock);
static DECLARE_COMPLETION(set_timeout_wait);
static void set_timeout_free_smi(struct ipmi_smi_msg *msg)
{
if (atomic_dec_and_test(&set_timeout_tofree))
complete(&set_timeout_wait);
}
static void set_timeout_free_recv(struct ipmi_recv_msg *msg)
{
if (atomic_dec_and_test(&set_timeout_tofree))
complete(&set_timeout_wait);
}
static struct ipmi_smi_msg set_timeout_smi_msg = {
.done = set_timeout_free_smi
};
static struct ipmi_recv_msg set_timeout_recv_msg = {
.done = set_timeout_free_recv
};
static int i_ipmi_set_timeout(struct ipmi_smi_msg *smi_msg,
struct ipmi_recv_msg *recv_msg,
int *send_heartbeat_now)
{
struct kernel_ipmi_msg msg;
unsigned char data[6];
int rv;
struct ipmi_system_interface_addr addr;
int hbnow = 0;
/* These can be cleared as we are setting the timeout. */
pretimeout_since_last_heartbeat = 0;
data[0] = 0;
WDOG_SET_TIMER_USE(data[0], WDOG_TIMER_USE_SMS_OS);
if ((ipmi_version_major > 1)
|| ((ipmi_version_major == 1) && (ipmi_version_minor >= 5))) {
/* This is an IPMI 1.5-only feature. */
data[0] |= WDOG_DONT_STOP_ON_SET;
} else if (ipmi_watchdog_state != WDOG_TIMEOUT_NONE) {
/*
* In ipmi 1.0, setting the timer stops the watchdog, we
* need to start it back up again.
*/
hbnow = 1;
}
data[1] = 0;
WDOG_SET_TIMEOUT_ACT(data[1], ipmi_watchdog_state);
if ((pretimeout > 0) && (ipmi_watchdog_state != WDOG_TIMEOUT_NONE)) {
WDOG_SET_PRETIMEOUT_ACT(data[1], preaction_val);
data[2] = pretimeout;
} else {
WDOG_SET_PRETIMEOUT_ACT(data[1], WDOG_PRETIMEOUT_NONE);
data[2] = 0; /* No pretimeout. */
}
data[3] = 0;
WDOG_SET_TIMEOUT(data[4], data[5], timeout);
addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
addr.channel = IPMI_BMC_CHANNEL;
addr.lun = 0;
msg.netfn = 0x06;
msg.cmd = IPMI_WDOG_SET_TIMER;
msg.data = data;
msg.data_len = sizeof(data);
rv = ipmi_request_supply_msgs(watchdog_user,
(struct ipmi_addr *) &addr,
0,
&msg,
NULL,
smi_msg,
recv_msg,
1);
if (rv) {
printk(KERN_WARNING PFX "set timeout error: %d\n",
rv);
}
if (send_heartbeat_now)
*send_heartbeat_now = hbnow;
return rv;
}
static int ipmi_set_timeout(int do_heartbeat)
{
int send_heartbeat_now;
int rv;
/* We can only send one of these at a time. */
mutex_lock(&set_timeout_lock);
atomic_set(&set_timeout_tofree, 2);
rv = i_ipmi_set_timeout(&set_timeout_smi_msg,
&set_timeout_recv_msg,
&send_heartbeat_now);
if (rv) {
mutex_unlock(&set_timeout_lock);
goto out;
}
wait_for_completion(&set_timeout_wait);
mutex_unlock(&set_timeout_lock);
if ((do_heartbeat == IPMI_SET_TIMEOUT_FORCE_HB)
|| ((send_heartbeat_now)
&& (do_heartbeat == IPMI_SET_TIMEOUT_HB_IF_NECESSARY)))
rv = ipmi_heartbeat();
out:
return rv;
}
static atomic_t panic_done_count = ATOMIC_INIT(0);
static void panic_smi_free(struct ipmi_smi_msg *msg)
{
atomic_dec(&panic_done_count);
}
static void panic_recv_free(struct ipmi_recv_msg *msg)
{
atomic_dec(&panic_done_count);
}
static struct ipmi_smi_msg panic_halt_heartbeat_smi_msg = {
.done = panic_smi_free
};
static struct ipmi_recv_msg panic_halt_heartbeat_recv_msg = {
.done = panic_recv_free
};
static void panic_halt_ipmi_heartbeat(void)
{
struct kernel_ipmi_msg msg;
struct ipmi_system_interface_addr addr;
int rv;
/*
* Don't reset the timer if we have the timer turned off, that
* re-enables the watchdog.
*/
if (ipmi_watchdog_state == WDOG_TIMEOUT_NONE)
return;
addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
addr.channel = IPMI_BMC_CHANNEL;
addr.lun = 0;
msg.netfn = 0x06;
msg.cmd = IPMI_WDOG_RESET_TIMER;
msg.data = NULL;
msg.data_len = 0;
atomic_add(2, &panic_done_count);
rv = ipmi_request_supply_msgs(watchdog_user,
(struct ipmi_addr *) &addr,
0,
&msg,
NULL,
&panic_halt_heartbeat_smi_msg,
&panic_halt_heartbeat_recv_msg,
1);
if (rv)
atomic_sub(2, &panic_done_count);
}
static struct ipmi_smi_msg panic_halt_smi_msg = {
.done = panic_smi_free
};
static struct ipmi_recv_msg panic_halt_recv_msg = {
.done = panic_recv_free
};
/*
* Special call, doesn't claim any locks. This is only to be called
* at panic or halt time, in run-to-completion mode, when the caller
* is the only CPU and the only thing that will be going is these IPMI
* calls.
*/
static void panic_halt_ipmi_set_timeout(void)
{
int send_heartbeat_now;
int rv;
/* Wait for the messages to be free. */
while (atomic_read(&panic_done_count) != 0)
ipmi_poll_interface(watchdog_user);
atomic_add(2, &panic_done_count);
rv = i_ipmi_set_timeout(&panic_halt_smi_msg,
&panic_halt_recv_msg,
&send_heartbeat_now);
if (rv) {
atomic_sub(2, &panic_done_count);
printk(KERN_WARNING PFX
"Unable to extend the watchdog timeout.");
} else {
if (send_heartbeat_now)
panic_halt_ipmi_heartbeat();
}
while (atomic_read(&panic_done_count) != 0)
ipmi_poll_interface(watchdog_user);
}
/*
* We use a mutex to make sure that only one thing can send a
* heartbeat at one time, because we only have one copy of the data.
* The semaphore is claimed when the set_timeout is sent and freed
* when both messages are free.
*/
static atomic_t heartbeat_tofree = ATOMIC_INIT(0);
static DEFINE_MUTEX(heartbeat_lock);
static DECLARE_COMPLETION(heartbeat_wait);
static void heartbeat_free_smi(struct ipmi_smi_msg *msg)
{
if (atomic_dec_and_test(&heartbeat_tofree))
complete(&heartbeat_wait);
}
static void heartbeat_free_recv(struct ipmi_recv_msg *msg)
{
if (atomic_dec_and_test(&heartbeat_tofree))
complete(&heartbeat_wait);
}
static struct ipmi_smi_msg heartbeat_smi_msg = {
.done = heartbeat_free_smi
};
static struct ipmi_recv_msg heartbeat_recv_msg = {
.done = heartbeat_free_recv
};
static int ipmi_heartbeat(void)
{
struct kernel_ipmi_msg msg;
int rv;
struct ipmi_system_interface_addr addr;
int timeout_retries = 0;
if (ipmi_ignore_heartbeat)
return 0;
if (ipmi_start_timer_on_heartbeat) {
ipmi_start_timer_on_heartbeat = 0;
ipmi_watchdog_state = action_val;
return ipmi_set_timeout(IPMI_SET_TIMEOUT_FORCE_HB);
} else if (pretimeout_since_last_heartbeat) {
/*
* A pretimeout occurred, make sure we set the timeout.
* We don't want to set the action, though, we want to
* leave that alone (thus it can't be combined with the
* above operation.
*/
return ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
}
mutex_lock(&heartbeat_lock);
restart:
atomic_set(&heartbeat_tofree, 2);
/*
* Don't reset the timer if we have the timer turned off, that
* re-enables the watchdog.
*/
if (ipmi_watchdog_state == WDOG_TIMEOUT_NONE) {
mutex_unlock(&heartbeat_lock);
return 0;
}
addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
addr.channel = IPMI_BMC_CHANNEL;
addr.lun = 0;
msg.netfn = 0x06;
msg.cmd = IPMI_WDOG_RESET_TIMER;
msg.data = NULL;
msg.data_len = 0;
rv = ipmi_request_supply_msgs(watchdog_user,
(struct ipmi_addr *) &addr,
0,
&msg,
NULL,
&heartbeat_smi_msg,
&heartbeat_recv_msg,
1);
if (rv) {
mutex_unlock(&heartbeat_lock);
printk(KERN_WARNING PFX "heartbeat failure: %d\n",
rv);
return rv;
}
/* Wait for the heartbeat to be sent. */
wait_for_completion(&heartbeat_wait);
if (heartbeat_recv_msg.msg.data[0] == IPMI_WDOG_TIMER_NOT_INIT_RESP) {
timeout_retries++;
if (timeout_retries > 3) {
printk(KERN_ERR PFX ": Unable to restore the IPMI"
" watchdog's settings, giving up.\n");
rv = -EIO;
goto out_unlock;
}
/*
* The timer was not initialized, that means the BMC was
* probably reset and lost the watchdog information. Attempt
* to restore the timer's info. Note that we still hold
* the heartbeat lock, to keep a heartbeat from happening
* in this process, so must say no heartbeat to avoid a
* deadlock on this mutex.
*/
rv = ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
if (rv) {
printk(KERN_ERR PFX ": Unable to send the command to"
" set the watchdog's settings, giving up.\n");
goto out_unlock;
}
/* We might need a new heartbeat, so do it now */
goto restart;
} else if (heartbeat_recv_msg.msg.data[0] != 0) {
/*
* Got an error in the heartbeat response. It was already
* reported in ipmi_wdog_msg_handler, but we should return
* an error here.
*/
rv = -EINVAL;
}
out_unlock:
mutex_unlock(&heartbeat_lock);
return rv;
}
static struct watchdog_info ident = {
.options = 0, /* WDIOF_SETTIMEOUT, */
.firmware_version = 1,
.identity = "IPMI"
};
static int ipmi_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
void __user *argp = (void __user *)arg;
int i;
int val;
switch (cmd) {
case WDIOC_GETSUPPORT:
i = copy_to_user(argp, &ident, sizeof(ident));
return i ? -EFAULT : 0;
case WDIOC_SETTIMEOUT:
i = copy_from_user(&val, argp, sizeof(int));
if (i)
return -EFAULT;
timeout = val;
return ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
case WDIOC_GETTIMEOUT:
i = copy_to_user(argp, &timeout, sizeof(timeout));
if (i)
return -EFAULT;
return 0;
case WDIOC_SETPRETIMEOUT:
i = copy_from_user(&val, argp, sizeof(int));
if (i)
return -EFAULT;
pretimeout = val;
return ipmi_set_timeout(IPMI_SET_TIMEOUT_HB_IF_NECESSARY);
case WDIOC_GETPRETIMEOUT:
i = copy_to_user(argp, &pretimeout, sizeof(pretimeout));
if (i)
return -EFAULT;
return 0;
case WDIOC_KEEPALIVE:
return ipmi_heartbeat();
case WDIOC_SETOPTIONS:
i = copy_from_user(&val, argp, sizeof(int));
if (i)
return -EFAULT;
if (val & WDIOS_DISABLECARD) {
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
ipmi_start_timer_on_heartbeat = 0;
}
if (val & WDIOS_ENABLECARD) {
ipmi_watchdog_state = action_val;
ipmi_set_timeout(IPMI_SET_TIMEOUT_FORCE_HB);
}
return 0;
case WDIOC_GETSTATUS:
val = 0;
i = copy_to_user(argp, &val, sizeof(val));
if (i)
return -EFAULT;
return 0;
default:
return -ENOIOCTLCMD;
}
}
static long ipmi_unlocked_ioctl(struct file *file,
unsigned int cmd,
unsigned long arg)
{
int ret;
mutex_lock(&ipmi_watchdog_mutex);
ret = ipmi_ioctl(file, cmd, arg);
mutex_unlock(&ipmi_watchdog_mutex);
return ret;
}
static ssize_t ipmi_write(struct file *file,
const char __user *buf,
size_t len,
loff_t *ppos)
{
int rv;
if (len) {
if (!nowayout) {
size_t i;
/* In case it was set long ago */
expect_close = 0;
for (i = 0; i != len; i++) {
char c;
if (get_user(c, buf + i))
return -EFAULT;
if (c == 'V')
expect_close = 42;
}
}
rv = ipmi_heartbeat();
if (rv)
return rv;
}
return len;
}
static ssize_t ipmi_read(struct file *file,
char __user *buf,
size_t count,
loff_t *ppos)
{
int rv = 0;
wait_queue_t wait;
if (count <= 0)
return 0;
/*
* Reading returns if the pretimeout has gone off, and it only does
* it once per pretimeout.
*/
spin_lock(&ipmi_read_lock);
if (!data_to_read) {
if (file->f_flags & O_NONBLOCK) {
rv = -EAGAIN;
goto out;
}
init_waitqueue_entry(&wait, current);
add_wait_queue(&read_q, &wait);
while (!data_to_read) {
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock(&ipmi_read_lock);
schedule();
spin_lock(&ipmi_read_lock);
}
remove_wait_queue(&read_q, &wait);
if (signal_pending(current)) {
rv = -ERESTARTSYS;
goto out;
}
}
data_to_read = 0;
out:
spin_unlock(&ipmi_read_lock);
if (rv == 0) {
if (copy_to_user(buf, &data_to_read, 1))
rv = -EFAULT;
else
rv = 1;
}
return rv;
}
static int ipmi_open(struct inode *ino, struct file *filep)
{
switch (iminor(ino)) {
case WATCHDOG_MINOR:
if (test_and_set_bit(0, &ipmi_wdog_open))
return -EBUSY;
/*
* Don't start the timer now, let it start on the
* first heartbeat.
*/
ipmi_start_timer_on_heartbeat = 1;
return nonseekable_open(ino, filep);
default:
return (-ENODEV);
}
}
static unsigned int ipmi_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &read_q, wait);
spin_lock(&ipmi_read_lock);
if (data_to_read)
mask |= (POLLIN | POLLRDNORM);
spin_unlock(&ipmi_read_lock);
return mask;
}
static int ipmi_fasync(int fd, struct file *file, int on)
{
int result;
result = fasync_helper(fd, file, on, &fasync_q);
return (result);
}
static int ipmi_close(struct inode *ino, struct file *filep)
{
if (iminor(ino) == WATCHDOG_MINOR) {
if (expect_close == 42) {
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
} else {
printk(KERN_CRIT PFX
"Unexpected close, not stopping watchdog!\n");
ipmi_heartbeat();
}
clear_bit(0, &ipmi_wdog_open);
}
expect_close = 0;
return 0;
}
static const struct file_operations ipmi_wdog_fops = {
.owner = THIS_MODULE,
.read = ipmi_read,
.poll = ipmi_poll,
.write = ipmi_write,
.unlocked_ioctl = ipmi_unlocked_ioctl,
.open = ipmi_open,
.release = ipmi_close,
.fasync = ipmi_fasync,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = no_llseek,
};
static struct miscdevice ipmi_wdog_miscdev = {
.minor = WATCHDOG_MINOR,
.name = "watchdog",
.fops = &ipmi_wdog_fops
};
static void ipmi_wdog_msg_handler(struct ipmi_recv_msg *msg,
void *handler_data)
{
if (msg->msg.cmd == IPMI_WDOG_RESET_TIMER &&
msg->msg.data[0] == IPMI_WDOG_TIMER_NOT_INIT_RESP)
printk(KERN_INFO PFX "response: The IPMI controller appears"
" to have been reset, will attempt to reinitialize"
" the watchdog timer\n");
else if (msg->msg.data[0] != 0)
printk(KERN_ERR PFX "response: Error %x on cmd %x\n",
msg->msg.data[0],
msg->msg.cmd);
ipmi_free_recv_msg(msg);
}
static void ipmi_wdog_pretimeout_handler(void *handler_data)
{
if (preaction_val != WDOG_PRETIMEOUT_NONE) {
if (preop_val == WDOG_PREOP_PANIC) {
if (atomic_inc_and_test(&preop_panic_excl))
panic("Watchdog pre-timeout");
} else if (preop_val == WDOG_PREOP_GIVE_DATA) {
spin_lock(&ipmi_read_lock);
data_to_read = 1;
wake_up_interruptible(&read_q);
kill_fasync(&fasync_q, SIGIO, POLL_IN);
spin_unlock(&ipmi_read_lock);
}
}
/*
* On some machines, the heartbeat will give an error and not
* work unless we re-enable the timer. So do so.
*/
pretimeout_since_last_heartbeat = 1;
}
static const struct ipmi_user_hndl ipmi_hndlrs = {
.ipmi_recv_hndl = ipmi_wdog_msg_handler,
.ipmi_watchdog_pretimeout = ipmi_wdog_pretimeout_handler
};
static void ipmi_register_watchdog(int ipmi_intf)
{
int rv = -EBUSY;
if (watchdog_user)
goto out;
if ((ifnum_to_use >= 0) && (ifnum_to_use != ipmi_intf))
goto out;
watchdog_ifnum = ipmi_intf;
rv = ipmi_create_user(ipmi_intf, &ipmi_hndlrs, NULL, &watchdog_user);
if (rv < 0) {
printk(KERN_CRIT PFX "Unable to register with ipmi\n");
goto out;
}
ipmi_get_version(watchdog_user,
&ipmi_version_major,
&ipmi_version_minor);
rv = misc_register(&ipmi_wdog_miscdev);
if (rv < 0) {
ipmi_destroy_user(watchdog_user);
watchdog_user = NULL;
printk(KERN_CRIT PFX "Unable to register misc device\n");
}
#ifdef HAVE_DIE_NMI
if (nmi_handler_registered) {
int old_pretimeout = pretimeout;
int old_timeout = timeout;
int old_preop_val = preop_val;
/*
* Set the pretimeout to go off in a second and give
* ourselves plenty of time to stop the timer.
*/
ipmi_watchdog_state = WDOG_TIMEOUT_RESET;
preop_val = WDOG_PREOP_NONE; /* Make sure nothing happens */
pretimeout = 99;
timeout = 100;
testing_nmi = 1;
rv = ipmi_set_timeout(IPMI_SET_TIMEOUT_FORCE_HB);
if (rv) {
printk(KERN_WARNING PFX "Error starting timer to"
" test NMI: 0x%x. The NMI pretimeout will"
" likely not work\n", rv);
rv = 0;
goto out_restore;
}
msleep(1500);
if (testing_nmi != 2) {
printk(KERN_WARNING PFX "IPMI NMI didn't seem to"
" occur. The NMI pretimeout will"
" likely not work\n");
}
out_restore:
testing_nmi = 0;
preop_val = old_preop_val;
pretimeout = old_pretimeout;
timeout = old_timeout;
}
#endif
out:
if ((start_now) && (rv == 0)) {
/* Run from startup, so start the timer now. */
start_now = 0; /* Disable this function after first startup. */
ipmi_watchdog_state = action_val;
ipmi_set_timeout(IPMI_SET_TIMEOUT_FORCE_HB);
printk(KERN_INFO PFX "Starting now!\n");
} else {
/* Stop the timer now. */
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
}
}
static void ipmi_unregister_watchdog(int ipmi_intf)
{
int rv;
if (!watchdog_user)
goto out;
if (watchdog_ifnum != ipmi_intf)
goto out;
/* Make sure no one can call us any more. */
misc_deregister(&ipmi_wdog_miscdev);
/*
* Wait to make sure the message makes it out. The lower layer has
* pointers to our buffers, we want to make sure they are done before
* we release our memory.
*/
while (atomic_read(&set_timeout_tofree))
schedule_timeout_uninterruptible(1);
/* Disconnect from IPMI. */
rv = ipmi_destroy_user(watchdog_user);
if (rv) {
printk(KERN_WARNING PFX "error unlinking from IPMI: %d\n",
rv);
}
watchdog_user = NULL;
out:
return;
}
#ifdef HAVE_DIE_NMI
static int
ipmi_nmi(unsigned int val, struct pt_regs *regs)
{
/*
* If we get here, it's an NMI that's not a memory or I/O
* error. We can't truly tell if it's from IPMI or not
* without sending a message, and sending a message is almost
* impossible because of locking.
*/
if (testing_nmi) {
testing_nmi = 2;
return NMI_HANDLED;
}
/* If we are not expecting a timeout, ignore it. */
if (ipmi_watchdog_state == WDOG_TIMEOUT_NONE)
return NMI_DONE;
if (preaction_val != WDOG_PRETIMEOUT_NMI)
return NMI_DONE;
/*
* If no one else handled the NMI, we assume it was the IPMI
* watchdog.
*/
if (preop_val == WDOG_PREOP_PANIC) {
/* On some machines, the heartbeat will give
an error and not work unless we re-enable
the timer. So do so. */
pretimeout_since_last_heartbeat = 1;
if (atomic_inc_and_test(&preop_panic_excl))
nmi_panic(regs, PFX "pre-timeout");
}
return NMI_HANDLED;
}
#endif
static int wdog_reboot_handler(struct notifier_block *this,
unsigned long code,
void *unused)
{
static int reboot_event_handled;
if ((watchdog_user) && (!reboot_event_handled)) {
/* Make sure we only do this once. */
reboot_event_handled = 1;
if (code == SYS_POWER_OFF || code == SYS_HALT) {
/* Disable the WDT if we are shutting down. */
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
} else if (ipmi_watchdog_state != WDOG_TIMEOUT_NONE) {
/* Set a long timer to let the reboot happens, but
reboot if it hangs, but only if the watchdog
timer was already running. */
timeout = 120;
pretimeout = 0;
ipmi_watchdog_state = WDOG_TIMEOUT_RESET;
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
}
}
return NOTIFY_OK;
}
static struct notifier_block wdog_reboot_notifier = {
.notifier_call = wdog_reboot_handler,
.next = NULL,
.priority = 0
};
static int wdog_panic_handler(struct notifier_block *this,
unsigned long event,
void *unused)
{
static int panic_event_handled;
/* On a panic, if we have a panic timeout, make sure to extend
the watchdog timer to a reasonable value to complete the
panic, if the watchdog timer is running. Plus the
pretimeout is meaningless at panic time. */
if (watchdog_user && !panic_event_handled &&
ipmi_watchdog_state != WDOG_TIMEOUT_NONE) {
/* Make sure we do this only once. */
panic_event_handled = 1;
timeout = panic_wdt_timeout;
pretimeout = 0;
panic_halt_ipmi_set_timeout();
}
return NOTIFY_OK;
}
static struct notifier_block wdog_panic_notifier = {
.notifier_call = wdog_panic_handler,
.next = NULL,
.priority = 150 /* priority: INT_MAX >= x >= 0 */
};
static void ipmi_new_smi(int if_num, struct device *device)
{
ipmi_register_watchdog(if_num);
}
static void ipmi_smi_gone(int if_num)
{
ipmi_unregister_watchdog(if_num);
}
static struct ipmi_smi_watcher smi_watcher = {
.owner = THIS_MODULE,
.new_smi = ipmi_new_smi,
.smi_gone = ipmi_smi_gone
};
static int action_op(const char *inval, char *outval)
{
if (outval)
strcpy(outval, action);
if (!inval)
return 0;
if (strcmp(inval, "reset") == 0)
action_val = WDOG_TIMEOUT_RESET;
else if (strcmp(inval, "none") == 0)
action_val = WDOG_TIMEOUT_NONE;
else if (strcmp(inval, "power_cycle") == 0)
action_val = WDOG_TIMEOUT_POWER_CYCLE;
else if (strcmp(inval, "power_off") == 0)
action_val = WDOG_TIMEOUT_POWER_DOWN;
else
return -EINVAL;
strcpy(action, inval);
return 0;
}
static int preaction_op(const char *inval, char *outval)
{
if (outval)
strcpy(outval, preaction);
if (!inval)
return 0;
if (strcmp(inval, "pre_none") == 0)
preaction_val = WDOG_PRETIMEOUT_NONE;
else if (strcmp(inval, "pre_smi") == 0)
preaction_val = WDOG_PRETIMEOUT_SMI;
#ifdef HAVE_DIE_NMI
else if (strcmp(inval, "pre_nmi") == 0)
preaction_val = WDOG_PRETIMEOUT_NMI;
#endif
else if (strcmp(inval, "pre_int") == 0)
preaction_val = WDOG_PRETIMEOUT_MSG_INT;
else
return -EINVAL;
strcpy(preaction, inval);
return 0;
}
static int preop_op(const char *inval, char *outval)
{
if (outval)
strcpy(outval, preop);
if (!inval)
return 0;
if (strcmp(inval, "preop_none") == 0)
preop_val = WDOG_PREOP_NONE;
else if (strcmp(inval, "preop_panic") == 0)
preop_val = WDOG_PREOP_PANIC;
else if (strcmp(inval, "preop_give_data") == 0)
preop_val = WDOG_PREOP_GIVE_DATA;
else
return -EINVAL;
strcpy(preop, inval);
return 0;
}
static void check_parms(void)
{
#ifdef HAVE_DIE_NMI
int do_nmi = 0;
int rv;
if (preaction_val == WDOG_PRETIMEOUT_NMI) {
do_nmi = 1;
if (preop_val == WDOG_PREOP_GIVE_DATA) {
printk(KERN_WARNING PFX "Pretimeout op is to give data"
" but NMI pretimeout is enabled, setting"
" pretimeout op to none\n");
preop_op("preop_none", NULL);
do_nmi = 0;
}
}
if (do_nmi && !nmi_handler_registered) {
rv = register_nmi_handler(NMI_UNKNOWN, ipmi_nmi, 0,
"ipmi");
if (rv) {
printk(KERN_WARNING PFX
"Can't register nmi handler\n");
return;
} else
nmi_handler_registered = 1;
} else if (!do_nmi && nmi_handler_registered) {
unregister_nmi_handler(NMI_UNKNOWN, "ipmi");
nmi_handler_registered = 0;
}
#endif
}
static int __init ipmi_wdog_init(void)
{
int rv;
if (action_op(action, NULL)) {
action_op("reset", NULL);
printk(KERN_INFO PFX "Unknown action '%s', defaulting to"
" reset\n", action);
}
if (preaction_op(preaction, NULL)) {
preaction_op("pre_none", NULL);
printk(KERN_INFO PFX "Unknown preaction '%s', defaulting to"
" none\n", preaction);
}
if (preop_op(preop, NULL)) {
preop_op("preop_none", NULL);
printk(KERN_INFO PFX "Unknown preop '%s', defaulting to"
" none\n", preop);
}
check_parms();
register_reboot_notifier(&wdog_reboot_notifier);
atomic_notifier_chain_register(&panic_notifier_list,
&wdog_panic_notifier);
rv = ipmi_smi_watcher_register(&smi_watcher);
if (rv) {
#ifdef HAVE_DIE_NMI
if (nmi_handler_registered)
unregister_nmi_handler(NMI_UNKNOWN, "ipmi");
#endif
atomic_notifier_chain_unregister(&panic_notifier_list,
&wdog_panic_notifier);
unregister_reboot_notifier(&wdog_reboot_notifier);
printk(KERN_WARNING PFX "can't register smi watcher\n");
return rv;
}
printk(KERN_INFO PFX "driver initialized\n");
return 0;
}
static void __exit ipmi_wdog_exit(void)
{
ipmi_smi_watcher_unregister(&smi_watcher);
ipmi_unregister_watchdog(watchdog_ifnum);
#ifdef HAVE_DIE_NMI
if (nmi_handler_registered)
unregister_nmi_handler(NMI_UNKNOWN, "ipmi");
#endif
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 02:16:30 -07:00
atomic_notifier_chain_unregister(&panic_notifier_list,
&wdog_panic_notifier);
unregister_reboot_notifier(&wdog_reboot_notifier);
}
module_exit(ipmi_wdog_exit);
module_init(ipmi_wdog_init);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("watchdog timer based upon the IPMI interface.");