remarkable-linux/arch/um/include/shared/registers.h

25 lines
861 B
C
Raw Normal View History

/*
* Copyright (C) 2004 PathScale, Inc
* Licensed under the GPL
*/
#ifndef __REGISTERS_H
#define __REGISTERS_H
#include <sysdep/ptrace.h>
#include <sysdep/archsetjmp.h>
extern int save_fp_registers(int pid, unsigned long *fp_regs);
extern int restore_fp_registers(int pid, unsigned long *fp_regs);
extern int save_fpx_registers(int pid, unsigned long *fp_regs);
extern int restore_fpx_registers(int pid, unsigned long *fp_regs);
uml: kill processes instead of panicing kernel UML was panicing in the case of failures of libc calls which shouldn't happen. This is an overreaction since a failure from libc doesn't normally mean that kernel data structures are in an unknown state. Instead, the current process should just be killed if there is no way to recover. The case that prompted this was a failure of PTRACE_SETREGS restoring the same state that was read by PTRACE_GETREGS. It appears that when a process tries to load a bogus value into a segment register, it segfaults (as expected) and the value is actually loaded and is seen by PTRACE_GETREGS (not expected). This case is fixed by forcing a fatal SIGSEGV on the process so that it immediately dies. fatal_sigsegv was added for this purpose. It was declared as noreturn, so in order to pursuade gcc that it actually does not return, I added a call to os_dump_core (and declared it noreturn) so that I get a core file if somehow the process survives. All other calls in arch/um/os-Linux/skas/process.c got the same treatment, with failures causing the process to die instead of a kernel panic, with some exceptions. userspace_tramp exits with status 1 if anything goes wrong there. That will cause start_userspace to return an error. copy_context_skas0 and map_stub_pages also now return errors instead of panicing. Callers of thes functions were changed to check for errors and do something appropriate. Usually that's to return an error to their callers. check_skas3_ptrace_faultinfo just exits since that's too early to do anything else. save_registers, restore_registers, and init_registers now return status instead of panicing on failure, with their callers doing something appropriate. There were also duplicate declarations of save_registers and restore_registers in os.h - these are gone. I noticed and fixed up some whitespace damage. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-04 23:30:58 -07:00
extern int save_registers(int pid, struct uml_pt_regs *regs);
extern int restore_registers(int pid, struct uml_pt_regs *regs);
extern int init_registers(int pid);
extern void get_safe_registers(unsigned long *regs, unsigned long *fp_regs);
extern unsigned long get_thread_reg(int reg, jmp_buf *buf);
uml: fix FP register corruption Commit ee3d9bd4de1ed93d2a7ee41c331ed30a1c7b8acd ("uml: simplify SIGSEGV handling"), while greatly simplifying the kernel SIGSEGV handler that runs in the process address space, introduced a bug which corrupts FP state in the process. Previously, the SIGSEGV handler called the sigreturn system call by hand - it couldn't return through the restorer provided to it because that could try to call the libc restorer which likely wouldn't exist in the process address space. So, it blocked off some signals, including SIGUSR1, on entry to the SIGSEGV handler, queued a SIGUSR1 to itself, and invoked sigreturn. The SIGUSR1 was delivered, and was visible to the UML kernel after sigreturn finished. The commit eliminated the signal masking and the call to sigreturn. The handler simply hits itself with a SIGTRAP to let the UML kernel know that it is finished. UML then restores the process registers, which effectively longjmps the process out of the signal handler, skipping sigreturn's restoring of register state and the signal mask. The bug is that the host apparently sets used_fp to 0 when it saves the process FP state in the sigcontext on the process signal stack. Thus, when the process is longjmped out of the handler, its FP state is corrupt because it wasn't saved on the context switch to the UML kernel. This manifested itself as sleep hanging. For some reason, sleep uses floating point in order to calculate the sleep interval. When a page fault corrupts its FP state, it is faked into essentially sleeping forever. This patch saves the FP state before entering the SIGSEGV handler and restores it afterwards. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 16:23:49 -07:00
extern int get_fp_registers(int pid, unsigned long *regs);
extern int put_fp_registers(int pid, unsigned long *regs);
#endif