1
0
Fork 0
remarkable-linux/drivers/ata/sata_vsc.c

444 lines
12 KiB
C
Raw Normal View History

/*
* sata_vsc.c - Vitesse VSC7174 4 port DPA SATA
*
* Maintained by: Jeremy Higdon @ SGI
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2004 SGI
*
* Bits from Jeff Garzik, Copyright RedHat, Inc.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/driver-api/libata.rst
*
* Vitesse hardware documentation presumably available under NDA.
* Intel 31244 (same hardware interface) documentation presumably
* available from http://developer.intel.com/
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "sata_vsc"
#define DRV_VERSION "2.3"
enum {
VSC_MMIO_BAR = 0,
/* Interrupt register offsets (from chip base address) */
VSC_SATA_INT_STAT_OFFSET = 0x00,
VSC_SATA_INT_MASK_OFFSET = 0x04,
/* Taskfile registers offsets */
VSC_SATA_TF_CMD_OFFSET = 0x00,
VSC_SATA_TF_DATA_OFFSET = 0x00,
VSC_SATA_TF_ERROR_OFFSET = 0x04,
VSC_SATA_TF_FEATURE_OFFSET = 0x06,
VSC_SATA_TF_NSECT_OFFSET = 0x08,
VSC_SATA_TF_LBAL_OFFSET = 0x0c,
VSC_SATA_TF_LBAM_OFFSET = 0x10,
VSC_SATA_TF_LBAH_OFFSET = 0x14,
VSC_SATA_TF_DEVICE_OFFSET = 0x18,
VSC_SATA_TF_STATUS_OFFSET = 0x1c,
VSC_SATA_TF_COMMAND_OFFSET = 0x1d,
VSC_SATA_TF_ALTSTATUS_OFFSET = 0x28,
VSC_SATA_TF_CTL_OFFSET = 0x29,
/* DMA base */
VSC_SATA_UP_DESCRIPTOR_OFFSET = 0x64,
VSC_SATA_UP_DATA_BUFFER_OFFSET = 0x6C,
VSC_SATA_DMA_CMD_OFFSET = 0x70,
/* SCRs base */
VSC_SATA_SCR_STATUS_OFFSET = 0x100,
VSC_SATA_SCR_ERROR_OFFSET = 0x104,
VSC_SATA_SCR_CONTROL_OFFSET = 0x108,
/* Port stride */
VSC_SATA_PORT_OFFSET = 0x200,
/* Error interrupt status bit offsets */
VSC_SATA_INT_ERROR_CRC = 0x40,
VSC_SATA_INT_ERROR_T = 0x20,
VSC_SATA_INT_ERROR_P = 0x10,
VSC_SATA_INT_ERROR_R = 0x8,
VSC_SATA_INT_ERROR_E = 0x4,
VSC_SATA_INT_ERROR_M = 0x2,
VSC_SATA_INT_PHY_CHANGE = 0x1,
VSC_SATA_INT_ERROR = (VSC_SATA_INT_ERROR_CRC | VSC_SATA_INT_ERROR_T | \
VSC_SATA_INT_ERROR_P | VSC_SATA_INT_ERROR_R | \
VSC_SATA_INT_ERROR_E | VSC_SATA_INT_ERROR_M | \
VSC_SATA_INT_PHY_CHANGE),
};
static int vsc_sata_scr_read(struct ata_link *link,
unsigned int sc_reg, u32 *val)
{
if (sc_reg > SCR_CONTROL)
return -EINVAL;
*val = readl(link->ap->ioaddr.scr_addr + (sc_reg * 4));
return 0;
}
static int vsc_sata_scr_write(struct ata_link *link,
unsigned int sc_reg, u32 val)
{
if (sc_reg > SCR_CONTROL)
return -EINVAL;
writel(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
return 0;
}
static void vsc_freeze(struct ata_port *ap)
{
void __iomem *mask_addr;
mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
VSC_SATA_INT_MASK_OFFSET + ap->port_no;
writeb(0, mask_addr);
}
static void vsc_thaw(struct ata_port *ap)
{
void __iomem *mask_addr;
mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
VSC_SATA_INT_MASK_OFFSET + ap->port_no;
writeb(0xff, mask_addr);
}
static void vsc_intr_mask_update(struct ata_port *ap, u8 ctl)
{
void __iomem *mask_addr;
u8 mask;
mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
VSC_SATA_INT_MASK_OFFSET + ap->port_no;
mask = readb(mask_addr);
if (ctl & ATA_NIEN)
mask |= 0x80;
else
mask &= 0x7F;
writeb(mask, mask_addr);
}
static void vsc_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
/*
* The only thing the ctl register is used for is SRST.
* That is not enabled or disabled via tf_load.
* However, if ATA_NIEN is changed, then we need to change
* the interrupt register.
*/
if ((tf->ctl & ATA_NIEN) != (ap->last_ctl & ATA_NIEN)) {
ap->last_ctl = tf->ctl;
vsc_intr_mask_update(ap, tf->ctl & ATA_NIEN);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
writew(tf->feature | (((u16)tf->hob_feature) << 8),
ioaddr->feature_addr);
writew(tf->nsect | (((u16)tf->hob_nsect) << 8),
ioaddr->nsect_addr);
writew(tf->lbal | (((u16)tf->hob_lbal) << 8),
ioaddr->lbal_addr);
writew(tf->lbam | (((u16)tf->hob_lbam) << 8),
ioaddr->lbam_addr);
writew(tf->lbah | (((u16)tf->hob_lbah) << 8),
ioaddr->lbah_addr);
} else if (is_addr) {
writew(tf->feature, ioaddr->feature_addr);
writew(tf->nsect, ioaddr->nsect_addr);
writew(tf->lbal, ioaddr->lbal_addr);
writew(tf->lbam, ioaddr->lbam_addr);
writew(tf->lbah, ioaddr->lbah_addr);
}
if (tf->flags & ATA_TFLAG_DEVICE)
writeb(tf->device, ioaddr->device_addr);
ata_wait_idle(ap);
}
static void vsc_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u16 nsect, lbal, lbam, lbah, feature;
tf->command = ata_sff_check_status(ap);
tf->device = readw(ioaddr->device_addr);
feature = readw(ioaddr->error_addr);
nsect = readw(ioaddr->nsect_addr);
lbal = readw(ioaddr->lbal_addr);
lbam = readw(ioaddr->lbam_addr);
lbah = readw(ioaddr->lbah_addr);
tf->feature = feature;
tf->nsect = nsect;
tf->lbal = lbal;
tf->lbam = lbam;
tf->lbah = lbah;
if (tf->flags & ATA_TFLAG_LBA48) {
tf->hob_feature = feature >> 8;
tf->hob_nsect = nsect >> 8;
tf->hob_lbal = lbal >> 8;
tf->hob_lbam = lbam >> 8;
tf->hob_lbah = lbah >> 8;
}
}
static inline void vsc_error_intr(u8 port_status, struct ata_port *ap)
{
if (port_status & (VSC_SATA_INT_PHY_CHANGE | VSC_SATA_INT_ERROR_M))
ata_port_freeze(ap);
else
ata_port_abort(ap);
}
static void vsc_port_intr(u8 port_status, struct ata_port *ap)
{
struct ata_queued_cmd *qc;
int handled = 0;
if (unlikely(port_status & VSC_SATA_INT_ERROR)) {
vsc_error_intr(port_status, ap);
return;
}
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && likely(!(qc->tf.flags & ATA_TFLAG_POLLING)))
handled = ata_bmdma_port_intr(ap, qc);
/* We received an interrupt during a polled command,
* or some other spurious condition. Interrupt reporting
* with this hardware is fairly reliable so it is safe to
* simply clear the interrupt
*/
if (unlikely(!handled))
ap->ops->sff_check_status(ap);
}
/*
* vsc_sata_interrupt
*
* Read the interrupt register and process for the devices that have
* them pending.
*/
static irqreturn_t vsc_sata_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
unsigned int i;
unsigned int handled = 0;
u32 status;
status = readl(host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_STAT_OFFSET);
if (unlikely(status == 0xffffffff || status == 0)) {
if (status)
dev_err(host->dev,
": IRQ status == 0xffffffff, PCI fault or device removal?\n");
goto out;
}
spin_lock(&host->lock);
for (i = 0; i < host->n_ports; i++) {
u8 port_status = (status >> (8 * i)) & 0xff;
if (port_status) {
vsc_port_intr(port_status, host->ports[i]);
handled++;
}
}
spin_unlock(&host->lock);
out:
return IRQ_RETVAL(handled);
}
static struct scsi_host_template vsc_sata_sht = {
ATA_BMDMA_SHT(DRV_NAME),
};
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-24 21:22:49 -06:00
static struct ata_port_operations vsc_sata_ops = {
.inherits = &ata_bmdma_port_ops,
/* The IRQ handling is not quite standard SFF behaviour so we
cannot use the default lost interrupt handler */
.lost_interrupt = ATA_OP_NULL,
.sff_tf_load = vsc_sata_tf_load,
.sff_tf_read = vsc_sata_tf_read,
.freeze = vsc_freeze,
.thaw = vsc_thaw,
.scr_read = vsc_sata_scr_read,
.scr_write = vsc_sata_scr_write,
};
static void vsc_sata_setup_port(struct ata_ioports *port, void __iomem *base)
{
port->cmd_addr = base + VSC_SATA_TF_CMD_OFFSET;
port->data_addr = base + VSC_SATA_TF_DATA_OFFSET;
port->error_addr = base + VSC_SATA_TF_ERROR_OFFSET;
port->feature_addr = base + VSC_SATA_TF_FEATURE_OFFSET;
port->nsect_addr = base + VSC_SATA_TF_NSECT_OFFSET;
port->lbal_addr = base + VSC_SATA_TF_LBAL_OFFSET;
port->lbam_addr = base + VSC_SATA_TF_LBAM_OFFSET;
port->lbah_addr = base + VSC_SATA_TF_LBAH_OFFSET;
port->device_addr = base + VSC_SATA_TF_DEVICE_OFFSET;
port->status_addr = base + VSC_SATA_TF_STATUS_OFFSET;
port->command_addr = base + VSC_SATA_TF_COMMAND_OFFSET;
port->altstatus_addr = base + VSC_SATA_TF_ALTSTATUS_OFFSET;
port->ctl_addr = base + VSC_SATA_TF_CTL_OFFSET;
port->bmdma_addr = base + VSC_SATA_DMA_CMD_OFFSET;
port->scr_addr = base + VSC_SATA_SCR_STATUS_OFFSET;
writel(0, base + VSC_SATA_UP_DESCRIPTOR_OFFSET);
writel(0, base + VSC_SATA_UP_DATA_BUFFER_OFFSET);
}
static int vsc_sata_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static const struct ata_port_info pi = {
.flags = ATA_FLAG_SATA,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA6,
.port_ops = &vsc_sata_ops,
};
const struct ata_port_info *ppi[] = { &pi, NULL };
struct ata_host *host;
void __iomem *mmio_base;
int i, rc;
u8 cls;
ata_print_version_once(&pdev->dev, DRV_VERSION);
/* allocate host */
host = ata_host_alloc_pinfo(&pdev->dev, ppi, 4);
if (!host)
return -ENOMEM;
rc = pcim_enable_device(pdev);
if (rc)
return rc;
/* check if we have needed resource mapped */
if (pci_resource_len(pdev, 0) == 0)
return -ENODEV;
/* map IO regions and initialize host accordingly */
rc = pcim_iomap_regions(pdev, 1 << VSC_MMIO_BAR, DRV_NAME);
if (rc == -EBUSY)
pcim_pin_device(pdev);
if (rc)
return rc;
host->iomap = pcim_iomap_table(pdev);
mmio_base = host->iomap[VSC_MMIO_BAR];
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
unsigned int offset = (i + 1) * VSC_SATA_PORT_OFFSET;
vsc_sata_setup_port(&ap->ioaddr, mmio_base + offset);
ata_port_pbar_desc(ap, VSC_MMIO_BAR, -1, "mmio");
ata_port_pbar_desc(ap, VSC_MMIO_BAR, offset, "port");
}
/*
* Use 32 bit DMA mask, because 64 bit address support is poor.
*/
rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (rc)
return rc;
rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (rc)
return rc;
/*
* Due to a bug in the chip, the default cache line size can't be
* used (unless the default is non-zero).
*/
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls);
if (cls == 0x00)
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x80);
if (pci_enable_msi(pdev) == 0)
pci_intx(pdev, 0);
/*
* Config offset 0x98 is "Extended Control and Status Register 0"
* Default value is (1 << 28). All bits except bit 28 are reserved in
* DPA mode. If bit 28 is set, LED 0 reflects all ports' activity.
* If bit 28 is clear, each port has its own LED.
*/
pci_write_config_dword(pdev, 0x98, 0);
pci_set_master(pdev);
return ata_host_activate(host, pdev->irq, vsc_sata_interrupt,
IRQF_SHARED, &vsc_sata_sht);
}
static const struct pci_device_id vsc_sata_pci_tbl[] = {
{ PCI_VENDOR_ID_VITESSE, 0x7174,
PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
{ PCI_VENDOR_ID_INTEL, 0x3200,
PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
{ } /* terminate list */
};
static struct pci_driver vsc_sata_pci_driver = {
.name = DRV_NAME,
.id_table = vsc_sata_pci_tbl,
.probe = vsc_sata_init_one,
.remove = ata_pci_remove_one,
};
module_pci_driver(vsc_sata_pci_driver);
MODULE_AUTHOR("Jeremy Higdon");
MODULE_DESCRIPTION("low-level driver for Vitesse VSC7174 SATA controller");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, vsc_sata_pci_tbl);
MODULE_VERSION(DRV_VERSION);