1
0
Fork 0

sched: Handle priority boosted tasks proper in setscheduler()

Ronny reported that the following scenario is not handled correctly:

	T1 (prio = 10)
	   lock(rtmutex);

	T2 (prio = 20)
	   lock(rtmutex)
	      boost T1

	T1 (prio = 20)
	   sys_set_scheduler(prio = 30)
	   T1 prio = 30
	   ....
	   sys_set_scheduler(prio = 10)
	   T1 prio = 30

The last step is wrong as T1 should now be back at prio 20.

Commit c365c292d0 ("sched: Consider pi boosting in setscheduler()")
only handles the case where a boosted tasks tries to lower its
priority.

Fix it by taking the new effective priority into account for the
decision whether a change of the priority is required.

Reported-by: Ronny Meeus <ronny.meeus@gmail.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Fixes: c365c292d0 ("sched: Consider pi boosting in setscheduler()")
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1505051806060.4225@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
wifi-calibration
Thomas Gleixner 2015-05-05 19:49:49 +02:00 committed by Ingo Molnar
parent 3e0283a53f
commit 0782e63bc6
3 changed files with 25 additions and 20 deletions

View File

@ -18,7 +18,7 @@ static inline int rt_task(struct task_struct *p)
#ifdef CONFIG_RT_MUTEXES
extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern int rt_mutex_check_prio(struct task_struct *task, int newprio);
extern int rt_mutex_get_effective_prio(struct task_struct *task, int newprio);
extern struct task_struct *rt_mutex_get_top_task(struct task_struct *task);
extern void rt_mutex_adjust_pi(struct task_struct *p);
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
@ -31,9 +31,10 @@ static inline int rt_mutex_getprio(struct task_struct *p)
return p->normal_prio;
}
static inline int rt_mutex_check_prio(struct task_struct *task, int newprio)
static inline int rt_mutex_get_effective_prio(struct task_struct *task,
int newprio)
{
return 0;
return newprio;
}
static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task)

View File

@ -265,15 +265,17 @@ struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
}
/*
* Called by sched_setscheduler() to check whether the priority change
* is overruled by a possible priority boosting.
* Called by sched_setscheduler() to get the priority which will be
* effective after the change.
*/
int rt_mutex_check_prio(struct task_struct *task, int newprio)
int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
{
if (!task_has_pi_waiters(task))
return 0;
return newprio;
return task_top_pi_waiter(task)->task->prio <= newprio;
if (task_top_pi_waiter(task)->task->prio <= newprio)
return task_top_pi_waiter(task)->task->prio;
return newprio;
}
/*

View File

@ -3300,15 +3300,18 @@ static void __setscheduler_params(struct task_struct *p,
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
const struct sched_attr *attr)
const struct sched_attr *attr, bool keep_boost)
{
__setscheduler_params(p, attr);
/*
* If we get here, there was no pi waiters boosting the
* task. It is safe to use the normal prio.
* Keep a potential priority boosting if called from
* sched_setscheduler().
*/
p->prio = normal_prio(p);
if (keep_boost)
p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
else
p->prio = normal_prio(p);
if (dl_prio(p->prio))
p->sched_class = &dl_sched_class;
@ -3408,7 +3411,7 @@ static int __sched_setscheduler(struct task_struct *p,
int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
MAX_RT_PRIO - 1 - attr->sched_priority;
int retval, oldprio, oldpolicy = -1, queued, running;
int policy = attr->sched_policy;
int new_effective_prio, policy = attr->sched_policy;
unsigned long flags;
const struct sched_class *prev_class;
struct rq *rq;
@ -3590,15 +3593,14 @@ change:
oldprio = p->prio;
/*
* Special case for priority boosted tasks.
*
* If the new priority is lower or equal (user space view)
* than the current (boosted) priority, we just store the new
* Take priority boosted tasks into account. If the new
* effective priority is unchanged, we just store the new
* normal parameters and do not touch the scheduler class and
* the runqueue. This will be done when the task deboost
* itself.
*/
if (rt_mutex_check_prio(p, newprio)) {
new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
if (new_effective_prio == oldprio) {
__setscheduler_params(p, attr);
task_rq_unlock(rq, p, &flags);
return 0;
@ -3612,7 +3614,7 @@ change:
put_prev_task(rq, p);
prev_class = p->sched_class;
__setscheduler(rq, p, attr);
__setscheduler(rq, p, attr, true);
if (running)
p->sched_class->set_curr_task(rq);
@ -7346,7 +7348,7 @@ static void normalize_task(struct rq *rq, struct task_struct *p)
queued = task_on_rq_queued(p);
if (queued)
dequeue_task(rq, p, 0);
__setscheduler(rq, p, &attr);
__setscheduler(rq, p, &attr, false);
if (queued) {
enqueue_task(rq, p, 0);
resched_curr(rq);