1
0
Fork 0

Merge branch 'clockevents/4.12' of https://git.linaro.org/people/daniel.lezcano/linux into timers/core

Pull clockevents updates from Daniel Lezcano

- Provide a framework to handle errata gracefuly for arm_arch_timer (Mark
   Zyngier)

 - Clarify the DT properties for the rockchip timer and add the clocksource as
   an alternative to the bogus architected timer (Alexander Kochetkov)

 - Rename the Gemini timer to Faraday timer fttmr010 and provide a specific
   initialization for Gemini (Linus Walleij)

 - Add missing newlines in the error message in the timers (Rafał Miłecki)

 - Read the clock once and implement the delay timer on Orion (Russell King)
zero-colors
Thomas Gleixner 2017-04-17 10:55:14 +02:00
commit 821596a50a
42 changed files with 893 additions and 420 deletions

View File

@ -54,6 +54,7 @@ stable kernels.
| ARM | Cortex-A57 | #852523 | N/A |
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
| ARM | Cortex-A72 | #853709 | N/A |
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
| ARM | MMU-500 | #841119,#826419 | N/A |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |

View File

@ -1,22 +0,0 @@
Cortina Systems Gemini timer
This timer is embedded in the Cortina Systems Gemini SoCs.
Required properties:
- compatible : Must be "cortina,gemini-timer"
- reg : Should contain registers location and length
- interrupts : Should contain the three timer interrupts with
flags for rising edge
- syscon : a phandle to the global Gemini system controller
Example:
timer@43000000 {
compatible = "cortina,gemini-timer";
reg = <0x43000000 0x1000>;
interrupts = <14 IRQ_TYPE_EDGE_RISING>, /* Timer 1 */
<15 IRQ_TYPE_EDGE_RISING>, /* Timer 2 */
<16 IRQ_TYPE_EDGE_RISING>; /* Timer 3 */
syscon = <&syscon>;
};

View File

@ -0,0 +1,33 @@
Faraday Technology timer
This timer is a generic IP block from Faraday Technology, embedded in the
Cortina Systems Gemini SoCs and other designs.
Required properties:
- compatible : Must be one of
"faraday,fttmr010"
"cortina,gemini-timer"
- reg : Should contain registers location and length
- interrupts : Should contain the three timer interrupts usually with
flags for falling edge
Optionally required properties:
- clocks : a clock to provide the tick rate for "faraday,fttmr010"
- clock-names : should be "EXTCLK" and "PCLK" for the external tick timer
and peripheral clock respectively, for "faraday,fttmr010"
- syscon : a phandle to the global Gemini system controller if the compatible
type is "cortina,gemini-timer"
Example:
timer@43000000 {
compatible = "faraday,fttmr010";
reg = <0x43000000 0x1000>;
interrupts = <14 IRQ_TYPE_EDGE_FALLING>, /* Timer 1 */
<15 IRQ_TYPE_EDGE_FALLING>, /* Timer 2 */
<16 IRQ_TYPE_EDGE_FALLING>; /* Timer 3 */
clocks = <&extclk>, <&pclk>;
clock-names = "EXTCLK", "PCLK";
};

View File

@ -1,9 +1,15 @@
Rockchip rk timer
Required properties:
- compatible: shall be one of:
"rockchip,rk3288-timer" - for rk3066, rk3036, rk3188, rk322x, rk3288, rk3368
"rockchip,rk3399-timer" - for rk3399
- compatible: should be:
"rockchip,rk3036-timer", "rockchip,rk3288-timer": for Rockchip RK3036
"rockchip,rk3066-timer", "rockchip,rk3288-timer": for Rockchip RK3066
"rockchip,rk3188-timer", "rockchip,rk3288-timer": for Rockchip RK3188
"rockchip,rk3228-timer", "rockchip,rk3288-timer": for Rockchip RK3228
"rockchip,rk3229-timer", "rockchip,rk3288-timer": for Rockchip RK3229
"rockchip,rk3288-timer": for Rockchip RK3288
"rockchip,rk3368-timer", "rockchip,rk3288-timer": for Rockchip RK3368
"rockchip,rk3399-timer": for Rockchip RK3399
- reg: base address of the timer register starting with TIMERS CONTROL register
- interrupts: should contain the interrupts for Timer0
- clocks : must contain an entry for each entry in clock-names

View File

@ -106,6 +106,22 @@
};
};
timer3: timer@2000e000 {
compatible = "rockchip,rk3188-timer", "rockchip,rk3288-timer";
reg = <0x2000e000 0x20>;
interrupts = <GIC_SPI 46 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&cru SCLK_TIMER3>, <&cru PCLK_TIMER3>;
clock-names = "timer", "pclk";
};
timer6: timer@200380a0 {
compatible = "rockchip,rk3188-timer", "rockchip,rk3288-timer";
reg = <0x200380a0 0x20>;
interrupts = <GIC_SPI 64 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&cru SCLK_TIMER6>, <&cru PCLK_TIMER0>;
clock-names = "timer", "pclk";
};
i2s0: i2s@1011a000 {
compatible = "rockchip,rk3188-i2s", "rockchip,rk3066-i2s";
reg = <0x1011a000 0x2000>;
@ -530,6 +546,7 @@
&global_timer {
interrupts = <GIC_PPI 11 0xf04>;
status = "disabled";
};
&local_timer {

View File

@ -325,7 +325,7 @@
};
timer: timer@110c0000 {
compatible = "rockchip,rk3288-timer";
compatible = "rockchip,rk3228-timer", "rockchip,rk3288-timer";
reg = <0x110c0000 0x20>;
interrupts = <GIC_SPI 43 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&xin24m>, <&cru PCLK_TIMER>;

View File

@ -25,6 +25,7 @@
#include <linux/bug.h>
#include <linux/init.h>
#include <linux/jump_label.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <clocksource/arm_arch_timer.h>
@ -37,24 +38,44 @@ extern struct static_key_false arch_timer_read_ool_enabled;
#define needs_unstable_timer_counter_workaround() false
#endif
enum arch_timer_erratum_match_type {
ate_match_dt,
ate_match_local_cap_id,
ate_match_acpi_oem_info,
};
struct clock_event_device;
struct arch_timer_erratum_workaround {
const char *id; /* Indicate the Erratum ID */
enum arch_timer_erratum_match_type match_type;
const void *id;
const char *desc;
u32 (*read_cntp_tval_el0)(void);
u32 (*read_cntv_tval_el0)(void);
u64 (*read_cntvct_el0)(void);
int (*set_next_event_phys)(unsigned long, struct clock_event_device *);
int (*set_next_event_virt)(unsigned long, struct clock_event_device *);
};
extern const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround;
DECLARE_PER_CPU(const struct arch_timer_erratum_workaround *,
timer_unstable_counter_workaround);
#define arch_timer_reg_read_stable(reg) \
({ \
u64 _val; \
if (needs_unstable_timer_counter_workaround()) \
_val = timer_unstable_counter_workaround->read_##reg();\
else \
_val = read_sysreg(reg); \
_val; \
#define arch_timer_reg_read_stable(reg) \
({ \
u64 _val; \
if (needs_unstable_timer_counter_workaround()) { \
const struct arch_timer_erratum_workaround *wa; \
preempt_disable(); \
wa = __this_cpu_read(timer_unstable_counter_workaround); \
if (wa && wa->read_##reg) \
_val = wa->read_##reg(); \
else \
_val = read_sysreg(reg); \
preempt_enable(); \
} else { \
_val = read_sysreg(reg); \
} \
_val; \
})
/*

View File

@ -37,7 +37,8 @@
#define ARM64_HAS_NO_FPSIMD 16
#define ARM64_WORKAROUND_REPEAT_TLBI 17
#define ARM64_WORKAROUND_QCOM_FALKOR_E1003 18
#define ARM64_WORKAROUND_858921 19
#define ARM64_NCAPS 19
#define ARM64_NCAPS 20
#endif /* __ASM_CPUCAPS_H */

View File

@ -80,6 +80,7 @@
#define ARM_CPU_PART_FOUNDATION 0xD00
#define ARM_CPU_PART_CORTEX_A57 0xD07
#define ARM_CPU_PART_CORTEX_A53 0xD03
#define ARM_CPU_PART_CORTEX_A73 0xD09
#define APM_CPU_PART_POTENZA 0x000
@ -92,6 +93,7 @@
#define MIDR_CORTEX_A53 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A53)
#define MIDR_CORTEX_A57 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A57)
#define MIDR_CORTEX_A73 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A73)
#define MIDR_THUNDERX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX)
#define MIDR_THUNDERX_81XX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX_81XX)
#define MIDR_QCOM_FALKOR_V1 MIDR_CPU_MODEL(ARM_CPU_IMP_QCOM, QCOM_CPU_PART_FALKOR_V1)

View File

@ -175,6 +175,8 @@
#define ESR_ELx_SYS64_ISS_SYS_CTR_READ (ESR_ELx_SYS64_ISS_SYS_CTR | \
ESR_ELx_SYS64_ISS_DIR_READ)
#define ESR_ELx_SYS64_ISS_SYS_CNTVCT (ESR_ELx_SYS64_ISS_SYS_VAL(3, 3, 2, 14, 0) | \
ESR_ELx_SYS64_ISS_DIR_READ)
#ifndef __ASSEMBLY__
#include <asm/types.h>

View File

@ -53,6 +53,13 @@ static int cpu_enable_trap_ctr_access(void *__unused)
.midr_range_min = min, \
.midr_range_max = max
#define MIDR_ALL_VERSIONS(model) \
.def_scope = SCOPE_LOCAL_CPU, \
.matches = is_affected_midr_range, \
.midr_model = model, \
.midr_range_min = 0, \
.midr_range_max = (MIDR_VARIANT_MASK | MIDR_REVISION_MASK)
const struct arm64_cpu_capabilities arm64_errata[] = {
#if defined(CONFIG_ARM64_ERRATUM_826319) || \
defined(CONFIG_ARM64_ERRATUM_827319) || \
@ -150,6 +157,14 @@ const struct arm64_cpu_capabilities arm64_errata[] = {
MIDR_CPU_VAR_REV(0, 0),
MIDR_CPU_VAR_REV(0, 0)),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
{
/* Cortex-A73 all versions */
.desc = "ARM erratum 858921",
.capability = ARM64_WORKAROUND_858921,
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
},
#endif
{
}

View File

@ -1090,20 +1090,29 @@ static void __init setup_feature_capabilities(void)
* Check if the current CPU has a given feature capability.
* Should be called from non-preemptible context.
*/
bool this_cpu_has_cap(unsigned int cap)
static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
unsigned int cap)
{
const struct arm64_cpu_capabilities *caps;
if (WARN_ON(preemptible()))
return false;
for (caps = arm64_features; caps->desc; caps++)
for (caps = cap_array; caps->desc; caps++)
if (caps->capability == cap && caps->matches)
return caps->matches(caps, SCOPE_LOCAL_CPU);
return false;
}
extern const struct arm64_cpu_capabilities arm64_errata[];
bool this_cpu_has_cap(unsigned int cap)
{
return (__this_cpu_has_cap(arm64_features, cap) ||
__this_cpu_has_cap(arm64_errata, cap));
}
void __init setup_cpu_features(void)
{
u32 cwg;

View File

@ -505,6 +505,14 @@ static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
regs->pc += 4;
}
static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
pt_regs_write_reg(regs, rt, arch_counter_get_cntvct());
regs->pc += 4;
}
struct sys64_hook {
unsigned int esr_mask;
unsigned int esr_val;
@ -523,6 +531,12 @@ static struct sys64_hook sys64_hooks[] = {
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
.handler = ctr_read_handler,
},
{
/* Trap read access to CNTVCT_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
.handler = cntvct_read_handler,
},
{},
};

View File

@ -67,20 +67,22 @@ config DW_APB_TIMER_OF
select DW_APB_TIMER
select CLKSRC_OF
config GEMINI_TIMER
bool "Cortina Gemini timer driver" if COMPILE_TEST
config FTTMR010_TIMER
bool "Faraday Technology timer driver" if COMPILE_TEST
depends on GENERIC_CLOCKEVENTS
depends on HAS_IOMEM
select CLKSRC_MMIO
select CLKSRC_OF
select MFD_SYSCON
help
Enables support for the Gemini timer
Enables support for the Faraday Technology timer block
FTTMR010.
config ROCKCHIP_TIMER
bool "Rockchip timer driver" if COMPILE_TEST
depends on ARM || ARM64
select CLKSRC_OF
select CLKSRC_MMIO
help
Enables the support for the rockchip timer driver.
@ -366,6 +368,17 @@ config HISILICON_ERRATUM_161010101
161010101. The workaround will be active if the hisilicon,erratum-161010101
property is found in the timer node.
config ARM64_ERRATUM_858921
bool "Workaround for Cortex-A73 erratum 858921"
default y
select ARM_ARCH_TIMER_OOL_WORKAROUND
depends on ARM_ARCH_TIMER && ARM64
help
This option enables a workaround applicable to Cortex-A73
(all versions), whose counter may return incorrect values.
The workaround will be dynamically enabled when an affected
core is detected.
config ARM_GLOBAL_TIMER
bool "Support for the ARM global timer" if COMPILE_TEST
select CLKSRC_OF if OF

View File

@ -17,7 +17,7 @@ obj-$(CONFIG_CLKSRC_MMIO) += mmio.o
obj-$(CONFIG_DIGICOLOR_TIMER) += timer-digicolor.o
obj-$(CONFIG_DW_APB_TIMER) += dw_apb_timer.o
obj-$(CONFIG_DW_APB_TIMER_OF) += dw_apb_timer_of.o
obj-$(CONFIG_GEMINI_TIMER) += timer-gemini.o
obj-$(CONFIG_FTTMR010_TIMER) += timer-fttmr010.o
obj-$(CONFIG_ROCKCHIP_TIMER) += rockchip_timer.o
obj-$(CONFIG_CLKSRC_NOMADIK_MTU) += nomadik-mtu.o
obj-$(CONFIG_CLKSRC_DBX500_PRCMU) += clksrc-dbx500-prcmu.o

View File

@ -37,7 +37,7 @@ static int noinline arc_get_timer_clk(struct device_node *node)
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_err("timer missing clk");
pr_err("timer missing clk\n");
return PTR_ERR(clk);
}
@ -89,7 +89,7 @@ static int __init arc_cs_setup_gfrc(struct device_node *node)
READ_BCR(ARC_REG_MCIP_BCR, mp);
if (!mp.gfrc) {
pr_warn("Global-64-bit-Ctr clocksource not detected");
pr_warn("Global-64-bit-Ctr clocksource not detected\n");
return -ENXIO;
}
@ -140,13 +140,13 @@ static int __init arc_cs_setup_rtc(struct device_node *node)
READ_BCR(ARC_REG_TIMERS_BCR, timer);
if (!timer.rtc) {
pr_warn("Local-64-bit-Ctr clocksource not detected");
pr_warn("Local-64-bit-Ctr clocksource not detected\n");
return -ENXIO;
}
/* Local to CPU hence not usable in SMP */
if (IS_ENABLED(CONFIG_SMP)) {
pr_warn("Local-64-bit-Ctr not usable in SMP");
pr_warn("Local-64-bit-Ctr not usable in SMP\n");
return -EINVAL;
}
@ -290,13 +290,13 @@ static int __init arc_clockevent_setup(struct device_node *node)
arc_timer_irq = irq_of_parse_and_map(node, 0);
if (arc_timer_irq <= 0) {
pr_err("clockevent: missing irq");
pr_err("clockevent: missing irq\n");
return -EINVAL;
}
ret = arc_get_timer_clk(node);
if (ret) {
pr_err("clockevent: missing clk");
pr_err("clockevent: missing clk\n");
return ret;
}
@ -313,7 +313,7 @@ static int __init arc_clockevent_setup(struct device_node *node)
arc_timer_starting_cpu,
arc_timer_dying_cpu);
if (ret) {
pr_err("Failed to setup hotplug state");
pr_err("Failed to setup hotplug state\n");
return ret;
}
return 0;

View File

@ -83,6 +83,7 @@ static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
static bool arch_timer_c3stop;
static bool arch_timer_mem_use_virtual;
static bool arch_counter_suspend_stop;
static bool vdso_default = true;
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
@ -96,6 +97,105 @@ early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
* Architected system timer support.
*/
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
struct clock_event_device *clk)
{
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTV_TVAL);
break;
}
} else {
arch_timer_reg_write_cp15(access, reg, val);
}
}
static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
struct clock_event_device *clk)
{
u32 val;
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTV_TVAL);
break;
}
} else {
val = arch_timer_reg_read_cp15(access, reg);
}
return val;
}
/*
* Default to cp15 based access because arm64 uses this function for
* sched_clock() before DT is probed and the cp15 method is guaranteed
* to exist on arm64. arm doesn't use this before DT is probed so even
* if we don't have the cp15 accessors we won't have a problem.
*/
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
static u64 arch_counter_read(struct clocksource *cs)
{
return arch_timer_read_counter();
}
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
return arch_timer_read_counter();
}
static struct clocksource clocksource_counter = {
.name = "arch_sys_counter",
.rating = 400,
.read = arch_counter_read,
.mask = CLOCKSOURCE_MASK(56),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct cyclecounter cyclecounter __ro_after_init = {
.read = arch_counter_read_cc,
.mask = CLOCKSOURCE_MASK(56),
};
struct ate_acpi_oem_info {
char oem_id[ACPI_OEM_ID_SIZE + 1];
char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
u32 oem_revision;
};
#ifdef CONFIG_FSL_ERRATUM_A008585
/*
* The number of retries is an arbitrary value well beyond the highest number
@ -170,97 +270,289 @@ static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
return __hisi_161010101_read_reg(cntvct_el0);
}
static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
/*
* Note that trailing spaces are required to properly match
* the OEM table information.
*/
{
.oem_id = "HISI ",
.oem_table_id = "HIP05 ",
.oem_revision = 0,
},
{
.oem_id = "HISI ",
.oem_table_id = "HIP06 ",
.oem_revision = 0,
},
{
.oem_id = "HISI ",
.oem_table_id = "HIP07 ",
.oem_revision = 0,
},
{ /* Sentinel indicating the end of the OEM array */ },
};
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
u64 old, new;
old = read_sysreg(cntvct_el0);
new = read_sysreg(cntvct_el0);
return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
timer_unstable_counter_workaround);
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
struct clock_event_device *clk)
{
unsigned long ctrl;
u64 cval = evt + arch_counter_get_cntvct();
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
if (access == ARCH_TIMER_PHYS_ACCESS)
write_sysreg(cval, cntp_cval_el0);
else
write_sysreg(cval, cntv_cval_el0);
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}
static int erratum_set_next_event_tval_virt(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0;
}
static int erratum_set_next_event_tval_phys(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0;
}
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
{
.match_type = ate_match_dt,
.id = "fsl,erratum-a008585",
.desc = "Freescale erratum a005858",
.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
},
#endif
#ifdef CONFIG_HISILICON_ERRATUM_161010101
{
.match_type = ate_match_dt,
.id = "hisilicon,erratum-161010101",
.desc = "HiSilicon erratum 161010101",
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
},
{
.match_type = ate_match_acpi_oem_info,
.id = hisi_161010101_oem_info,
.desc = "HiSilicon erratum 161010101",
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
{
.match_type = ate_match_local_cap_id,
.id = (void *)ARM64_WORKAROUND_858921,
.desc = "ARM erratum 858921",
.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
},
#endif
};
typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
const void *);
static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
const void *arg)
{
const struct device_node *np = arg;
return of_property_read_bool(np, wa->id);
}
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
const void *arg)
{
return this_cpu_has_cap((uintptr_t)wa->id);
}
static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
const void *arg)
{
static const struct ate_acpi_oem_info empty_oem_info = {};
const struct ate_acpi_oem_info *info = wa->id;
const struct acpi_table_header *table = arg;
/* Iterate over the ACPI OEM info array, looking for a match */
while (memcmp(info, &empty_oem_info, sizeof(*info))) {
if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
!memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
info->oem_revision == table->oem_revision)
return true;
info++;
}
return false;
}
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
ate_match_fn_t match_fn,
void *arg)
{
int i;
for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
if (ool_workarounds[i].match_type != type)
continue;
if (match_fn(&ool_workarounds[i], arg))
return &ool_workarounds[i];
}
return NULL;
}
static
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
bool local)
{
int i;
if (local) {
__this_cpu_write(timer_unstable_counter_workaround, wa);
} else {
for_each_possible_cpu(i)
per_cpu(timer_unstable_counter_workaround, i) = wa;
}
static_branch_enable(&arch_timer_read_ool_enabled);
/*
* Don't use the vdso fastpath if errata require using the
* out-of-line counter accessor. We may change our mind pretty
* late in the game (with a per-CPU erratum, for example), so
* change both the default value and the vdso itself.
*/
if (wa->read_cntvct_el0) {
clocksource_counter.archdata.vdso_direct = false;
vdso_default = false;
}
}
static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
void *arg)
{
const struct arch_timer_erratum_workaround *wa;
ate_match_fn_t match_fn = NULL;
bool local = false;
switch (type) {
case ate_match_dt:
match_fn = arch_timer_check_dt_erratum;
break;
case ate_match_local_cap_id:
match_fn = arch_timer_check_local_cap_erratum;
local = true;
break;
case ate_match_acpi_oem_info:
match_fn = arch_timer_check_acpi_oem_erratum;
break;
default:
WARN_ON(1);
return;
}
wa = arch_timer_iterate_errata(type, match_fn, arg);
if (!wa)
return;
if (needs_unstable_timer_counter_workaround()) {
const struct arch_timer_erratum_workaround *__wa;
__wa = __this_cpu_read(timer_unstable_counter_workaround);
if (__wa && wa != __wa)
pr_warn("Can't enable workaround for %s (clashes with %s\n)",
wa->desc, __wa->desc);
if (__wa)
return;
}
arch_timer_enable_workaround(wa, local);
pr_info("Enabling %s workaround for %s\n",
local ? "local" : "global", wa->desc);
}
#define erratum_handler(fn, r, ...) \
({ \
bool __val; \
if (needs_unstable_timer_counter_workaround()) { \
const struct arch_timer_erratum_workaround *__wa; \
__wa = __this_cpu_read(timer_unstable_counter_workaround); \
if (__wa && __wa->fn) { \
r = __wa->fn(__VA_ARGS__); \
__val = true; \
} else { \
__val = false; \
} \
} else { \
__val = false; \
} \
__val; \
})
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
const struct arch_timer_erratum_workaround *wa;
wa = __this_cpu_read(timer_unstable_counter_workaround);
return wa && wa->read_cntvct_el0;
}
#else
#define arch_timer_check_ool_workaround(t,a) do { } while(0)
#define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
#define erratum_handler(fn, r, ...) ({false;})
#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
struct clock_event_device *clk)
{
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTV_TVAL);
break;
}
} else {
arch_timer_reg_write_cp15(access, reg, val);
}
}
static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
struct clock_event_device *clk)
{
u32 val;
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTV_TVAL);
break;
}
} else {
val = arch_timer_reg_read_cp15(access, reg);
}
return val;
}
static __always_inline irqreturn_t timer_handler(const int access,
struct clock_event_device *evt)
{
@ -348,43 +640,14 @@ static __always_inline void set_next_event(const int access, unsigned long evt,
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
static __always_inline void erratum_set_next_event_generic(const int access,
unsigned long evt, struct clock_event_device *clk)
{
unsigned long ctrl;
u64 cval = evt + arch_counter_get_cntvct();
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
if (access == ARCH_TIMER_PHYS_ACCESS)
write_sysreg(cval, cntp_cval_el0);
else if (access == ARCH_TIMER_VIRT_ACCESS)
write_sysreg(cval, cntv_cval_el0);
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}
static int erratum_set_next_event_virt(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0;
}
static int erratum_set_next_event_phys(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0;
}
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
static int arch_timer_set_next_event_virt(unsigned long evt,
struct clock_event_device *clk)
{
int ret;
if (erratum_handler(set_next_event_virt, ret, evt, clk))
return ret;
set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0;
}
@ -392,6 +655,11 @@ static int arch_timer_set_next_event_virt(unsigned long evt,
static int arch_timer_set_next_event_phys(unsigned long evt,
struct clock_event_device *clk)
{
int ret;
if (erratum_handler(set_next_event_phys, ret, evt, clk))
return ret;
set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0;
}
@ -410,19 +678,6 @@ static int arch_timer_set_next_event_phys_mem(unsigned long evt,
return 0;
}
static void erratum_workaround_set_sne(struct clock_event_device *clk)
{
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
return;
if (arch_timer_uses_ppi == VIRT_PPI)
clk->set_next_event = erratum_set_next_event_virt;
else
clk->set_next_event = erratum_set_next_event_phys;
#endif
}
static void __arch_timer_setup(unsigned type,
struct clock_event_device *clk)
{
@ -452,7 +707,7 @@ static void __arch_timer_setup(unsigned type,
BUG();
}
erratum_workaround_set_sne(clk);
arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
} else {
clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
clk->name = "arch_mem_timer";
@ -508,15 +763,23 @@ static void arch_counter_set_user_access(void)
{
u32 cntkctl = arch_timer_get_cntkctl();
/* Disable user access to the timers and the physical counter */
/* Disable user access to the timers and both counters */
/* Also disable virtual event stream */
cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
| ARCH_TIMER_USR_VT_ACCESS_EN
| ARCH_TIMER_USR_VCT_ACCESS_EN
| ARCH_TIMER_VIRT_EVT_EN
| ARCH_TIMER_USR_PCT_ACCESS_EN);
/* Enable user access to the virtual counter */
cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
/*
* Enable user access to the virtual counter if it doesn't
* need to be workaround. The vdso may have been already
* disabled though.
*/
if (arch_timer_this_cpu_has_cntvct_wa())
pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
else
cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
arch_timer_set_cntkctl(cntkctl);
}
@ -621,37 +884,6 @@ static u64 arch_counter_get_cntvct_mem(void)
return ((u64) vct_hi << 32) | vct_lo;
}
/*
* Default to cp15 based access because arm64 uses this function for
* sched_clock() before DT is probed and the cp15 method is guaranteed
* to exist on arm64. arm doesn't use this before DT is probed so even
* if we don't have the cp15 accessors we won't have a problem.
*/
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
static u64 arch_counter_read(struct clocksource *cs)
{
return arch_timer_read_counter();
}
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
return arch_timer_read_counter();
}
static struct clocksource clocksource_counter = {
.name = "arch_sys_counter",
.rating = 400,
.read = arch_counter_read,
.mask = CLOCKSOURCE_MASK(56),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct cyclecounter cyclecounter __ro_after_init = {
.read = arch_counter_read_cc,
.mask = CLOCKSOURCE_MASK(56),
};
static struct arch_timer_kvm_info arch_timer_kvm_info;
struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
@ -670,16 +902,7 @@ static void __init arch_counter_register(unsigned type)
else
arch_timer_read_counter = arch_counter_get_cntpct;
clocksource_counter.archdata.vdso_direct = true;
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
/*
* Don't use the vdso fastpath if errata require using
* the out-of-line counter accessor.
*/
if (static_branch_unlikely(&arch_timer_read_ool_enabled))
clocksource_counter.archdata.vdso_direct = false;
#endif
clocksource_counter.archdata.vdso_direct = vdso_default;
} else {
arch_timer_read_counter = arch_counter_get_cntvct_mem;
}
@ -718,14 +941,14 @@ static int arch_timer_dying_cpu(unsigned int cpu)
}
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
if (action == CPU_PM_ENTER)
saved_cntkctl = arch_timer_get_cntkctl();
__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
arch_timer_set_cntkctl(saved_cntkctl);
arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
return NOTIFY_OK;
}
@ -960,17 +1183,8 @@ static int __init arch_timer_of_init(struct device_node *np)
arch_timer_c3stop = !of_property_read_bool(np, "always-on");
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
if (of_property_read_bool(np, ool_workarounds[i].id)) {
timer_unstable_counter_workaround = &ool_workarounds[i];
static_branch_enable(&arch_timer_read_ool_enabled);
pr_info("arch_timer: Enabling workaround for %s\n",
timer_unstable_counter_workaround->id);
break;
}
}
#endif
/* Check for globally applicable workarounds */
arch_timer_check_ool_workaround(ate_match_dt, np);
/*
* If we cannot rely on firmware initializing the timer registers then
@ -1055,7 +1269,7 @@ static int __init arch_timer_mem_init(struct device_node *np)
ret = -EINVAL;
if (!irq) {
pr_err("arch_timer: Frame missing %s irq",
pr_err("arch_timer: Frame missing %s irq\n",
arch_timer_mem_use_virtual ? "virt" : "phys");
goto out;
}
@ -1127,6 +1341,9 @@ static int __init arch_timer_acpi_init(struct acpi_table_header *table)
/* Always-on capability */
arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
/* Check for globally applicable workarounds */
arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
arch_timer_init();
return 0;
}

View File

@ -193,7 +193,7 @@ static int __init asm9260_timer_init(struct device_node *np)
priv.base = of_io_request_and_map(np, 0, np->name);
if (IS_ERR(priv.base)) {
pr_err("%s: unable to map resource", np->name);
pr_err("%s: unable to map resource\n", np->name);
return PTR_ERR(priv.base);
}

View File

@ -89,13 +89,13 @@ static int __init bcm2835_timer_init(struct device_node *node)
base = of_iomap(node, 0);
if (!base) {
pr_err("Can't remap registers");
pr_err("Can't remap registers\n");
return -ENXIO;
}
ret = of_property_read_u32(node, "clock-frequency", &freq);
if (ret) {
pr_err("Can't read clock-frequency");
pr_err("Can't read clock-frequency\n");
goto err_iounmap;
}
@ -107,7 +107,7 @@ static int __init bcm2835_timer_init(struct device_node *node)
irq = irq_of_parse_and_map(node, DEFAULT_TIMER);
if (irq <= 0) {
pr_err("Can't parse IRQ");
pr_err("Can't parse IRQ\n");
ret = -EINVAL;
goto err_iounmap;
}

View File

@ -179,7 +179,7 @@ static int __init kona_timer_init(struct device_node *node)
} else if (!of_property_read_u32(node, "clock-frequency", &freq)) {
arch_timer_rate = freq;
} else {
pr_err("Kona Timer v1 unable to determine clock-frequency");
pr_err("Kona Timer v1 unable to determine clock-frequency\n");
return -EINVAL;
}

View File

@ -40,7 +40,7 @@ void __init clocksource_probe(void)
ret = init_func_ret(np);
if (ret) {
pr_err("Failed to initialize '%s': %d",
pr_err("Failed to initialize '%s': %d\n",
of_node_full_name(np), ret);
continue;
}

View File

@ -101,7 +101,7 @@ static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
if (!evt->event_handler) {
pr_info("Spurious APBT timer interrupt %d", irq);
pr_info("Spurious APBT timer interrupt %d\n", irq);
return IRQ_NONE;
}

View File

@ -133,13 +133,13 @@ static int __init meson6_timer_init(struct device_node *node)
timer_base = of_io_request_and_map(node, 0, "meson6-timer");
if (IS_ERR(timer_base)) {
pr_err("Can't map registers");
pr_err("Can't map registers\n");
return -ENXIO;
}
irq = irq_of_parse_and_map(node, 0);
if (irq <= 0) {
pr_err("Can't parse IRQ");
pr_err("Can't parse IRQ\n");
return -EINVAL;
}

View File

@ -174,7 +174,7 @@ static int __init gic_clocksource_of_init(struct device_node *node)
if (!gic_present || !node->parent ||
!of_device_is_compatible(node->parent, "mti,gic")) {
pr_warn("No DT definition for the mips gic driver");
pr_warn("No DT definition for the mips gic driver\n");
return -ENXIO;
}

View File

@ -260,25 +260,25 @@ static int __init nmdk_timer_of_init(struct device_node *node)
base = of_iomap(node, 0);
if (!base) {
pr_err("Can't remap registers");
pr_err("Can't remap registers\n");
return -ENXIO;
}
pclk = of_clk_get_by_name(node, "apb_pclk");
if (IS_ERR(pclk)) {
pr_err("could not get apb_pclk");
pr_err("could not get apb_pclk\n");
return PTR_ERR(pclk);
}
clk = of_clk_get_by_name(node, "timclk");
if (IS_ERR(clk)) {
pr_err("could not get timclk");
pr_err("could not get timclk\n");
return PTR_ERR(clk);
}
irq = irq_of_parse_and_map(node, 0);
if (irq <= 0) {
pr_err("Can't parse IRQ");
pr_err("Can't parse IRQ\n");
return -EINVAL;
}

View File

@ -166,14 +166,14 @@ static int __init pxa_timer_common_init(int irq, unsigned long clock_tick_rate)
ret = setup_irq(irq, &pxa_ost0_irq);
if (ret) {
pr_err("Failed to setup irq");
pr_err("Failed to setup irq\n");
return ret;
}
ret = clocksource_mmio_init(timer_base + OSCR, "oscr0", clock_tick_rate, 200,
32, clocksource_mmio_readl_up);
if (ret) {
pr_err("Failed to init clocksource");
pr_err("Failed to init clocksource\n");
return ret;
}
@ -203,7 +203,7 @@ static int __init pxa_timer_dt_init(struct device_node *np)
ret = clk_prepare_enable(clk);
if (ret) {
pr_crit("Failed to prepare clock");
pr_crit("Failed to prepare clock\n");
return ret;
}

View File

@ -11,6 +11,8 @@
#include <linux/clockchips.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/sched_clock.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
@ -19,6 +21,8 @@
#define TIMER_LOAD_COUNT0 0x00
#define TIMER_LOAD_COUNT1 0x04
#define TIMER_CURRENT_VALUE0 0x08
#define TIMER_CURRENT_VALUE1 0x0C
#define TIMER_CONTROL_REG3288 0x10
#define TIMER_CONTROL_REG3399 0x1c
#define TIMER_INT_STATUS 0x18
@ -29,103 +33,118 @@
#define TIMER_MODE_USER_DEFINED_COUNT (1 << 1)
#define TIMER_INT_UNMASK (1 << 2)
struct bc_timer {
struct clock_event_device ce;
struct rk_timer {
void __iomem *base;
void __iomem *ctrl;
struct clk *clk;
struct clk *pclk;
u32 freq;
int irq;
};
static struct bc_timer bc_timer;
struct rk_clkevt {
struct clock_event_device ce;
struct rk_timer timer;
};
static inline struct bc_timer *rk_timer(struct clock_event_device *ce)
static struct rk_clkevt *rk_clkevt;
static struct rk_timer *rk_clksrc;
static inline struct rk_timer *rk_timer(struct clock_event_device *ce)
{
return container_of(ce, struct bc_timer, ce);
return &container_of(ce, struct rk_clkevt, ce)->timer;
}
static inline void __iomem *rk_base(struct clock_event_device *ce)
static inline void rk_timer_disable(struct rk_timer *timer)
{
return rk_timer(ce)->base;
writel_relaxed(TIMER_DISABLE, timer->ctrl);
}
static inline void __iomem *rk_ctrl(struct clock_event_device *ce)
static inline void rk_timer_enable(struct rk_timer *timer, u32 flags)
{
return rk_timer(ce)->ctrl;
}
static inline void rk_timer_disable(struct clock_event_device *ce)
{
writel_relaxed(TIMER_DISABLE, rk_ctrl(ce));
}
static inline void rk_timer_enable(struct clock_event_device *ce, u32 flags)
{
writel_relaxed(TIMER_ENABLE | TIMER_INT_UNMASK | flags,
rk_ctrl(ce));
writel_relaxed(TIMER_ENABLE | flags, timer->ctrl);
}
static void rk_timer_update_counter(unsigned long cycles,
struct clock_event_device *ce)
struct rk_timer *timer)
{
writel_relaxed(cycles, rk_base(ce) + TIMER_LOAD_COUNT0);
writel_relaxed(0, rk_base(ce) + TIMER_LOAD_COUNT1);
writel_relaxed(cycles, timer->base + TIMER_LOAD_COUNT0);
writel_relaxed(0, timer->base + TIMER_LOAD_COUNT1);
}
static void rk_timer_interrupt_clear(struct clock_event_device *ce)
static void rk_timer_interrupt_clear(struct rk_timer *timer)
{
writel_relaxed(1, rk_base(ce) + TIMER_INT_STATUS);
writel_relaxed(1, timer->base + TIMER_INT_STATUS);
}
static inline int rk_timer_set_next_event(unsigned long cycles,
struct clock_event_device *ce)
{
rk_timer_disable(ce);
rk_timer_update_counter(cycles, ce);
rk_timer_enable(ce, TIMER_MODE_USER_DEFINED_COUNT);
struct rk_timer *timer = rk_timer(ce);
rk_timer_disable(timer);
rk_timer_update_counter(cycles, timer);
rk_timer_enable(timer, TIMER_MODE_USER_DEFINED_COUNT |
TIMER_INT_UNMASK);
return 0;
}
static int rk_timer_shutdown(struct clock_event_device *ce)
{
rk_timer_disable(ce);
struct rk_timer *timer = rk_timer(ce);
rk_timer_disable(timer);
return 0;
}
static int rk_timer_set_periodic(struct clock_event_device *ce)
{
rk_timer_disable(ce);
rk_timer_update_counter(rk_timer(ce)->freq / HZ - 1, ce);
rk_timer_enable(ce, TIMER_MODE_FREE_RUNNING);
struct rk_timer *timer = rk_timer(ce);
rk_timer_disable(timer);
rk_timer_update_counter(timer->freq / HZ - 1, timer);
rk_timer_enable(timer, TIMER_MODE_FREE_RUNNING | TIMER_INT_UNMASK);
return 0;
}
static irqreturn_t rk_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *ce = dev_id;
struct rk_timer *timer = rk_timer(ce);
rk_timer_interrupt_clear(ce);
rk_timer_interrupt_clear(timer);
if (clockevent_state_oneshot(ce))
rk_timer_disable(ce);
rk_timer_disable(timer);
ce->event_handler(ce);
return IRQ_HANDLED;
}
static int __init rk_timer_init(struct device_node *np, u32 ctrl_reg)
static u64 notrace rk_timer_sched_read(void)
{
return ~readl_relaxed(rk_clksrc->base + TIMER_CURRENT_VALUE0);
}
static int __init
rk_timer_probe(struct rk_timer *timer, struct device_node *np)
{
struct clock_event_device *ce = &bc_timer.ce;
struct clk *timer_clk;
struct clk *pclk;
int ret = -EINVAL, irq;
u32 ctrl_reg = TIMER_CONTROL_REG3288;
bc_timer.base = of_iomap(np, 0);
if (!bc_timer.base) {
timer->base = of_iomap(np, 0);
if (!timer->base) {
pr_err("Failed to get base address for '%s'\n", TIMER_NAME);
return -ENXIO;
}
bc_timer.ctrl = bc_timer.base + ctrl_reg;
if (of_device_is_compatible(np, "rockchip,rk3399-timer"))
ctrl_reg = TIMER_CONTROL_REG3399;
timer->ctrl = timer->base + ctrl_reg;
pclk = of_clk_get_by_name(np, "pclk");
if (IS_ERR(pclk)) {
@ -139,6 +158,7 @@ static int __init rk_timer_init(struct device_node *np, u32 ctrl_reg)
pr_err("Failed to enable pclk for '%s'\n", TIMER_NAME);
goto out_unmap;
}
timer->pclk = pclk;
timer_clk = of_clk_get_by_name(np, "timer");
if (IS_ERR(timer_clk)) {
@ -152,8 +172,9 @@ static int __init rk_timer_init(struct device_node *np, u32 ctrl_reg)
pr_err("Failed to enable timer clock\n");
goto out_timer_clk;
}
timer->clk = timer_clk;
bc_timer.freq = clk_get_rate(timer_clk);
timer->freq = clk_get_rate(timer_clk);
irq = irq_of_parse_and_map(np, 0);
if (!irq) {
@ -161,28 +182,10 @@ static int __init rk_timer_init(struct device_node *np, u32 ctrl_reg)
pr_err("Failed to map interrupts for '%s'\n", TIMER_NAME);
goto out_irq;
}
timer->irq = irq;
ce->name = TIMER_NAME;
ce->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_DYNIRQ;
ce->set_next_event = rk_timer_set_next_event;
ce->set_state_shutdown = rk_timer_shutdown;
ce->set_state_periodic = rk_timer_set_periodic;
ce->irq = irq;
ce->cpumask = cpu_possible_mask;
ce->rating = 250;
rk_timer_interrupt_clear(ce);
rk_timer_disable(ce);
ret = request_irq(irq, rk_timer_interrupt, IRQF_TIMER, TIMER_NAME, ce);
if (ret) {
pr_err("Failed to initialize '%s': %d\n", TIMER_NAME, ret);
goto out_irq;
}
clockevents_config_and_register(ce, bc_timer.freq, 1, UINT_MAX);
rk_timer_interrupt_clear(timer);
rk_timer_disable(timer);
return 0;
out_irq:
@ -190,22 +193,115 @@ out_irq:
out_timer_clk:
clk_disable_unprepare(pclk);
out_unmap:
iounmap(bc_timer.base);
iounmap(timer->base);
return ret;
}
static int __init rk3288_timer_init(struct device_node *np)
static void __init rk_timer_cleanup(struct rk_timer *timer)
{
return rk_timer_init(np, TIMER_CONTROL_REG3288);
clk_disable_unprepare(timer->clk);
clk_disable_unprepare(timer->pclk);
iounmap(timer->base);
}
static int __init rk3399_timer_init(struct device_node *np)
static int __init rk_clkevt_init(struct device_node *np)
{
return rk_timer_init(np, TIMER_CONTROL_REG3399);
struct clock_event_device *ce;
int ret = -EINVAL;
rk_clkevt = kzalloc(sizeof(struct rk_clkevt), GFP_KERNEL);
if (!rk_clkevt) {
ret = -ENOMEM;
goto out;
}
ret = rk_timer_probe(&rk_clkevt->timer, np);
if (ret)
goto out_probe;
ce = &rk_clkevt->ce;
ce->name = TIMER_NAME;
ce->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_DYNIRQ;
ce->set_next_event = rk_timer_set_next_event;
ce->set_state_shutdown = rk_timer_shutdown;
ce->set_state_periodic = rk_timer_set_periodic;
ce->irq = rk_clkevt->timer.irq;
ce->cpumask = cpu_possible_mask;
ce->rating = 250;
ret = request_irq(rk_clkevt->timer.irq, rk_timer_interrupt, IRQF_TIMER,
TIMER_NAME, ce);
if (ret) {
pr_err("Failed to initialize '%s': %d\n",
TIMER_NAME, ret);
goto out_irq;
}
clockevents_config_and_register(&rk_clkevt->ce,
rk_clkevt->timer.freq, 1, UINT_MAX);
return 0;
out_irq:
rk_timer_cleanup(&rk_clkevt->timer);
out_probe:
kfree(rk_clkevt);
out:
/* Leave rk_clkevt not NULL to prevent future init */
rk_clkevt = ERR_PTR(ret);
return ret;
}
CLOCKSOURCE_OF_DECLARE(rk3288_timer, "rockchip,rk3288-timer",
rk3288_timer_init);
CLOCKSOURCE_OF_DECLARE(rk3399_timer, "rockchip,rk3399-timer",
rk3399_timer_init);
static int __init rk_clksrc_init(struct device_node *np)
{
int ret = -EINVAL;
rk_clksrc = kzalloc(sizeof(struct rk_timer), GFP_KERNEL);
if (!rk_clksrc) {
ret = -ENOMEM;
goto out;
}
ret = rk_timer_probe(rk_clksrc, np);
if (ret)
goto out_probe;
rk_timer_update_counter(UINT_MAX, rk_clksrc);
rk_timer_enable(rk_clksrc, 0);
ret = clocksource_mmio_init(rk_clksrc->base + TIMER_CURRENT_VALUE0,
TIMER_NAME, rk_clksrc->freq, 250, 32,
clocksource_mmio_readl_down);
if (ret) {
pr_err("Failed to register clocksource");
goto out_clocksource;
}
sched_clock_register(rk_timer_sched_read, 32, rk_clksrc->freq);
return 0;
out_clocksource:
rk_timer_cleanup(rk_clksrc);
out_probe:
kfree(rk_clksrc);
out:
/* Leave rk_clksrc not NULL to prevent future init */
rk_clksrc = ERR_PTR(ret);
return ret;
}
static int __init rk_timer_init(struct device_node *np)
{
if (!rk_clkevt)
return rk_clkevt_init(np);
if (!rk_clksrc)
return rk_clksrc_init(np);
pr_err("Too many timer definitions for '%s'\n", TIMER_NAME);
return -EINVAL;
}
CLOCKSOURCE_OF_DECLARE(rk3288_timer, "rockchip,rk3288-timer", rk_timer_init);
CLOCKSOURCE_OF_DECLARE(rk3399_timer, "rockchip,rk3399-timer", rk_timer_init);

View File

@ -385,7 +385,7 @@ static int __init _samsung_pwm_clocksource_init(void)
mask = ~pwm.variant.output_mask & ((1 << SAMSUNG_PWM_NUM) - 1);
channel = fls(mask) - 1;
if (channel < 0) {
pr_crit("failed to find PWM channel for clocksource");
pr_crit("failed to find PWM channel for clocksource\n");
return -EINVAL;
}
pwm.source_id = channel;
@ -393,7 +393,7 @@ static int __init _samsung_pwm_clocksource_init(void)
mask &= ~(1 << channel);
channel = fls(mask) - 1;
if (channel < 0) {
pr_crit("failed to find PWM channel for clock event");
pr_crit("failed to find PWM channel for clock event\n");
return -EINVAL;
}
pwm.event_id = channel;
@ -448,7 +448,7 @@ static int __init samsung_pwm_alloc(struct device_node *np,
pwm.timerclk = of_clk_get_by_name(np, "timers");
if (IS_ERR(pwm.timerclk)) {
pr_crit("failed to get timers clock for timer");
pr_crit("failed to get timers clock for timer\n");
return PTR_ERR(pwm.timerclk);
}

View File

@ -159,25 +159,25 @@ static int __init sun4i_timer_init(struct device_node *node)
timer_base = of_iomap(node, 0);
if (!timer_base) {
pr_crit("Can't map registers");
pr_crit("Can't map registers\n");
return -ENXIO;
}
irq = irq_of_parse_and_map(node, 0);
if (irq <= 0) {
pr_crit("Can't parse IRQ");
pr_crit("Can't parse IRQ\n");
return -EINVAL;
}
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_crit("Can't get timer clock");
pr_crit("Can't get timer clock\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("Failed to prepare clock");
pr_err("Failed to prepare clock\n");
return ret;
}
@ -200,7 +200,7 @@ static int __init sun4i_timer_init(struct device_node *node)
ret = clocksource_mmio_init(timer_base + TIMER_CNTVAL_REG(1), node->name,
rate, 350, 32, clocksource_mmio_readl_down);
if (ret) {
pr_err("Failed to register clocksource");
pr_err("Failed to register clocksource\n");
return ret;
}

View File

@ -245,7 +245,7 @@ static int __init tegra20_init_rtc(struct device_node *np)
rtc_base = of_iomap(np, 0);
if (!rtc_base) {
pr_err("Can't map RTC registers");
pr_err("Can't map RTC registers\n");
return -ENXIO;
}

View File

@ -247,13 +247,13 @@ static int __init armada_370_xp_timer_common_init(struct device_node *np)
timer_base = of_iomap(np, 0);
if (!timer_base) {
pr_err("Failed to iomap");
pr_err("Failed to iomap\n");
return -ENXIO;
}
local_base = of_iomap(np, 1);
if (!local_base) {
pr_err("Failed to iomap");
pr_err("Failed to iomap\n");
return -ENXIO;
}
@ -298,7 +298,7 @@ static int __init armada_370_xp_timer_common_init(struct device_node *np)
"armada_370_xp_clocksource",
timer_clk, 300, 32, clocksource_mmio_readl_down);
if (res) {
pr_err("Failed to initialize clocksource mmio");
pr_err("Failed to initialize clocksource mmio\n");
return res;
}
@ -315,7 +315,7 @@ static int __init armada_370_xp_timer_common_init(struct device_node *np)
armada_370_xp_evt);
/* Immediately configure the timer on the boot CPU */
if (res) {
pr_err("Failed to request percpu irq");
pr_err("Failed to request percpu irq\n");
return res;
}
@ -324,7 +324,7 @@ static int __init armada_370_xp_timer_common_init(struct device_node *np)
armada_370_xp_timer_starting_cpu,
armada_370_xp_timer_dying_cpu);
if (res) {
pr_err("Failed to setup hotplug state and timer");
pr_err("Failed to setup hotplug state and timer\n");
return res;
}
@ -339,7 +339,7 @@ static int __init armada_xp_timer_init(struct device_node *np)
int ret;
if (IS_ERR(clk)) {
pr_err("Failed to get clock");
pr_err("Failed to get clock\n");
return PTR_ERR(clk);
}
@ -375,7 +375,7 @@ static int __init armada_375_timer_init(struct device_node *np)
/* Must have at least a clock */
if (IS_ERR(clk)) {
pr_err("Failed to get clock");
pr_err("Failed to get clock\n");
return PTR_ERR(clk);
}
@ -399,7 +399,7 @@ static int __init armada_370_timer_init(struct device_node *np)
clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
pr_err("Failed to get clock");
pr_err("Failed to get clock\n");
return PTR_ERR(clk);
}

View File

@ -235,7 +235,7 @@ static int __init efm32_clockevent_init(struct device_node *np)
ret = setup_irq(irq, &efm32_clock_event_irq);
if (ret) {
pr_err("Failed setup irq");
pr_err("Failed setup irq\n");
goto err_setup_irq;
}

View File

@ -15,6 +15,7 @@
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
@ -36,6 +37,21 @@
static void __iomem *timer_base;
static unsigned long notrace orion_read_timer(void)
{
return ~readl(timer_base + TIMER0_VAL);
}
static struct delay_timer orion_delay_timer = {
.read_current_timer = orion_read_timer,
};
static void orion_delay_timer_init(unsigned long rate)
{
orion_delay_timer.freq = rate;
register_current_timer_delay(&orion_delay_timer);
}
/*
* Free-running clocksource handling.
*/
@ -106,6 +122,7 @@ static struct irqaction orion_clkevt_irq = {
static int __init orion_timer_init(struct device_node *np)
{
unsigned long rate;
struct clk *clk;
int irq, ret;
@ -124,7 +141,7 @@ static int __init orion_timer_init(struct device_node *np)
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("Failed to prepare clock");
pr_err("Failed to prepare clock\n");
return ret;
}
@ -135,6 +152,8 @@ static int __init orion_timer_init(struct device_node *np)
return -EINVAL;
}
rate = clk_get_rate(clk);
/* setup timer0 as free-running clocksource */
writel(~0, timer_base + TIMER0_VAL);
writel(~0, timer_base + TIMER0_RELOAD);
@ -142,15 +161,15 @@ static int __init orion_timer_init(struct device_node *np)
TIMER0_RELOAD_EN | TIMER0_EN,
TIMER0_RELOAD_EN | TIMER0_EN);
ret = clocksource_mmio_init(timer_base + TIMER0_VAL, "orion_clocksource",
clk_get_rate(clk), 300, 32,
ret = clocksource_mmio_init(timer_base + TIMER0_VAL,
"orion_clocksource", rate, 300, 32,
clocksource_mmio_readl_down);
if (ret) {
pr_err("Failed to initialize mmio timer");
pr_err("Failed to initialize mmio timer\n");
return ret;
}
sched_clock_register(orion_read_sched_clock, 32, clk_get_rate(clk));
sched_clock_register(orion_read_sched_clock, 32, rate);
/* setup timer1 as clockevent timer */
ret = setup_irq(irq, &orion_clkevt_irq);
@ -162,9 +181,12 @@ static int __init orion_timer_init(struct device_node *np)
ticks_per_jiffy = (clk_get_rate(clk) + HZ/2) / HZ;
orion_clkevt.cpumask = cpumask_of(0);
orion_clkevt.irq = irq;
clockevents_config_and_register(&orion_clkevt, clk_get_rate(clk),
clockevents_config_and_register(&orion_clkevt, rate,
ORION_ONESHOT_MIN, ORION_ONESHOT_MAX);
orion_delay_timer_init(rate);
return 0;
}
CLOCKSOURCE_OF_DECLARE(orion_timer, "marvell,orion-timer", orion_timer_init);

View File

@ -226,7 +226,7 @@ static int __init at91sam926x_pit_dt_init(struct device_node *node)
ret = clocksource_register_hz(&data->clksrc, pit_rate);
if (ret) {
pr_err("Failed to register clocksource");
pr_err("Failed to register clocksource\n");
return ret;
}

View File

@ -161,19 +161,19 @@ static int __init digicolor_timer_init(struct device_node *node)
*/
dc_timer_dev.base = of_iomap(node, 0);
if (!dc_timer_dev.base) {
pr_err("Can't map registers");
pr_err("Can't map registers\n");
return -ENXIO;
}
irq = irq_of_parse_and_map(node, dc_timer_dev.timer_id);
if (irq <= 0) {
pr_err("Can't parse IRQ");
pr_err("Can't parse IRQ\n");
return -EINVAL;
}
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_err("Can't get timer clock");
pr_err("Can't get timer clock\n");
return PTR_ERR(clk);
}
clk_prepare_enable(clk);

View File

@ -1,5 +1,5 @@
/*
* Gemini timer driver
* Faraday Technology FTTMR010 timer driver
* Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
*
* Based on a rewrite of arch/arm/mach-gemini/timer.c:
@ -16,17 +16,7 @@
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
/*
* Relevant registers in the global syscon
*/
#define GLOBAL_STATUS 0x04
#define CPU_AHB_RATIO_MASK (0x3 << 18)
#define CPU_AHB_1_1 (0x0 << 18)
#define CPU_AHB_3_2 (0x1 << 18)
#define CPU_AHB_24_13 (0x2 << 18)
#define CPU_AHB_2_1 (0x3 << 18)
#define REG_TO_AHB_SPEED(reg) ((((reg) >> 15) & 0x7) * 10 + 130)
#include <linux/clk.h>
/*
* Register definitions for the timers
@ -77,12 +67,12 @@
static unsigned int tick_rate;
static void __iomem *base;
static u64 notrace gemini_read_sched_clock(void)
static u64 notrace fttmr010_read_sched_clock(void)
{
return readl(base + TIMER3_COUNT);
}
static int gemini_timer_set_next_event(unsigned long cycles,
static int fttmr010_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
u32 cr;
@ -96,7 +86,7 @@ static int gemini_timer_set_next_event(unsigned long cycles,
return 0;
}
static int gemini_timer_shutdown(struct clock_event_device *evt)
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
{
u32 cr;
@ -127,7 +117,7 @@ static int gemini_timer_shutdown(struct clock_event_device *evt)
return 0;
}
static int gemini_timer_set_periodic(struct clock_event_device *evt)
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
{
u32 period = DIV_ROUND_CLOSEST(tick_rate, HZ);
u32 cr;
@ -158,54 +148,40 @@ static int gemini_timer_set_periodic(struct clock_event_device *evt)
}
/* Use TIMER1 as clock event */
static struct clock_event_device gemini_clockevent = {
static struct clock_event_device fttmr010_clockevent = {
.name = "TIMER1",
/* Reasonably fast and accurate clock event */
.rating = 300,
.shift = 32,
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.set_next_event = gemini_timer_set_next_event,
.set_state_shutdown = gemini_timer_shutdown,
.set_state_periodic = gemini_timer_set_periodic,
.set_state_oneshot = gemini_timer_shutdown,
.tick_resume = gemini_timer_shutdown,
.set_next_event = fttmr010_timer_set_next_event,
.set_state_shutdown = fttmr010_timer_shutdown,
.set_state_periodic = fttmr010_timer_set_periodic,
.set_state_oneshot = fttmr010_timer_shutdown,
.tick_resume = fttmr010_timer_shutdown,
};
/*
* IRQ handler for the timer
*/
static irqreturn_t gemini_timer_interrupt(int irq, void *dev_id)
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = &gemini_clockevent;
struct clock_event_device *evt = &fttmr010_clockevent;
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct irqaction gemini_timer_irq = {
.name = "Gemini Timer Tick",
static struct irqaction fttmr010_timer_irq = {
.name = "Faraday FTTMR010 Timer Tick",
.flags = IRQF_TIMER,
.handler = gemini_timer_interrupt,
.handler = fttmr010_timer_interrupt,
};
static int __init gemini_timer_of_init(struct device_node *np)
static int __init fttmr010_timer_common_init(struct device_node *np)
{
static struct regmap *map;
int irq;
int ret;
u32 val;
map = syscon_regmap_lookup_by_phandle(np, "syscon");
if (IS_ERR(map)) {
pr_err("Can't get regmap for syscon handle");
return -ENODEV;
}
ret = regmap_read(map, GLOBAL_STATUS, &val);
if (ret) {
pr_err("Can't read syscon status register");
return -ENXIO;
}
base = of_iomap(np, 0);
if (!base) {
@ -219,26 +195,6 @@ static int __init gemini_timer_of_init(struct device_node *np)
return -EINVAL;
}
tick_rate = REG_TO_AHB_SPEED(val) * 1000000;
printk(KERN_INFO "Bus: %dMHz", tick_rate / 1000000);
tick_rate /= 6; /* APB bus run AHB*(1/6) */
switch (val & CPU_AHB_RATIO_MASK) {
case CPU_AHB_1_1:
printk(KERN_CONT "(1/1)\n");
break;
case CPU_AHB_3_2:
printk(KERN_CONT "(3/2)\n");
break;
case CPU_AHB_24_13:
printk(KERN_CONT "(24/13)\n");
break;
case CPU_AHB_2_1:
printk(KERN_CONT "(2/1)\n");
break;
}
/*
* Reset the interrupt mask and status
*/
@ -255,9 +211,9 @@ static int __init gemini_timer_of_init(struct device_node *np)
writel(0, base + TIMER3_MATCH1);
writel(0, base + TIMER3_MATCH2);
clocksource_mmio_init(base + TIMER3_COUNT,
"gemini_clocksource", tick_rate,
"fttmr010_clocksource", tick_rate,
300, 32, clocksource_mmio_readl_up);
sched_clock_register(gemini_read_sched_clock, 32, tick_rate);
sched_clock_register(fttmr010_read_sched_clock, 32, tick_rate);
/*
* Setup clockevent timer (interrupt-driven.)
@ -266,12 +222,82 @@ static int __init gemini_timer_of_init(struct device_node *np)
writel(0, base + TIMER1_LOAD);
writel(0, base + TIMER1_MATCH1);
writel(0, base + TIMER1_MATCH2);
setup_irq(irq, &gemini_timer_irq);
gemini_clockevent.cpumask = cpumask_of(0);
clockevents_config_and_register(&gemini_clockevent, tick_rate,
setup_irq(irq, &fttmr010_timer_irq);
fttmr010_clockevent.cpumask = cpumask_of(0);
clockevents_config_and_register(&fttmr010_clockevent, tick_rate,
1, 0xffffffff);
return 0;
}
CLOCKSOURCE_OF_DECLARE(nomadik_mtu, "cortina,gemini-timer",
gemini_timer_of_init);
static int __init fttmr010_timer_of_init(struct device_node *np)
{
/*
* These implementations require a clock reference.
* FIXME: we currently only support clocking using PCLK
* and using EXTCLK is not supported in the driver.
*/
struct clk *clk;
clk = of_clk_get_by_name(np, "PCLK");
if (IS_ERR(clk)) {
pr_err("could not get PCLK");
return PTR_ERR(clk);
}
tick_rate = clk_get_rate(clk);
return fttmr010_timer_common_init(np);
}
CLOCKSOURCE_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_of_init);
/*
* Gemini-specific: relevant registers in the global syscon
*/
#define GLOBAL_STATUS 0x04
#define CPU_AHB_RATIO_MASK (0x3 << 18)
#define CPU_AHB_1_1 (0x0 << 18)
#define CPU_AHB_3_2 (0x1 << 18)
#define CPU_AHB_24_13 (0x2 << 18)
#define CPU_AHB_2_1 (0x3 << 18)
#define REG_TO_AHB_SPEED(reg) ((((reg) >> 15) & 0x7) * 10 + 130)
static int __init gemini_timer_of_init(struct device_node *np)
{
static struct regmap *map;
int ret;
u32 val;
map = syscon_regmap_lookup_by_phandle(np, "syscon");
if (IS_ERR(map)) {
pr_err("Can't get regmap for syscon handle\n");
return -ENODEV;
}
ret = regmap_read(map, GLOBAL_STATUS, &val);
if (ret) {
pr_err("Can't read syscon status register\n");
return -ENXIO;
}
tick_rate = REG_TO_AHB_SPEED(val) * 1000000;
pr_info("Bus: %dMHz ", tick_rate / 1000000);
tick_rate /= 6; /* APB bus run AHB*(1/6) */
switch (val & CPU_AHB_RATIO_MASK) {
case CPU_AHB_1_1:
pr_cont("(1/1)\n");
break;
case CPU_AHB_3_2:
pr_cont("(3/2)\n");
break;
case CPU_AHB_24_13:
pr_cont("(24/13)\n");
break;
case CPU_AHB_2_1:
pr_cont("(2/1)\n");
break;
}
return fttmr010_timer_common_init(np);
}
CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", gemini_timer_of_init);

View File

@ -200,7 +200,7 @@ static int __init integrator_ap_timer_init_of(struct device_node *node)
err = of_property_read_string(of_aliases,
"arm,timer-primary", &path);
if (err) {
pr_warn("Failed to read property");
pr_warn("Failed to read property\n");
return err;
}
@ -209,7 +209,7 @@ static int __init integrator_ap_timer_init_of(struct device_node *node)
err = of_property_read_string(of_aliases,
"arm,timer-secondary", &path);
if (err) {
pr_warn("Failed to read property");
pr_warn("Failed to read property\n");
return err;
}

View File

@ -55,7 +55,7 @@ static int __init nps_get_timer_clk(struct device_node *node,
*clk = of_clk_get(node, 0);
ret = PTR_ERR_OR_ZERO(*clk);
if (ret) {
pr_err("timer missing clk");
pr_err("timer missing clk\n");
return ret;
}
@ -247,7 +247,7 @@ static int __init nps_setup_clockevent(struct device_node *node)
nps_timer0_irq = irq_of_parse_and_map(node, 0);
if (nps_timer0_irq <= 0) {
pr_err("clockevent: missing irq");
pr_err("clockevent: missing irq\n");
return -EINVAL;
}
@ -270,7 +270,7 @@ static int __init nps_setup_clockevent(struct device_node *node)
nps_timer_starting_cpu,
nps_timer_dying_cpu);
if (ret) {
pr_err("Failed to setup hotplug state");
pr_err("Failed to setup hotplug state\n");
clk_disable_unprepare(clk);
free_percpu_irq(nps_timer0_irq, &nps_clockevent_device);
return ret;

View File

@ -196,20 +196,20 @@ static int __init sirfsoc_prima2_timer_init(struct device_node *np)
clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
pr_err("Failed to get clock");
pr_err("Failed to get clock\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("Failed to enable clock");
pr_err("Failed to enable clock\n");
return ret;
}
rate = clk_get_rate(clk);
if (rate < PRIMA2_CLOCK_FREQ || rate % PRIMA2_CLOCK_FREQ) {
pr_err("Invalid clock rate");
pr_err("Invalid clock rate\n");
return -EINVAL;
}
@ -229,7 +229,7 @@ static int __init sirfsoc_prima2_timer_init(struct device_node *np)
ret = clocksource_register_hz(&sirfsoc_clocksource, PRIMA2_CLOCK_FREQ);
if (ret) {
pr_err("Failed to register clocksource");
pr_err("Failed to register clocksource\n");
return ret;
}
@ -237,7 +237,7 @@ static int __init sirfsoc_prima2_timer_init(struct device_node *np)
ret = setup_irq(sirfsoc_timer_irq.irq, &sirfsoc_timer_irq);
if (ret) {
pr_err("Failed to setup irq");
pr_err("Failed to setup irq\n");
return ret;
}

View File

@ -299,13 +299,13 @@ static int __init integrator_cp_of_init(struct device_node *np)
base = of_iomap(np, 0);
if (!base) {
pr_err("Failed to iomap");
pr_err("Failed to iomap\n");
return -ENXIO;
}
clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
pr_err("Failed to get clock");
pr_err("Failed to get clock\n");
return PTR_ERR(clk);
}

View File

@ -332,19 +332,19 @@ static int __init sun5i_timer_init(struct device_node *node)
timer_base = of_io_request_and_map(node, 0, of_node_full_name(node));
if (IS_ERR(timer_base)) {
pr_err("Can't map registers");
pr_err("Can't map registers\n");
return PTR_ERR(timer_base);;
}
irq = irq_of_parse_and_map(node, 0);
if (irq <= 0) {
pr_err("Can't parse IRQ");
pr_err("Can't parse IRQ\n");
return -EINVAL;
}
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_err("Can't get timer clock");
pr_err("Can't get timer clock\n");
return PTR_ERR(clk);
}

View File

@ -165,7 +165,7 @@ static int __init pit_timer_init(struct device_node *np)
timer_base = of_iomap(np, 0);
if (!timer_base) {
pr_err("Failed to iomap");
pr_err("Failed to iomap\n");
return -ENXIO;
}