Merge remote-tracking branch 'spi/topic/qspi' into spi-next

This commit is contained in:
Mark Brown 2013-09-01 13:49:06 +01:00
commit 85cac43132
16 changed files with 757 additions and 136 deletions

View file

@ -0,0 +1,22 @@
TI QSPI controller.
Required properties:
- compatible : should be "ti,dra7xxx-qspi" or "ti,am4372-qspi".
- reg: Should contain QSPI registers location and length.
- #address-cells, #size-cells : Must be present if the device has sub-nodes
- ti,hwmods: Name of the hwmod associated to the QSPI
Recommended properties:
- spi-max-frequency: Definition as per
Documentation/devicetree/bindings/spi/spi-bus.txt
Example:
qspi: qspi@4b300000 {
compatible = "ti,dra7xxx-qspi";
reg = <0x4b300000 0x100>;
#address-cells = <1>;
#size-cells = <0>;
spi-max-frequency = <25000000>;
ti,hwmods = "qspi";
};

View file

@ -306,6 +306,14 @@ config SPI_OMAP24XX
SPI master controller for OMAP24XX and later Multichannel SPI
(McSPI) modules.
config SPI_TI_QSPI
tristate "DRA7xxx QSPI controller support"
depends on ARCH_OMAP2PLUS || COMPILE_TEST
help
QSPI master controller for DRA7xxx used for flash devices.
This device supports single, dual and quad read support, while
it only supports single write mode.
config SPI_OMAP_100K
tristate "OMAP SPI 100K"
depends on ARCH_OMAP850 || ARCH_OMAP730 || COMPILE_TEST

View file

@ -49,6 +49,7 @@ obj-$(CONFIG_SPI_OCTEON) += spi-octeon.o
obj-$(CONFIG_SPI_OMAP_UWIRE) += spi-omap-uwire.o
obj-$(CONFIG_SPI_OMAP_100K) += spi-omap-100k.o
obj-$(CONFIG_SPI_OMAP24XX) += spi-omap2-mcspi.o
obj-$(CONFIG_SPI_TI_QSPI) += spi-ti-qspi.o
obj-$(CONFIG_SPI_ORION) += spi-orion.o
obj-$(CONFIG_SPI_PL022) += spi-pl022.o
obj-$(CONFIG_SPI_PPC4xx) += spi-ppc4xx.o

View file

@ -231,24 +231,6 @@ static int bcm63xx_txrx_bufs(struct spi_device *spi, struct spi_transfer *first,
return 0;
}
static int bcm63xx_spi_prepare_transfer(struct spi_master *master)
{
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
pm_runtime_get_sync(&bs->pdev->dev);
return 0;
}
static int bcm63xx_spi_unprepare_transfer(struct spi_master *master)
{
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
pm_runtime_put(&bs->pdev->dev);
return 0;
}
static int bcm63xx_spi_transfer_one(struct spi_master *master,
struct spi_message *m)
{
@ -406,11 +388,10 @@ static int bcm63xx_spi_probe(struct platform_device *pdev)
master->bus_num = pdata->bus_num;
master->num_chipselect = pdata->num_chipselect;
master->prepare_transfer_hardware = bcm63xx_spi_prepare_transfer;
master->unprepare_transfer_hardware = bcm63xx_spi_unprepare_transfer;
master->transfer_one_message = bcm63xx_spi_transfer_one;
master->mode_bits = MODEBITS;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->auto_runtime_pm = true;
bs->msg_type_shift = pdata->msg_type_shift;
bs->msg_ctl_width = pdata->msg_ctl_width;
bs->tx_io = (u8 *)(bs->regs + bcm63xx_spireg(SPI_MSG_DATA));

View file

@ -354,24 +354,6 @@ static int mcfqspi_transfer_one_message(struct spi_master *master,
}
static int mcfqspi_prepare_transfer_hw(struct spi_master *master)
{
struct mcfqspi *mcfqspi = spi_master_get_devdata(master);
pm_runtime_get_sync(mcfqspi->dev);
return 0;
}
static int mcfqspi_unprepare_transfer_hw(struct spi_master *master)
{
struct mcfqspi *mcfqspi = spi_master_get_devdata(master);
pm_runtime_put_sync(mcfqspi->dev);
return 0;
}
static int mcfqspi_setup(struct spi_device *spi)
{
if (spi->chip_select >= spi->master->num_chipselect) {
@ -473,8 +455,7 @@ static int mcfqspi_probe(struct platform_device *pdev)
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
master->setup = mcfqspi_setup;
master->transfer_one_message = mcfqspi_transfer_one_message;
master->prepare_transfer_hardware = mcfqspi_prepare_transfer_hw;
master->unprepare_transfer_hardware = mcfqspi_unprepare_transfer_hw;
master->auto_runtime_pm = true;
platform_set_drvdata(pdev, master);

View file

@ -335,23 +335,6 @@ static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
__raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
}
static int omap2_prepare_transfer(struct spi_master *master)
{
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
pm_runtime_get_sync(mcspi->dev);
return 0;
}
static int omap2_unprepare_transfer(struct spi_master *master)
{
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
pm_runtime_mark_last_busy(mcspi->dev);
pm_runtime_put_autosuspend(mcspi->dev);
return 0;
}
static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
{
unsigned long timeout;
@ -1318,8 +1301,7 @@ static int omap2_mcspi_probe(struct platform_device *pdev)
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
master->setup = omap2_mcspi_setup;
master->prepare_transfer_hardware = omap2_prepare_transfer;
master->unprepare_transfer_hardware = omap2_unprepare_transfer;
master->auto_runtime_pm = true;
master->transfer_one_message = omap2_mcspi_transfer_one_message;
master->cleanup = omap2_mcspi_cleanup;
master->dev.of_node = node;

View file

@ -1555,18 +1555,6 @@ static int pl022_transfer_one_message(struct spi_master *master,
return 0;
}
static int pl022_prepare_transfer_hardware(struct spi_master *master)
{
struct pl022 *pl022 = spi_master_get_devdata(master);
/*
* Just make sure we have all we need to run the transfer by syncing
* with the runtime PM framework.
*/
pm_runtime_get_sync(&pl022->adev->dev);
return 0;
}
static int pl022_unprepare_transfer_hardware(struct spi_master *master)
{
struct pl022 *pl022 = spi_master_get_devdata(master);
@ -1575,13 +1563,6 @@ static int pl022_unprepare_transfer_hardware(struct spi_master *master)
writew((readw(SSP_CR1(pl022->virtbase)) &
(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
if (pl022->master_info->autosuspend_delay > 0) {
pm_runtime_mark_last_busy(&pl022->adev->dev);
pm_runtime_put_autosuspend(&pl022->adev->dev);
} else {
pm_runtime_put(&pl022->adev->dev);
}
return 0;
}
@ -2140,7 +2121,7 @@ static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
master->num_chipselect = num_cs;
master->cleanup = pl022_cleanup;
master->setup = pl022_setup;
master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
master->auto_runtime_pm = true;
master->transfer_one_message = pl022_transfer_one_message;
master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
master->rt = platform_info->rt;

View file

@ -811,14 +811,6 @@ static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
return 0;
}
static int pxa2xx_spi_prepare_transfer(struct spi_master *master)
{
struct driver_data *drv_data = spi_master_get_devdata(master);
pm_runtime_get_sync(&drv_data->pdev->dev);
return 0;
}
static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
{
struct driver_data *drv_data = spi_master_get_devdata(master);
@ -827,8 +819,6 @@ static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
drv_data->ioaddr);
pm_runtime_mark_last_busy(&drv_data->pdev->dev);
pm_runtime_put_autosuspend(&drv_data->pdev->dev);
return 0;
}
@ -1141,8 +1131,8 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
master->cleanup = cleanup;
master->setup = setup;
master->transfer_one_message = pxa2xx_spi_transfer_one_message;
master->prepare_transfer_hardware = pxa2xx_spi_prepare_transfer;
master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
master->auto_runtime_pm = true;
drv_data->ssp_type = ssp->type;
drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);

View file

@ -356,8 +356,6 @@ static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
while (!is_polling(sdd) && !acquire_dma(sdd))
usleep_range(10000, 11000);
pm_runtime_get_sync(&sdd->pdev->dev);
return 0;
}
@ -372,7 +370,6 @@ static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
sdd->ops->release((enum dma_ch)sdd->tx_dma.ch,
&s3c64xx_spi_dma_client);
}
pm_runtime_put(&sdd->pdev->dev);
return 0;
}
@ -1395,6 +1392,7 @@ static int s3c64xx_spi_probe(struct platform_device *pdev)
SPI_BPW_MASK(8);
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->auto_runtime_pm = true;
sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
if (IS_ERR(sdd->regs)) {

View file

@ -99,21 +99,6 @@ static int hspi_status_check_timeout(struct hspi_priv *hspi, u32 mask, u32 val)
/*
* spi master function
*/
static int hspi_prepare_transfer(struct spi_master *master)
{
struct hspi_priv *hspi = spi_master_get_devdata(master);
pm_runtime_get_sync(hspi->dev);
return 0;
}
static int hspi_unprepare_transfer(struct spi_master *master)
{
struct hspi_priv *hspi = spi_master_get_devdata(master);
pm_runtime_put_sync(hspi->dev);
return 0;
}
#define hspi_hw_cs_enable(hspi) hspi_hw_cs_ctrl(hspi, 0)
#define hspi_hw_cs_disable(hspi) hspi_hw_cs_ctrl(hspi, 1)
@ -316,9 +301,8 @@ static int hspi_probe(struct platform_device *pdev)
master->setup = hspi_setup;
master->cleanup = hspi_cleanup;
master->mode_bits = SPI_CPOL | SPI_CPHA;
master->prepare_transfer_hardware = hspi_prepare_transfer;
master->auto_runtime_pm = true;
master->transfer_one_message = hspi_transfer_one_message;
master->unprepare_transfer_hardware = hspi_unprepare_transfer;
ret = spi_register_master(master);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_master error.\n");

View file

@ -816,14 +816,6 @@ static int tegra_spi_transfer_one_message(struct spi_master *master,
msg->status = 0;
msg->actual_length = 0;
ret = pm_runtime_get_sync(tspi->dev);
if (ret < 0) {
dev_err(tspi->dev, "runtime PM get failed: %d\n", ret);
msg->status = ret;
spi_finalize_current_message(master);
return ret;
}
single_xfer = list_is_singular(&msg->transfers);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
INIT_COMPLETION(tspi->xfer_completion);
@ -859,7 +851,6 @@ static int tegra_spi_transfer_one_message(struct spi_master *master,
ret = 0;
exit:
tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
pm_runtime_put(tspi->dev);
msg->status = ret;
spi_finalize_current_message(master);
return ret;
@ -1053,6 +1044,7 @@ static int tegra_spi_probe(struct platform_device *pdev)
master->transfer_one_message = tegra_spi_transfer_one_message;
master->num_chipselect = MAX_CHIP_SELECT;
master->bus_num = -1;
master->auto_runtime_pm = true;
tspi->master = master;
tspi->dev = &pdev->dev;

View file

@ -335,12 +335,6 @@ static int tegra_sflash_transfer_one_message(struct spi_master *master,
struct spi_device *spi = msg->spi;
int ret;
ret = pm_runtime_get_sync(tsd->dev);
if (ret < 0) {
dev_err(tsd->dev, "pm_runtime_get() failed, err = %d\n", ret);
return ret;
}
msg->status = 0;
msg->actual_length = 0;
single_xfer = list_is_singular(&msg->transfers);
@ -380,7 +374,6 @@ exit:
tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
msg->status = ret;
spi_finalize_current_message(master);
pm_runtime_put(tsd->dev);
return ret;
}
@ -477,6 +470,7 @@ static int tegra_sflash_probe(struct platform_device *pdev)
master->mode_bits = SPI_CPOL | SPI_CPHA;
master->setup = tegra_sflash_setup;
master->transfer_one_message = tegra_sflash_transfer_one_message;
master->auto_runtime_pm = true;
master->num_chipselect = MAX_CHIP_SELECT;
master->bus_num = -1;

View file

@ -836,11 +836,6 @@ static int tegra_slink_transfer_one_message(struct spi_master *master,
msg->status = 0;
msg->actual_length = 0;
ret = pm_runtime_get_sync(tspi->dev);
if (ret < 0) {
dev_err(tspi->dev, "runtime get failed: %d\n", ret);
goto done;
}
single_xfer = list_is_singular(&msg->transfers);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
@ -878,8 +873,6 @@ static int tegra_slink_transfer_one_message(struct spi_master *master,
exit:
tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
pm_runtime_put(tspi->dev);
done:
msg->status = ret;
spi_finalize_current_message(master);
return ret;
@ -1086,6 +1079,7 @@ static int tegra_slink_probe(struct platform_device *pdev)
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->setup = tegra_slink_setup;
master->transfer_one_message = tegra_slink_transfer_one_message;
master->auto_runtime_pm = true;
master->num_chipselect = MAX_CHIP_SELECT;
master->bus_num = -1;

574
drivers/spi/spi-ti-qspi.c Normal file
View file

@ -0,0 +1,574 @@
/*
* TI QSPI driver
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
* Author: Sourav Poddar <sourav.poddar@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GPLv2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/spi/spi.h>
struct ti_qspi_regs {
u32 clkctrl;
};
struct ti_qspi {
struct completion transfer_complete;
/* IRQ synchronization */
spinlock_t lock;
/* list synchronization */
struct mutex list_lock;
struct spi_master *master;
void __iomem *base;
struct clk *fclk;
struct device *dev;
struct ti_qspi_regs ctx_reg;
u32 spi_max_frequency;
u32 cmd;
u32 dc;
u32 stat;
};
#define QSPI_PID (0x0)
#define QSPI_SYSCONFIG (0x10)
#define QSPI_INTR_STATUS_RAW_SET (0x20)
#define QSPI_INTR_STATUS_ENABLED_CLEAR (0x24)
#define QSPI_INTR_ENABLE_SET_REG (0x28)
#define QSPI_INTR_ENABLE_CLEAR_REG (0x2c)
#define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
#define QSPI_SPI_DC_REG (0x44)
#define QSPI_SPI_CMD_REG (0x48)
#define QSPI_SPI_STATUS_REG (0x4c)
#define QSPI_SPI_DATA_REG (0x50)
#define QSPI_SPI_SETUP0_REG (0x54)
#define QSPI_SPI_SWITCH_REG (0x64)
#define QSPI_SPI_SETUP1_REG (0x58)
#define QSPI_SPI_SETUP2_REG (0x5c)
#define QSPI_SPI_SETUP3_REG (0x60)
#define QSPI_SPI_DATA_REG_1 (0x68)
#define QSPI_SPI_DATA_REG_2 (0x6c)
#define QSPI_SPI_DATA_REG_3 (0x70)
#define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
#define QSPI_FCLK 192000000
/* Clock Control */
#define QSPI_CLK_EN (1 << 31)
#define QSPI_CLK_DIV_MAX 0xffff
/* Command */
#define QSPI_EN_CS(n) (n << 28)
#define QSPI_WLEN(n) ((n - 1) << 19)
#define QSPI_3_PIN (1 << 18)
#define QSPI_RD_SNGL (1 << 16)
#define QSPI_WR_SNGL (2 << 16)
#define QSPI_RD_DUAL (3 << 16)
#define QSPI_RD_QUAD (7 << 16)
#define QSPI_INVAL (4 << 16)
#define QSPI_WC_CMD_INT_EN (1 << 14)
#define QSPI_FLEN(n) ((n - 1) << 0)
/* STATUS REGISTER */
#define WC 0x02
/* INTERRUPT REGISTER */
#define QSPI_WC_INT_EN (1 << 1)
#define QSPI_WC_INT_DISABLE (1 << 1)
/* Device Control */
#define QSPI_DD(m, n) (m << (3 + n * 8))
#define QSPI_CKPHA(n) (1 << (2 + n * 8))
#define QSPI_CSPOL(n) (1 << (1 + n * 8))
#define QSPI_CKPOL(n) (1 << (n * 8))
#define QSPI_FRAME 4096
#define QSPI_AUTOSUSPEND_TIMEOUT 2000
static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
unsigned long reg)
{
return readl(qspi->base + reg);
}
static inline void ti_qspi_write(struct ti_qspi *qspi,
unsigned long val, unsigned long reg)
{
writel(val, qspi->base + reg);
}
static int ti_qspi_setup(struct spi_device *spi)
{
struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
int clk_div = 0, ret;
u32 clk_ctrl_reg, clk_rate, clk_mask;
if (spi->master->busy) {
dev_dbg(qspi->dev, "master busy doing other trasnfers\n");
return -EBUSY;
}
if (!qspi->spi_max_frequency) {
dev_err(qspi->dev, "spi max frequency not defined\n");
return -EINVAL;
}
clk_rate = clk_get_rate(qspi->fclk);
clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
if (clk_div < 0) {
dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
return -EINVAL;
}
if (clk_div > QSPI_CLK_DIV_MAX) {
dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
return -EINVAL;
}
dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
qspi->spi_max_frequency, clk_div);
ret = pm_runtime_get_sync(qspi->dev);
if (ret) {
dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
return ret;
}
clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
clk_ctrl_reg &= ~QSPI_CLK_EN;
/* disable SCLK */
ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
/* enable SCLK */
clk_mask = QSPI_CLK_EN | clk_div;
ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
ctx_reg->clkctrl = clk_mask;
pm_runtime_mark_last_busy(qspi->dev);
ret = pm_runtime_put_autosuspend(qspi->dev);
if (ret < 0) {
dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
return ret;
}
return 0;
}
static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
{
struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
}
static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t)
{
int wlen, count, ret;
unsigned int cmd;
const u8 *txbuf;
txbuf = t->tx_buf;
cmd = qspi->cmd | QSPI_WR_SNGL;
count = t->len;
wlen = t->bits_per_word;
while (count) {
switch (wlen) {
case 8:
dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
cmd, qspi->dc, *txbuf);
writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
ret = wait_for_completion_timeout(&qspi->transfer_complete,
QSPI_COMPLETION_TIMEOUT);
if (ret == 0) {
dev_err(qspi->dev, "write timed out\n");
return -ETIMEDOUT;
}
txbuf += 1;
count -= 1;
break;
case 16:
dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
cmd, qspi->dc, *txbuf);
writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
ret = wait_for_completion_timeout(&qspi->transfer_complete,
QSPI_COMPLETION_TIMEOUT);
if (ret == 0) {
dev_err(qspi->dev, "write timed out\n");
return -ETIMEDOUT;
}
txbuf += 2;
count -= 2;
break;
case 32:
dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
cmd, qspi->dc, *txbuf);
writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
ret = wait_for_completion_timeout(&qspi->transfer_complete,
QSPI_COMPLETION_TIMEOUT);
if (ret == 0) {
dev_err(qspi->dev, "write timed out\n");
return -ETIMEDOUT;
}
txbuf += 4;
count -= 4;
break;
}
}
return 0;
}
static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t)
{
int wlen, count, ret;
unsigned int cmd;
u8 *rxbuf;
rxbuf = t->rx_buf;
cmd = qspi->cmd;
switch (t->rx_nbits) {
case SPI_NBITS_DUAL:
cmd |= QSPI_RD_DUAL;
break;
case SPI_NBITS_QUAD:
cmd |= QSPI_RD_QUAD;
break;
default:
cmd |= QSPI_RD_SNGL;
break;
}
count = t->len;
wlen = t->bits_per_word;
while (count) {
dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
ret = wait_for_completion_timeout(&qspi->transfer_complete,
QSPI_COMPLETION_TIMEOUT);
if (ret == 0) {
dev_err(qspi->dev, "read timed out\n");
return -ETIMEDOUT;
}
switch (wlen) {
case 8:
*rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
rxbuf += 1;
count -= 1;
break;
case 16:
*((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
rxbuf += 2;
count -= 2;
break;
case 32:
*((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
rxbuf += 4;
count -= 4;
break;
}
}
return 0;
}
static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t)
{
int ret;
if (t->tx_buf) {
ret = qspi_write_msg(qspi, t);
if (ret) {
dev_dbg(qspi->dev, "Error while writing\n");
return ret;
}
}
if (t->rx_buf) {
ret = qspi_read_msg(qspi, t);
if (ret) {
dev_dbg(qspi->dev, "Error while reading\n");
return ret;
}
}
return 0;
}
static int ti_qspi_start_transfer_one(struct spi_master *master,
struct spi_message *m)
{
struct ti_qspi *qspi = spi_master_get_devdata(master);
struct spi_device *spi = m->spi;
struct spi_transfer *t;
int status = 0, ret;
int frame_length;
/* setup device control reg */
qspi->dc = 0;
if (spi->mode & SPI_CPHA)
qspi->dc |= QSPI_CKPHA(spi->chip_select);
if (spi->mode & SPI_CPOL)
qspi->dc |= QSPI_CKPOL(spi->chip_select);
if (spi->mode & SPI_CS_HIGH)
qspi->dc |= QSPI_CSPOL(spi->chip_select);
frame_length = (m->frame_length << 3) / spi->bits_per_word;
frame_length = clamp(frame_length, 0, QSPI_FRAME);
/* setup command reg */
qspi->cmd = 0;
qspi->cmd |= QSPI_EN_CS(spi->chip_select);
qspi->cmd |= QSPI_FLEN(frame_length);
qspi->cmd |= QSPI_WC_CMD_INT_EN;
ti_qspi_write(qspi, QSPI_WC_INT_EN, QSPI_INTR_ENABLE_SET_REG);
ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
mutex_lock(&qspi->list_lock);
list_for_each_entry(t, &m->transfers, transfer_list) {
qspi->cmd |= QSPI_WLEN(t->bits_per_word);
ret = qspi_transfer_msg(qspi, t);
if (ret) {
dev_dbg(qspi->dev, "transfer message failed\n");
mutex_unlock(&qspi->list_lock);
return -EINVAL;
}
m->actual_length += t->len;
}
mutex_unlock(&qspi->list_lock);
m->status = status;
spi_finalize_current_message(master);
ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
return status;
}
static irqreturn_t ti_qspi_isr(int irq, void *dev_id)
{
struct ti_qspi *qspi = dev_id;
u16 int_stat;
irqreturn_t ret = IRQ_HANDLED;
spin_lock(&qspi->lock);
int_stat = ti_qspi_read(qspi, QSPI_INTR_STATUS_ENABLED_CLEAR);
qspi->stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
if (!int_stat) {
dev_dbg(qspi->dev, "No IRQ triggered\n");
ret = IRQ_NONE;
goto out;
}
ret = IRQ_WAKE_THREAD;
ti_qspi_write(qspi, QSPI_WC_INT_DISABLE, QSPI_INTR_ENABLE_CLEAR_REG);
ti_qspi_write(qspi, QSPI_WC_INT_DISABLE,
QSPI_INTR_STATUS_ENABLED_CLEAR);
out:
spin_unlock(&qspi->lock);
return ret;
}
static irqreturn_t ti_qspi_threaded_isr(int this_irq, void *dev_id)
{
struct ti_qspi *qspi = dev_id;
unsigned long flags;
spin_lock_irqsave(&qspi->lock, flags);
if (qspi->stat & WC)
complete(&qspi->transfer_complete);
spin_unlock_irqrestore(&qspi->lock, flags);
ti_qspi_write(qspi, QSPI_WC_INT_EN, QSPI_INTR_ENABLE_SET_REG);
return IRQ_HANDLED;
}
static int ti_qspi_runtime_resume(struct device *dev)
{
struct ti_qspi *qspi;
struct spi_master *master;
master = dev_get_drvdata(dev);
qspi = spi_master_get_devdata(master);
ti_qspi_restore_ctx(qspi);
return 0;
}
static const struct of_device_id ti_qspi_match[] = {
{.compatible = "ti,dra7xxx-qspi" },
{.compatible = "ti,am4372-qspi" },
{},
};
MODULE_DEVICE_TABLE(of, ti_qspi_match);
static int ti_qspi_probe(struct platform_device *pdev)
{
struct ti_qspi *qspi;
struct spi_master *master;
struct resource *r;
struct device_node *np = pdev->dev.of_node;
u32 max_freq;
int ret = 0, num_cs, irq;
master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
if (!master)
return -ENOMEM;
master->mode_bits = SPI_CPOL | SPI_CPHA;
master->bus_num = -1;
master->flags = SPI_MASTER_HALF_DUPLEX;
master->setup = ti_qspi_setup;
master->auto_runtime_pm = true;
master->transfer_one_message = ti_qspi_start_transfer_one;
master->dev.of_node = pdev->dev.of_node;
master->bits_per_word_mask = BIT(32 - 1) | BIT(16 - 1) | BIT(8 - 1);
if (!of_property_read_u32(np, "num-cs", &num_cs))
master->num_chipselect = num_cs;
platform_set_drvdata(pdev, master);
qspi = spi_master_get_devdata(master);
qspi->master = master;
qspi->dev = &pdev->dev;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return irq;
}
spin_lock_init(&qspi->lock);
mutex_init(&qspi->list_lock);
qspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(qspi->base)) {
ret = PTR_ERR(qspi->base);
goto free_master;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, ti_qspi_isr,
ti_qspi_threaded_isr, 0,
dev_name(&pdev->dev), qspi);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
irq);
goto free_master;
}
qspi->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(qspi->fclk)) {
ret = PTR_ERR(qspi->fclk);
dev_err(&pdev->dev, "could not get clk: %d\n", ret);
}
init_completion(&qspi->transfer_complete);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
pm_runtime_enable(&pdev->dev);
if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
qspi->spi_max_frequency = max_freq;
ret = spi_register_master(master);
if (ret)
goto free_master;
return 0;
free_master:
spi_master_put(master);
return ret;
}
static int ti_qspi_remove(struct platform_device *pdev)
{
struct ti_qspi *qspi = platform_get_drvdata(pdev);
spi_unregister_master(qspi->master);
return 0;
}
static const struct dev_pm_ops ti_qspi_pm_ops = {
.runtime_resume = ti_qspi_runtime_resume,
};
static struct platform_driver ti_qspi_driver = {
.probe = ti_qspi_probe,
.remove = ti_qspi_remove,
.driver = {
.name = "ti,dra7xxx-qspi",
.owner = THIS_MODULE,
.pm = &ti_qspi_pm_ops,
.of_match_table = ti_qspi_match,
}
};
module_platform_driver(ti_qspi_driver);
MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI QSPI controller driver");

View file

@ -553,6 +553,10 @@ static void spi_pump_messages(struct kthread_work *work)
master->unprepare_transfer_hardware(master))
dev_err(&master->dev,
"failed to unprepare transfer hardware\n");
if (master->auto_runtime_pm) {
pm_runtime_mark_last_busy(master->dev.parent);
pm_runtime_put_autosuspend(master->dev.parent);
}
return;
}
@ -572,11 +576,23 @@ static void spi_pump_messages(struct kthread_work *work)
master->busy = true;
spin_unlock_irqrestore(&master->queue_lock, flags);
if (!was_busy && master->auto_runtime_pm) {
ret = pm_runtime_get_sync(master->dev.parent);
if (ret < 0) {
dev_err(&master->dev, "Failed to power device: %d\n",
ret);
return;
}
}
if (!was_busy && master->prepare_transfer_hardware) {
ret = master->prepare_transfer_hardware(master);
if (ret) {
dev_err(&master->dev,
"failed to prepare transfer hardware\n");
if (master->auto_runtime_pm)
pm_runtime_put(master->dev.parent);
return;
}
}
@ -869,6 +885,51 @@ static void of_register_spi_devices(struct spi_master *master)
if (of_find_property(nc, "spi-3wire", NULL))
spi->mode |= SPI_3WIRE;
/* Device DUAL/QUAD mode */
prop = of_get_property(nc, "spi-tx-nbits", &len);
if (!prop || len < sizeof(*prop)) {
dev_err(&master->dev, "%s has no 'spi-tx-nbits' property\n",
nc->full_name);
spi_dev_put(spi);
continue;
}
switch (be32_to_cpup(prop)) {
case SPI_NBITS_SINGLE:
break;
case SPI_NBITS_DUAL:
spi->mode |= SPI_TX_DUAL;
break;
case SPI_NBITS_QUAD:
spi->mode |= SPI_TX_QUAD;
break;
default:
dev_err(&master->dev, "spi-tx-nbits value is not supported\n");
spi_dev_put(spi);
continue;
}
prop = of_get_property(nc, "spi-rx-nbits", &len);
if (!prop || len < sizeof(*prop)) {
dev_err(&master->dev, "%s has no 'spi-rx-nbits' property\n",
nc->full_name);
spi_dev_put(spi);
continue;
}
switch (be32_to_cpup(prop)) {
case SPI_NBITS_SINGLE:
break;
case SPI_NBITS_DUAL:
spi->mode |= SPI_RX_DUAL;
break;
case SPI_NBITS_QUAD:
spi->mode |= SPI_RX_QUAD;
break;
default:
dev_err(&master->dev, "spi-rx-nbits value is not supported\n");
spi_dev_put(spi);
continue;
}
/* Device speed */
prop = of_get_property(nc, "spi-max-frequency", &len);
if (!prop || len < sizeof(*prop)) {
@ -1316,6 +1377,19 @@ int spi_setup(struct spi_device *spi)
unsigned bad_bits;
int status = 0;
/* check mode to prevent that DUAL and QUAD set at the same time
*/
if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
dev_err(&spi->dev,
"setup: can not select dual and quad at the same time\n");
return -EINVAL;
}
/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
*/
if ((spi->mode & SPI_3WIRE) && (spi->mode &
(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
return -EINVAL;
/* help drivers fail *cleanly* when they need options
* that aren't supported with their current master
*/
@ -1378,6 +1452,8 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
/**
* Set transfer bits_per_word and max speed as spi device default if
* it is not set for this transfer.
* Set transfer tx_nbits and rx_nbits as single transfer default
* (SPI_NBITS_SINGLE) if it is not set for this transfer.
*/
list_for_each_entry(xfer, &message->transfers, transfer_list) {
message->frame_length += xfer->len;
@ -1404,7 +1480,47 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
return -EINVAL;
if (xfer->speed_hz && master->max_speed_hz &&
xfer->speed_hz > master->max_speed_hz)
return -EINVAL;
if (xfer->tx_buf && !xfer->tx_nbits)
xfer->tx_nbits = SPI_NBITS_SINGLE;
if (xfer->rx_buf && !xfer->rx_nbits)
xfer->rx_nbits = SPI_NBITS_SINGLE;
/* check transfer tx/rx_nbits:
* 1. keep the value is not out of single, dual and quad
* 2. keep tx/rx_nbits is contained by mode in spi_device
* 3. if SPI_3WIRE, tx/rx_nbits should be in single
*/
if (xfer->tx_buf) {
if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
xfer->tx_nbits != SPI_NBITS_DUAL &&
xfer->tx_nbits != SPI_NBITS_QUAD)
return -EINVAL;
if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
return -EINVAL;
if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
!(spi->mode & SPI_TX_QUAD))
return -EINVAL;
if ((spi->mode & SPI_3WIRE) &&
(xfer->tx_nbits != SPI_NBITS_SINGLE))
return -EINVAL;
}
/* check transfer rx_nbits */
if (xfer->rx_buf) {
if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
xfer->rx_nbits != SPI_NBITS_DUAL &&
xfer->rx_nbits != SPI_NBITS_QUAD)
return -EINVAL;
if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
return -EINVAL;
if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
!(spi->mode & SPI_RX_QUAD))
return -EINVAL;
if ((spi->mode & SPI_3WIRE) &&
(xfer->rx_nbits != SPI_NBITS_SINGLE))
return -EINVAL;
}
}
message->spi = spi;

View file

@ -74,7 +74,7 @@ struct spi_device {
struct spi_master *master;
u32 max_speed_hz;
u8 chip_select;
u8 mode;
u16 mode;
#define SPI_CPHA 0x01 /* clock phase */
#define SPI_CPOL 0x02 /* clock polarity */
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
@ -87,6 +87,10 @@ struct spi_device {
#define SPI_LOOP 0x20 /* loopback mode */
#define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */
#define SPI_READY 0x80 /* slave pulls low to pause */
#define SPI_TX_DUAL 0x100 /* transmit with 2 wires */
#define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
#define SPI_RX_DUAL 0x400 /* receive with 2 wires */
#define SPI_RX_QUAD 0x800 /* receive with 4 wires */
u8 bits_per_word;
int irq;
void *controller_state;
@ -256,6 +260,9 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* @busy: message pump is busy
* @running: message pump is running
* @rt: whether this queue is set to run as a realtime task
* @auto_runtime_pm: the core should ensure a runtime PM reference is held
* while the hardware is prepared, using the parent
* device for the spidev
* @prepare_transfer_hardware: a message will soon arrive from the queue
* so the subsystem requests the driver to prepare the transfer hardware
* by issuing this call
@ -380,11 +387,13 @@ struct spi_master {
bool busy;
bool running;
bool rt;
bool auto_runtime_pm;
int (*prepare_transfer_hardware)(struct spi_master *master);
int (*transfer_one_message)(struct spi_master *master,
struct spi_message *mesg);
int (*unprepare_transfer_hardware)(struct spi_master *master);
/* gpio chip select */
int *cs_gpios;
};
@ -454,6 +463,10 @@ extern struct spi_master *spi_busnum_to_master(u16 busnum);
* @rx_buf: data to be read (dma-safe memory), or NULL
* @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
* @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
* @tx_nbits: number of bits used for writting. If 0 the default
* (SPI_NBITS_SINGLE) is used.
* @rx_nbits: number of bits used for reading. If 0 the default
* (SPI_NBITS_SINGLE) is used.
* @len: size of rx and tx buffers (in bytes)
* @speed_hz: Select a speed other than the device default for this
* transfer. If 0 the default (from @spi_device) is used.
@ -508,6 +521,11 @@ extern struct spi_master *spi_busnum_to_master(u16 busnum);
* by the results of previous messages and where the whole transaction
* ends when the chipselect goes intactive.
*
* When SPI can transfer in 1x,2x or 4x. It can get this tranfer information
* from device through @tx_nbits and @rx_nbits. In Bi-direction, these
* two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
* SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
*
* The code that submits an spi_message (and its spi_transfers)
* to the lower layers is responsible for managing its memory.
* Zero-initialize every field you don't set up explicitly, to
@ -528,6 +546,11 @@ struct spi_transfer {
dma_addr_t rx_dma;
unsigned cs_change:1;
u8 tx_nbits;
u8 rx_nbits;
#define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
#define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
#define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
u8 bits_per_word;
u16 delay_usecs;
u32 speed_hz;
@ -876,7 +899,7 @@ struct spi_board_info {
/* mode becomes spi_device.mode, and is essential for chips
* where the default of SPI_CS_HIGH = 0 is wrong.
*/
u8 mode;
u16 mode;
/* ... may need additional spi_device chip config data here.
* avoid stuff protocol drivers can set; but include stuff